
PostSharp 5.0
User Manual

Copyright SharpCrafters s.r.o. 2018. All rights reserved.

2

Table of Contents

7Introduction
9Quick Examples

13Why Use PostSharp
13Which Problems Does PostSharp Solves
14Benefits of Pattern-Aware Compiler Extensions
15Benefits of PostSharp vs Alternatives
19How Does PostSharp Work
19Key Technologies
23How to Learn PostSharp
23Architecture Role: Selecting and Creating Aspects
25Deployment Role: Installing and Deploying PostSharp
25Developer Role: Using Aspects
27What's New
27What's New in PostSharp 5.0
30What's New in PostSharp 4.3
31What's New in PostSharp 4.2
34What's New in PostSharp 4.1
34What's New in PostSharp 4.0
36What's New in PostSharp 3.1
37What's New in PostSharp 3.0
38What's New in PostSharp 2.1
39What's New in PostSharp 2.0
40What's New in PostSharp 1.5

43Deployment and Configuration
45Deployment
45Requirements and Compatibility
49PostSharp Components
50Installing PostSharp Tools for Visual Studio
51Installing PostSharp Tools for Visual Studio Silently
52Installing PostSharp Into a Project
53Installing PostSharp without NuGet
59Using PostSharp on a Build Server
62Upgrading from a Previous Version of PostSharp
64Uninstalling PostSharp
70Deploying PostSharp to End-User Devices
71Executing PostSharp from the Command Line
75Licensing
75Deploying License Keys
79License Audit
79Limitations of PostSharp Essentials
80Sharing Source Code With Unlicensed Teams
81Installing and Servicing PostSharp License Server
85Using PostSharp License Server
91Configuration
91Configuring Projects in Visual Studio
93Configuring Projects Using MSBuild
97Working with PostSharp Configuration Files

103Accessing Configuration from Source Code
104Working with Errors, Warnings, and Messages
106Resolution of assembly binding redirections
107Reducing Build Time

111Adding Aspects to Code

3

113Adding Aspects Declaratively Using Attributes
114Adding Aspects to a Single Declaration
114Adding Aspects to Multiple Declarations
119Adding Aspects to Derived Classes and Methods
125Overriding and Removing Aspect Instances
128Reflecting Aspect Instances at Runtime
131Adding Aspects Using XML
133Adding Aspects Programmatically using IAspectProvider

135Logging
137Adding Detailed Logging to your Solution
141Customizing the Appearance of Log Records
145Implementing a Custom Formatter
147Adding Custom Log Records Manually
151Enabling and Disabling Logging At Run Time
153Configuring specific logging frameworks
153Logging to the system console
155Logging to log4net
155Logging to NLog
156Logging to Serilog
158Logging to ETW
158Logging to Common.Logging
159Logging to Loupe
161Adding Audit to your Solution
165Implementing an Adapter to a Custom Logging Framework
171Upgrading from PostSharp Diagnostics 4.3
173Licensing of PostSharp Diagnostics

175Contracts
177Adding Contracts to Code
181Creating Custom Contracts
183Localizing Contract Errors

187INotifyPropertyChanged
189Implementing INotifyPropertyChanged
191Working with Properties that Depend on Other Objects
193Implementing INotifyPropertyChanging
195Handling Corner Cases
199Integrating with UI Frameworks
199Caliburn.Micro
201MVVM Light
203Understanding the NotifyPropertyChanged Aspect
207Suppressing False Positives

209Weak Event
211XAML
213Command
217Dependency Property
221Attached Property

223Parent/Child, Visitor and Disposable
225Annotating an Object Model for Parent/Child Relationships (Aggregatable)
227Rule-Based Annotation
229Enumerating Child Objects (Visitor)
231Automatically Disposing Children Objects (Disposable)
233Working With Child Collections

239Undo/Redo

Table of Contents

4

241Making Your Model Recordable
243Adding Undo/Redo to the User Interface
245Customizing Undo/Redo Operation Names
249Assigning Recorders Manually
251Adding Callbacks on Undo and Redo
253Understanding the Recordable Aspect

257Caching
259Caching Method Return Values
263Removing Items From the Cache
267Working with Cache Dependencies
271Customizing Cache Keys
275Caching Back-Ends
275Using In-Memory Cache
275Using Redis Cache
279Synchronizing Local In-Memory Caches for Multiple Servers
281Caching Special Types with Value Adapters

285Multithreading
287Writing Thread-Safe Code with Threading Models
288Immutable Threading Model
292Freezable Threading Model
294Thread Affine Threading Model
295Synchronized Threading Model
297Reader/Writer Synchronized Threading Model
303Actor Threading Model
306Thread-Unsafe Threading Model
307Making a Whole Project or Solution Thread Safe
309Opting In and Out From Thread Safety
310Compatibility of Threading Models
311Enabling and Disabling Runtime Verification
314Run-Time Performance of Threading Model
317Dispatching a Method to Background
319Dispatching a Method to the UI Thread
321Detecting Deadlocks at Runtime

327Developing Custom Aspects
329Developing Simple Aspects
329Injecting Behaviors Before and After Method Execution
337Handling Exceptions
341Intercepting Methods
346Intercepting Properties and Fields
351Intercepting Events
353Introducing Custom Attributes
358Introducing Managed Resources
359Semantic Advising of Iterator and Async Methods
365Understanding Aspect Lifetime and Scope
367Initializing Aspects
367Coping with Custom Object Serializers
369Validating Aspect Usage
373Developing Composite Aspects
374Adding Behaviors to Existing Members
378Introducing Interfaces, Methods, Properties and Events
382Accessing Members of the Target Class
384Adding Aspects Dynamically
385Coping with Several Aspects on the Same Target
388Ordering Advices
389Understanding Aspect Serialization
391Customizing Aspect Appearance in Visual Studio
391Customizing Aspect Description in Tooltips

5

392Estimating Code Savings
393Pushing Information to PostSharp Tools Programmatically
395Consuming Dependencies from an Aspect
395Using a Global Composition Container
398Using a Global Service Locator
400Using Dynamic Dependency Resolution
403Using Contextual Dependency Resolution
406Importing Dependencies from the Target Object

409Validating Architecture
411Restricting Interface Implementation
415Controlling Component Visibility Beyond Private and Internal
425Developing Custom Architectural Constraints

433Testing and Debugging
435Debugging Run-Time Logic
439Debugging Build-Time Logic
441Testing that an Aspect has been Applied
443Testing Run-Time Logic
445Testing Build-Time Logic

447Hacking
449Executing Code Just After the Assembly is Loaded

Table of Contents

6

PART 1

Introduction

CHAPTER 1

Quick Examples

This section shows a few examples to demonstrate what PostSharp is about:
• Standard patterns on page 9
• Thread safety patterns on page 10
• Implementation of custom patterns on page 11
• Validation of custom patterns on page 11

Standard patterns
PostSharp provides implementations of some of the patterns that are the most commonly found in .NET code bases:

• INotifyPropertyChanged: see INotifyPropertyChanged on page 187.
• Parent/child relationships: see Parent/Child, Visitor and Disposable on page 223.
• Undo/redo: see Undo/Redo on page 239.
• Code contracts: see Contracts on page 175.
• Logging: see Logging on page 135.

Example
The following code snippet illustrates an object model where INotifyPropertyChanged, undo/redo, code contracts,
aggregation and code contracts are all implemented using PostSharp ready-made attributes.

[NotifyPropertyChanged]
publicclass CustomerViewModel
{

[Required]
public Customer Customer { get; set; }

publicstring FullName { get { returnthis.Customer.FirstName + " " + this.Customer.LastName; } }
}

[NotifyPropertyChanged]
[Recordable]
publicclass Customer
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }

[Child]
public AdvisableCollection<Address> Addresses { get; set; }

[Url]
publicstring HomePage { get; set; }

[Log]
publicvoid Save(DbConnection connection)
{

// ...
}

}

[NotifyPropertyChanged]

9

[Recordable]
publicclass Address
{

[Parent]
public Customer Parent { get; privateset; }

publicstring Line1 { get; set; }
}

Thread safety patterns
Multithreading is a great demonstration of the limitations of conventional object-oriented programming. Thread
synchronization is traditionally addressed at an absurdly low level of abstraction, resulting in excessive complexity and
defects.
Yet, several design patterns exist to bring down the complexity of multithreading. New programming languages have
been designed around these patterns: for instance Erlang over the Actor pattern and functional programming over the
Immutable pattern.
PostSharp gives you the benefits of threading design patterns without leaving C# or VB.
PostSharp supports the following threading models and features:

• Immutable: see Immutable Threading Model on page 288.
• Freezable: see Freezable Threading Model on page 292.
• Actor: see Actor Threading Model on page 303.
• Reader/Writer Synchronized: see Reader/Writer Synchronized Threading Model on page 297.
• Synchronized: see Synchronized Threading Model on page 295.
• Thread Unsafe: see Thread-Unsafe Threading Model on page 306.
• Thread Affine: see Thread Affine Threading Model on page 294.
• Thread Dispatching: see Dispatching a Method to Background on page 317 and Dispatching a Method to the

UI Thread on page 319.
• Deadlock Detection: see Detecting Deadlocks at Runtime on page 321.

Example
The following code snippet shows how a data transfer object can be made freezable, recursively but easily:

[Freezable]
publicclass Customer
{

publicstring Name { get; set; }

[Child]
public AdvisableCollection<Address> Addresses { get; set; }

}

[Freezable]
publicclass Address
{

[Parent]
public Customer Parent { get; privateset; }

publicstring Line1 { get; set; }
}

publicclass Program
{

publicstaticvoid Main()
{

Customer customer = ReadCustomer("http://customers.org/11234");

Quick Examples

10

// Prevent changes.
((IFreezable)customer).Freeze();

// The following line will cause an ObjectReadOnlyException.
customer.Addresses[0].Line1 = "Here";

}
}

Implementation of custom patterns
The attributes that implement the standard and thread safety patterns are called aspects. This term comes from the
paradigm of aspect-oriented programming (AOP). An aspect is a class that encapsulates behaviors that are injected into
another class, method, field, property or event. The process of injecting an aspect into another piece of code is called
weaving. PostSharp weaves aspects at build time; it is also named a build-time aspect weaver.
PostSharp Aspect Framework is a pragmatic implementation of AOP concepts. All ready-made implementations of
patterns are built using PostSharp Aspect Framework. You can use the same technology to automate the implemen-
tation of your own patterns.
To learn more about developing your own aspects, see Developing Custom Aspects on page 327.

Example
The following code snippet shows a simple [PrintException] aspect that writes an exception message to the console
before rethrowing it:

[PSerializable]
class PrintExceptionAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

In the next snippet, the [PrintException] aspect is applied to a method:

class Customer
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }

[PrintException]
publicvoid Store(string path)
{

File.WriteAllText(path, string.Format("{0} {1}", this.FirstName, this.LastName));
}

}

Validation of custom patterns
Not all patterns can be fully implemented by the compiler. Many patterns involve a lot of handwritten code. However,
they are still patterns because we want to follow the same conventions and approach when solving the same problem.
In this case, we have to validate the code against implementation guidelines of the pattern. This is typically achieved
during code reviews, but as any algorithmic work, it can be partially automated using the right tool. This is the job of the
PostSharp Architecture Framework.
PostSharp Architecture Framework also contains pre-built architectural constraints that help to solve common design
problems. For instance, the InternalImplementAttribute constraint prevents an interface to be implemented in an
external assembly.
See Validating Architecture on page 409 for more details about architecture validation.

11

Example
Consider a form-processing application. There may be hundreds of forms, and each form can have dozens of business
rules. In order to reduce complexity, the team decides that all business rules will respect the same pattern. The team
decides that each class representing a business rule must contain a public nested class named Factory, and that this
class must have an [Export(IBusinessRuleFactory)] custom attribute and a default public constructor. The team
wants all developers to follow the convention. Therefore, the team decides to create an architectural constraint that will
validate the code against the project-specific Business Rule Factory pattern.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{

publicoverridevoid ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(targetType, SeverityType.Error, "2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType, targetType.Name);

}

// ...
}

}

[BusinessRulePatternValidation]
publicabstract BusinessRule
{

// ...
}

Quick Examples

12

CHAPTER 2

Why Use PostSharp

How many times did you find yourself:
• copying and pasting blocks of code to implement a functionality (for instance logging)?
• implementing INotifyPropertyChanged manually – and forget a notification?
• trying to understand the business logic behind a cluttered codebase?
• struggling to add or modify functionality in an existing software?
• debugging data races in multithreaded applications?
• wondering why it’s so hard to build enterprise-grade software?

PostSharp started as an open-source project in 2004 and due to its popularity, it soon became a commercial product
trusted by over 50,000 developers worldwide and over 1,000 leading corporations. More than 10% of all Fortune 500
companies including Microsoft, Intel, Bank of America, Phillips, NetApp, BP, Comcast, Volkswagen, Hitachi, Deutsche Bank,
Bosch, Siemens, and Oracle rely on PostSharp to reduce their development and maintenance costs.
With over a decade experience in boilerplate reduction, PostSharp is now the #1 best-selling pattern-aware extension to C#
and VB and the only commercially-supported development tool for .NET.

In this chapter
Topic Description
Which Problems Does PostSharp
Solves on page 13

This topic describes which problems PostSharp attends to address.

Benefits of Pattern-Aware Compiler
Extensions on page 14

This topic defines the concept of Patter-Aware Compiler and
explains its benefits.

Benefits of PostSharp vs Alternatives on page 15 This topic lists the competitive benefits of using PostSharp over
alternatives.

2.1. Which Problems Does PostSharp Solves
Conventional programming languages miss a concept of pattern, therefore patterns are hand-coded and result in
boilerplate code.
Boilerplate code has the following impact:

• High development effort on page 14
• Poor quality software on page 14
• Difficulty to add/modify functionality after release 1.0 on page 14
• Slow ramp-up of new team members on page 14

Which Problems Does PostSharp Solves

13

High development effort
• Large codebases. Some application features require a large amount of repetitive code (boilerplate) when

implemented with existing mainstream compiler technologies.
• Reinventing the wheel. Solutions to problems like INotifyPropertyChanged are always being reinvented

because there is no reusable options within conventional programming languages.

Poor quality software
• High number of defects. Every line of code has a possibility of defect, but code that stems from copy-paste

programming is more likely than other to be buggy because subtle differences are often overlooked.
• Multithreading issues. Object-oriented programming does not deliver much value when it comes to

developing multithreaded applications since it addresses issues at a low level of abstraction with locks, events
or interlocked accesses that can easily result in deadlocks or random data races.

• Lack of robustness. Enterprise-grade features such as exception handling or caching are often deliberately
omitted because of the high amount of source code they imply, unintentionally forbidden in some parts of the
applications, simply left untested and unreliable.

Difficulty to add/modify functionality after release 1.0
• Unreadable code that’s difficult to maintain. Business code is often littered with low-level non-functional

requirements and is more difficult to understand and maintain, especially when the initial developer left.
• Strong coupling. Poor problem decomposition results in duplicate code and strong coupling making it very

difficult to change the implementation of features like logging, exception handling or INotifyPropertyChanged
because it is often scattered among thousands of files.

Slow ramp-up of new team members
• Too much knowledge required. When new team members come to work on a specific feature, they often

must first learn about caching, threading and other highly technical issues before being able to contribute to
the business value: an example of bad division of labor.

• Long feedback loops. Even with small development teams, common patterns like diagnostics, logging,
threading, INotifyPropertyChanged and undo/redo can be handled differently by each developer. Architects
need to make sure new team members understand and follow the internal design standards and have to
spend more time on manual code reviews--delaying progress while new team members wait to get feedback
from code review.

2.2. Benefits of Pattern-Aware Compiler Extensions
Pattern-aware programming extends conventional object-oriented programming with a concept of pattern, which becomes
a first-class element of the programming language.
Most mainstream programming languages can be extended with a concept of pattern, avoiding the cost of rewriting
applications in a new language.
Because patterns are supported by the compiler extension (100% compatible with your existing compiler), they do not need
to be manually implemented as boilerplate code. Features such as INotifyPropertyChanged, logging, transactions are
implemented in a cleaner, more concise way, making development and maintenance much easier.
There are 4 reasons to consider using a pattern-aware compiler extension:

• Stop writing boilerplate code and deliver faster on page 15

Why Use PostSharp

14

• Build more reliable software on page 15
• Add/modify functionality more easily after first release on page 15
• Help new members contribute quicker on page 15

Stop writing boilerplate code and deliver faster
• Fewer lines of code means fewer hours of work. Patterns are repetitive, with little or no decision left to the

developer. However, repetition is exactly what computers are good at. Let the compiler do the repetitive work
and save development time and costs immediately.

Build more reliable software
• Cleaner code means fewer defects. With a pattern-aware compiler eliminating the boilerplate, your code

becomes easier to read, understand and modify, and contains fewer defects.
• Reliability becomes much more affordable. Because they no longer require so much manual coding,

reliability features such as caching or exception handling are much easier and cheaper to implement, so you
can spend your extra time building a more robust app.

Add/modify functionality more easily after first release
• Cleaner and shorter code is easier to understand. After the initial release, too much development time is

spent reading and analyzing source code, especially if the initial developer left. With minimized boilerplate
code, developers can easily focus on business logic and spend much less time trying to understanding the
code.

• Better architecture is future-proof. Using a pattern-aware compiler, features like logging, exception
handling or transactions are no longer scattered among thousands of files but they are defined in one place,
making it much easier and fast to modify when necessary.

Help new members contribute quicker
• Achieve a better division of labor. Using a pattern-aware compiler makes the introduction of new or junior

team members less onerous since they can focus on simpler, more business logic-oriented tasks rather than
having to waste so much time learning complex architectural structures.

• Implement a tighter feedback loop. A pattern-aware compiler can validate that handwritten code respects a
pattern or a model, and it can detect bugs at build time instead of during code reviews, testing, or in
production.

2.3. Benefits of PostSharp vs Alternatives
PostSharp is the #1 pattern-aware extension to C#/VB. It adds a concept of pattern to the languages, resulting in a dramatic
reduction of boilerplate code, lower development and maintenance costs and fewer errors. With PostSharp you can:
Here are the reasons that differentiates PostSharp from alternatives:

• Get more productive in minutes with ready-made pattern implementations on page 16
• Automate more complex patterns and remove more boilerplate on page 16
• Build thread-safe apps--without a PhD on page 17
• Maintain your existing codebase in C# or Visual Basic on page 17
• Benefit from much better run-time performance on page 18

Benefits of PostSharp vs Alternatives

15

Get more productive in minutes with ready-made pattern implementations
• INotifyPropertyChanged Pattern. Automates the implementation of INotifyPropertyChanged and automat-

ically raises notifications for you. It also analyzes chains of dependencies between properties, methods and
fields in your source code, and understands that property getters can access several fields and call different
methods, or even depend on properties of other objects. PostSharp eliminates all the repetition and lets you
go from three lines of code per property to one attribute per base class... so you will never forget to raise a
property change notification again.

• Undo/Redo Pattern. Makes the implementation of the end-users most-wanted features easy and affordable
by recording changes at model level. Provides built-in user controls or allows you to create your own. You can
deliver the familiar Undo/Redo experience to your users without getting stuck writing large amounts of code.

• Code Contracts. Provide validation for valid URLs, email addresses, positive numbers or not-null values and
many more, right out of the box. Allows you to use contract attributes without limitations at any location in
your codebase and validate methods, fields, properties and parameters. This enables you to protect your code
from invalid inputs with custom attributes.

• Logging Pattern. Adds comprehensive logging in a few clicks – without impact on your source code – and lets
you remove it just as quickly. Provides parameter and return values providing added information for
maintenance and support work. Supports most popular backends, including log4net, NLog, Enterprise Library,
System Console, System Diagnostics. You can trace everything you need in minutes without cluttering your
code.

Automate more complex patterns and remove more boilerplate
• PostSharp Aspect Framework. PostSharp is hands down the most robust and exhaustive implementation of

aspect-oriented programming for .NET and was evolved into the world's best pattern compiler. It is the most
powerful toolset available to implement automation for your own patterns.

• Largest choice of possible transformations. Includes decoration of methods, iterators and async state
machines, interception of methods, events or properties, introduction of interfaces, methods, events,
properties, custom attributes or resources, and more.

• Composition of several transformations to easily automate complex patterns.
• Dynamic aspect/advice providers. Addresses situations where it is not possible to add aspects declaratively

(using custom attributes) to the source code with dynamic aspect/advice providers.
• Aspect inheritance. Apply an aspect to a base class, specify that you want it to be inherited and all derived

classes will automatically have the aspect applied to them. Relieves you from implementing the aspects
manually and ensures that all derived classes using this aspect's logic is correct.

• Architecture framework. Validates handwritten source code against your own custom pattern guidelines. It
then express the rules in C# using the familiar System.Reflection API, extended with features commonly found
in decompilers, such as “find usage”, and more.

Why Use PostSharp

16

Build thread-safe apps--without a PhD
Starting new threads and tasks in .NET languages is simple, but ensuring that objects are thread-safe is not with
mainstream programming languages. That's why PostSharp extends C# and VB with thread-safety features.

• 7 different threading models. Threading models are design patterns that guarantee your code executes
safely even when used from multiple threads. Threading models raise the level of abstraction at which
multithreading is addressed. Unlike working directly with locks and other low-level threading primitives,
threading models decrease the number of lines of code, the number of defects and reduce development and
maintenance costs – without having to have expertise in multithreading. Includes:

1. Immutable Threading Model. Allows you to make select objects in your codebase immutable so
that they can be safely accessed by several threads concurrently, without the need for locking or
other synchronization.

2. Freezable Threading Model. This is the milder brother of the Immutable pattern. It is suitable when
you need to prevent changes to an instance of an object most of, but not all of the time. Lets you
define the point in time where immutability begins.

3. Synchronized Threading Model. Makes sure the objects are accessed by a single thread at a time.
Other threads will wait until the object is available so you'll avoid data races.

4. Reader-Writer Synchronized Threading Model. This pattern relies on the fact that most objects are
much more often read than modified. Compared to traditional locking, it maximizes read throughput
and minimizes the odds of deadlocks.

5. Actor Threading Model. Actors are classes that essentially run within a single thread. Other code
communicates with actors using asynchronous calls. Celebrated by Erlang, Scala and F# developers,
this pattern is now available to .NET thanks to PostSharp and C# 5.0.

6. Thread Affine Threading Model. Limits object instance access to the thread that created the
instance.

7. Thread Unsafe Threading Model. Perfect pattern to make sure that objects will never be accessed
concurrently by several threads. Get an exception instead of a random data corruption.

• Model validation. Catches most defects during the build or during single-threaded test coverage.
• Thread dispatching patterns. Causes the execution of a method to be dispatched to the UI thread or to a

background thread. Much easier than using nested anonymous methods.
• Deadlock detection. Causes an easy-to-diagnose exception in case of deadlock instead of allowing the

application to freeze and create user's frustration.

Maintain your existing codebase in C# or Visual Basic
Despite the hype around functional programming languages, C#/VB and .NET remain an excellent platform for
enterprise development. PostSharp respects your technology assets and will work incrementally with your existing code
base – there is NO need for a full rewrite or redesign.

• Design neutrality. Unlike alternatives, PostSharp takes minimal assumptions on your code. It does not force
you to adopt any specific architecture or threading model. You can add aspects to anything, not just interface/
virtual methods. Plus, it is fully orthogonal from dependency injection. You don't have to dissect your
application into components and interfaces in order to use PostSharp.

• Plain C# and VB. PostSharp provides advanced features present in F#, Scala, Nemerle, Python, Ruby or Java-
Script, but your code is still 100% C# and VB, and it is still compiled by the proved Microsoft compilers.

• Cross-platform. PostSharp supports the .NET Framework, Windows Phone, WinRT, Xamarin and Portable Class
Libraries.

• Standard skill set. No complex API. Reuse what you already know from C# and System.Reflection.

Benefits of PostSharp vs Alternatives

17

Benefit from much better run-time performance
Start-up latency, execution speed and memory consumption matter. Whether you're building a mobile app or a
backend server, PostSharp delivers exceptional run-time performance.

• Build-time code generation. Unlike proxy-based solutions, PostSharp modifies your code at build time. It
also allows for much more powerful enhancements that produces dramatically faster applications.

• No reflection. PostSharp does not rely on reflection at run-time. The only code that is executed is what you
can see with a decompiler.

• Build-time initialization. Many patterns make decisions based on the shape of the code which they are
applied. With PostSharp, you can analyze the target code at build-time and store the decisions into serializable
fields. At runtime, the aspects will be deserialized and you won't need to analyze the code at run-time using
reflection.

Why Use PostSharp

18

CHAPTER 3

How Does PostSharp Work

On a conceptual level, you can think of PostSharp as an extension to the C# or VB compiler. Practically, Microsoft's
compilers themselves are not extensible, but the build process can be easily extended. That's exactly what PostSharp is
doing: it inserts itself into the build process and post-processes the output of the compiler.
This topic contains the following sections:

• MSBuild Integration on page 19
• MSIL Rewriting on page 19

MSBuild Integration
PostSharp integrates itself in the build process thanks to PostSharp.targets, which is imported into each project using
PostSharp by the NuGet installation script install.ps1. PostSharp.targets adds a few steps to the build process. The
principal step is the post-processing of the compiler's output by PostSharp itself.
See Configuring Projects Using MSBuild on page 93 for details.

MSIL Rewriting
PostSharp post-processes the compiler output by reading and disassembling the intermediate assembly, execute the
required transformations and validations, and rewriting the final assembly to disk.
Although this might sound magic or dangerous, PostSharp's MSIL technology is stable and mature, and has been used
by tens of thousands of projects since 2004. Other .NET products relying on MSIL transformation or analysis include
Microsoft Code Contracts, Microsoft Code Analysis, and Microsoft Code Coverage.

3.1. Key Technologies
PostSharp combines several technologies to leverage design pattern automation:

• Metaprogramming on page 19
• Aspect-Oriented Programming on page 20
• Static Program Analysis on page 20
• Dynamic Program Analysis on page 20

Metaprogramming
Metaprogramming is the writing of a program that analyzes and transforms itself or other programs. PostSharp
internally represents a .NET program as a mutable .NET object model, so PostSharp can be considered a metapro-
gramming tool for .NET.
However, general metaprogramming (the ability to perform arbitrary modifications on a program) is a highly complex
discipline. Although it may seem easy to perform simple modifications on simple programs, it is actually much more
difficult to implement non-trivial transformations that work in all cases. Metaprogramming can result in a decrease in

Key Technologies

19

productivity when used improperly and it is very difficult, for application developers who lack specific training in
compilers and metaprogramming, to use it properly.
Since general metaprogramming is too complex and too low level, we need a higher layer of abstraction that makes it
easier and safer to express program transformations. Essential qualities of this abstraction layer would include safe
composition of several transformations on the same declaration and restrictions on changing the program semantics.
Aspect-Oriented Programming fulfills these qualities as a disciplined approach to metaprogramming.

Aspect-Oriented Programming
PostSharp Aspect Framework is built on the principle of Aspect-Oriented Programming (AOP), a well-established
programming paradigm, orthogonal to (and non-competing with) object-oriented programming or functional
programming, that allows to modularize the implementation of some features that would otherwise crosscut a large
number of classes and methods.
We can confidently say that PostSharp is the most advanced AOP framework for Microsoft .NET.
For details on PostSharp's implementation of AOP, see Developing Custom Aspects on page 327.

Static Program Analysis
Static program analysis is the analysis of a program without executing it.
There are two families of static analysis tools:

• Structural static analysis tools analyze the program's declarations and instructions, but do not attempt to
understand the run-time behavior of the program. Microsoft Code Analysis belongs to this category.

• Behavioral static analysis tools are based on iterative techniques like abstract interpretation, model checking or
data-flow analysis. Behavioral static analysis is much more complex and time consuming. Microsoft Code
Contracts belong to this category.

PostSharp contains tools for structural static analysis only. These tools consist in complete access to the System.
Reflection model of the assembly being built, navigating through code relationships using the ReflectionSearch
facility, and an expression tree decompiler.
The most important use case for static analysis in PostSharp is when writing aspects, in order to determine how the
target program should be transformed. Any of the static analysis tools can be used to build aspects. This contrasts with
other AOP implementation like AspectJ, which defines its own specific language (pointcut language) to select target
declarations.
Aspects like NotifyPropertyChangedAttribute or threading models make advanced use of static analysis.

A secondary role for static analysis is architecture validation. This role is marketed as the PostSharp Architecture
Framework, which defines a notion of architectural constraint. see Validating Architecture on page 409 for more
information.

Dynamic Program Analysis
Dynamic program analysis is the analysis of a program during its execution. Dynamic analysis is often used to detect
issues early, before they cause bigger damage. A typical example of dynamic analysis is the one that occurs when an
object is cast to a type: when the safety of the type conversion cannot be proved using static analysis, the type
conversion must be verified at run time, and an InvalidCastException is thrown when an invalid cast is detected.

PostSharp uses dynamic analysis to check the program against threading models. Since many model properties cannot
be reliably verified at build time, they must be enforced at run time. For instance, with the Synchronized threading
model, accessing a field without owning access to the object would result in a ThreadAccessException. For details, see
Writing Thread-Safe Code with Threading Models on page 287.
Another example of use of dynamic program analysis in PostSharp is deadlock detection. For details, see Detecting
Deadlocks at Runtime on page 321.

How Does PostSharp Work

20

In PostSharp, dynamic analysis is achieved by adding instrumentation aspects to the program.

Key Technologies

21

How Does PostSharp Work

22

CHAPTER 4

How to Learn PostSharp

A PostSharp implementation project is typically composed of three phases, in which three roles typically interact differently
with the product. Each role requires different skills and knowledge. We have created a learning path for each of these roles.
Depending on your team's organization, you may be involved in one or more roles.

Topic Description
Architecture Role:
Selecting and
Creating
Aspects on page 23

In the first phase, the team learns about the concepts and abilities of PostSharp, and identify how
it could fit into the application's design and architecture. The team selects the ready-made aspects
that will be used in the application and, when no ready-made aspects can be used, it creates
custom aspects or architecture rules.
People in this role are typically called architects, technical leads or senior developers. They must
acquire an extensive knowledge of PostSharp and their decisions affect the whole team's produc-
tivity.

Deployment Role:
Installing and
Deploying
PostSharp on page 25

The next typical step is to deploy PostSharp into your development infrastructure and configure
licensing. PostSharp works mostly out of the box for individual developers and small teams, but
you may want some planning if you are responsible for a complex solution.

Developer Role:
Using
Aspects on page 25

Your team is finally ready to use PostSharp on a daily basis. At this point, typically, the team
already knows which aspects will be used and when and how they will be used. As a developer
who will use existing aspects, you don't need to invest a large amount of effort to learn PostSharp
upfront. However, you will need to understand the aspects that have been selected by the team,
and how to apply them to a code base.

4.1. Architecture Role: Selecting and Creating Aspects
The first step in the process of adopting PostSharp is typically to understand what the product can do for you and why you
should use (or not use) its features. This activity is typically part of the architecture role.
As you will see, PostSharp offers a set of pre-built aspects implementing some of the most common patterns. As an
architect, you will need to understand what these aspects can do for you and how they could fit and simplify your
architecture.
However, standard patterns are only the top of the iceberg. To cover your specific needs, PostSharp includes construction
kits that allow you to build your own pattern automation, namely the PostSharp Aspect Framework and the PostSharp
Architecture Framework. Determining the need for custom aspects or architecture validation rules is typically also a part of
the architecture role.
In a typical team, only a few people must be able to create custom aspects or architecture rules. These people must have a
deeper understanding of PostSharp than the developers who will only use existing aspects and rules. This is why this skill
set is included in the current section.

Architecture Role: Selecting and Creating Aspects

23

NOTE
When writing this section, we realized that the current documentation has some serious weaknesses regarding conceptual
and architectural materials. This is why we are also referring to other resources hosted on our web site.

Introduction
Understanding the principles behind PostSharp will give you a foundation to build on. All patterns and techniques used
by PostSharp relate back to this foundation.

Topic Articles
About PostSharp Why Use PostSharp on page 13

How Does PostSharp Work on page 19
Requirements and Compatibility on page 45

More About Design Pattern Automation Article: Design Pattern Automation1

More About Aspect-Oriented
Programming

Aspect-Oriented Programming in Microsoft .NET2

White Paper: Producing High-Quality Software with Aspect-Oriented
Programming3

Selecting pre-built pattern implementations
PostSharp offers a number of different pre-built patterns. The following documentation will outline how to use each of
the available patterns.

Topic Articles
General patterns Contracts on page 175

Parent/Child, Visitor and Disposable on page 223
User interface patterns Understanding the NotifyPropertyChanged Aspect on page 203

Understanding the Recordable Aspect on page 253
Multithreading White Paper: Threading Models for Object-Oriented Programming4

Detecting Deadlocks at Runtime on page 321
Dispatching a Method to the UI Thread on page 319
Dispatching a Method to Background on page 317

Diagnostics [diagnostics-library]

Creating automation for custom patterns
PostSharp's built-in patterns won't cover all scenarios in your codebase that can benefit from AOP. Learn how to build
custom patterns using the same foundational components as are used for the built-in patterns.

1. http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
2. http://www.postsharp.net/aop.net
3. http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-

Oriented%20Programming.pdf
4. http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf

How to Learn PostSharp

24

http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
http://www.postsharp.net/aop.net
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf
http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
http://www.postsharp.net/aop.net
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf

Topic Articles
Aspects Developing Custom Aspects on page 327
Architecture Validation Validating Architecture on page 409

4.2. Deployment Role: Installing and Deploying PostSharp
This section describes how to deploy PostSharp in different situations. Read it if you are responsible to integrate PostSharp
into your build process.

Topic Articles
Deploying to the Development Environment Installing PostSharp Tools for Visual Studio on page 50

Installing PostSharp Into a Project on page 52
Deploying License Keys on page 75
Uninstalling PostSharp on page 64

Deploying to the Build Infrastructure Using PostSharp on a Build Server on page 59
Restoring Packages at Build Time on page 59
Using PostSharp with Visual Studio Online on page 61

Deploying to Production or End-User Devices Deploying PostSharp to End-User Devices on page 70
Deploying to Large or Regulated Development
Environments

License Audit on page 79
Using PostSharp License Server on page 85
Upgrading Large Repositories from a Previous Version of
PostSharp on page 62

4.3. Developer Role: Using Aspects
Using aspects requires much less training than creating new ones. In typical large teams, only a few developers or architects
develop new aspects, while the rest of the team uses existing aspects. This section focuses on the skill set that you need to
acquire if you have to be able to use PostSharp aspects but don't need to create your own.
In this session, we also assume that PostSharp has been properly deployed into your development and build environments.

NOTE
Of course, you can learn PostSharp as much as you want. The role of this section is to provide a short list of articles to
minimize your learning curve and get you productive as quickly as possible, but this should not stop you from learning
and experimenting more.

This topic contains the following sections:
• Installing and upgrading PostSharp
• Working with pre-built patterns

Deployment Role: Installing and Deploying PostSharp

25

• Working with Patterns

Installing and upgrading PostSharp
Every process has a starting point. Learn how to add PostSharp to your project so that you can get started with
improving your codebase.

Topic Articles
Install PostSharp to your machine Requirements and Compatibility on page 45

Installing PostSharp Tools for Visual Studio on page 50
Add PostSharp to a project and keep it up-to-date Installing PostSharp Into a Project on page 52

Upgrading from a Previous Version of PostSharp on page 62

Working with pre-built patterns
PostSharp offers a number of different pre-built patterns. You will need to learn those that will be used in your
application.

Topic Articles
Diagnostics [diagnostics-library]
Code Contracts Contracts on page 175
INotifyPropertyChanged INotifyPropertyChanged on page 187
Aggregatable Parent/Child, Visitor and Disposable on page 223
Disposable Automatically Disposing Children Objects (Disposable) on page 231
Undo and Redo Undo/Redo on page 239
Threading Models Writing Thread-Safe Code with Threading Models on page 287

Freezable on page 292, Immutable on page 288, Actor on page 303, Reader/Writer
Synchronized on page 297, Synchronized on page 295, Thread-Unsafe on page 306, Thread
Affine on page 294
Compatibility of Threading Models on page 310
Opting In and Out From Thread Safety on page 309

Deadlock Detection Detecting Deadlocks at Runtime on page 321
Dispatching Threads Dispatching a Method to the UI Thread on page 319

Dispatching a Method to Background on page 317
Architecture Validation Restricting Interface Implementation on page 411

Controlling Component Visibility Beyond Private and Internal on page 415

Working with Patterns
The following resources are for all aspects. You can save a great amount of time in learning to master them.

Topic Articles
Adding aspects to several declarations Adding Aspects Declaratively Using Attributes on page 113
Resolving Errors Working with Errors, Warnings, and Messages on page 104

How to Learn PostSharp

26

CHAPTER 5

What's New

PostSharp has been around since the early days of .NET 2.0 in 2004. Since the first version, many features have been added
to make PostSharp the most popular and by far the most powerful tool for aspect-oriented programming and design
pattern automation in .NET.
This chapter contains the following sections:

• What's New in PostSharp 5.0 on page 27
• What's New in PostSharp 4.3 on page 30
• What's New in PostSharp 4.2 on page 31
• What's New in PostSharp 4.1 on page 34
• What's New in PostSharp 4.0 on page 34
• What's New in PostSharp 3.1 on page 36
• What's New in PostSharp 3.0 on page 37
• What's New in PostSharp 2.1 on page 38
• What's New in PostSharp 2.0 on page 39
• What's New in PostSharp 1.5 on page 40

5.1. What's New in PostSharp 5.0
As a new major version, PostSharp 5.0 was the opportunity to introduce a few breaking changes. First, we dropped support
for Microsoft's failed platforms Windows Phone and WinRT in favor of .NET Core, .NET Standard and Visual Studio 2017.
Then, we completely revisited PostSharp Logging. Additionally, we added a caching aspect and three MVVM aspects.

IMPORTANT NOTE
As a major version, PostSharp 5.0 contains some breaking changes. See Breaking Changes in PostSharp 5.0 on page 29 for
details.

PostSharp 5.0 includes the following improvements:
• Logging: complete revamping on page 28
• Caching: a brand new feature on page 28
• Filled gaps in support for async methods on page 28
• XAML: Command, Dependency Property and Attached Property on page 28
• Code Contracts: support for out parameters and return values on page 28
• Architecture Framework: new constraints on page 28
• Support for Visual Studio 2017 on page 28

What's New in PostSharp 5.0

27

• Support for .NET Core and .NET Standard on page 29
• Support for NuGet 3 on page 29
• End of support for Windows Phone, WinRT and Silverlight on page 29
• Suspended support for Xamarin on page 29

Logging: complete revamping
That's a complete rewrite! The new PostSharp Logging is fully customizable and faster than ever. See
Logging on page 135 for details.

Caching: a brand new feature
We've added a brand new ready-made caching framework, which includes not only a caching aspect but also a cache
invalidation aspect. PostSharp Caching 5.0 comes with support for MemoryCache and Redis. See Caching on page 257
for details.

Filled gaps in support for async methods
We've put a lot of efforts to put async methods on par with normal methods in PostSharp:

• The MethodInterceptionAspect now has an OnInvokeAsync(MethodInterceptionArgs) advice, which you
can implement to intercept async methods.

• You can now set the return value and change the ReturnValue and the FlowBehavior of an async method in
an OnMethodBoundaryAspect aspect.

• The MethodInterceptionAspect and OnMethodBoundaryAspect aspects now advise async methods and
iterators semantically by default (i.e. the state machine itself is advised), while previous versions advised the
kick-off methods by default. The new property SemanticallyAdvisedMethodKinds controls whether the
advice is applied semantically or not. The UnsupportedTargetAction property determines what should be
done when semantic advising of the current method is not supported.

XAML: Command, Dependency Property and Attached Property
If you're writing XAML applications, you probably wrote a lot of boilerplate code for commands and dependency
properties. We've created new aspects to automate that. See XAML on page 211 for details.

Code Contracts: support for out parameters and return values
It is now possible to add code contracts to return values and out or ref parameters. The values are validated when the
method succeeds.

Architecture Framework: new constraints
PostSharp 5.0 adds three constraints:

• The NamingConventionAttribute constraint is a simple way to force derived class to respect some naming
convention.

• The ParameterValueConstraint abstract constraint lets you validate, at build-time, the value passed to
method parameters.

• The ReferenceConstraint abstract constraint allows you to validate which code uses (i.e. references) your
type or method.

Support for Visual Studio 2017
PostSharp 5.0 supports Visual Studio 2017 including the new project format (package references) and the new features
of C# 7.0.

What's New

28

Support for .NET Core and .NET Standard
PostSharp 5.0 supports .NET Core 1.0 and .NET Standard 1.3 in Visual Studio 2017 and .NET Core CLI. See Requirements
and Compatibility on page 45 for details.

Support for NuGet 3
PostSharp 5.0 supports NuGet 3 and it no longer needs install.ps1 to introduce itself into the build chain.

End of support for Windows Phone, WinRT and Silverlight
Let's face it, these platforms were a failure. We no longer want to pay a price for that and we're dropping support in
PostSharp 5.0.

Suspended support for Xamarin
Usage data show that only a few customers are using PostSharp with Xamarin, so we demoted the priority of this
platform. It is not supported in PostSharp 5.0. Affected customers should contact our support team. We're considering
to support Xamarin through .NET Standard if there is significant demand for it.

5.1.1. Breaking Changes in PostSharp 5.0
PostSharp 5.0 contains the following breaking changes:

Changes causing silent changes of behavior
• The OnMethodBoundaryAspect aspect will now advise the state machine of async methods and iterators by

default instead of the kick-off method. The ApplyToStateMachine property is deprecated in favor of
SemanticallyAdvisedMethodKinds and its default value is now true. The behavior of existing code that
ignored the PS0215 warning will silently change.

Changes causing build errors
• The PostSharp.Reflection.Syntax namespace has been renamed PostSharp.Reflection.MethodBody and

classes inside this namespace have been renamed to reflect the fact this namespace is definitively not a syntax
tree. (We were tired to apologize for this misnaming.) You must modify your code (hopefully just a few files)
otherwise it will no longer build.

• The PostSharp.MessageLocation class has been moved to the PostSharp.Extensibility namespace. You
must modify your code (hopefully just a few files) otherwise it will no longer build.

• The PostSharp.Patterns.Diagnostics has been completely revamped. See Upgrading from PostSharp
Diagnostics 4.3 on page 171 for details. You must modify your code (hopefully just a few files) otherwise it will
no longer build.

• The GenericArgs family of classes, a legacy from PostSharp 1.5 that no longer worked, was deleted.

• It is no longer allowed to add an aspect or an advice to an anonymous method or to a method of a compiler-
generated type, including the MoveNext method of a state machine type. To avoid the error, implementations
of IAspectProvider and pointcuts should use method.GetSemanticInfo().IsSelectable to determine
whether a method is a valid aspect or advice target.

Changes causing build warnings
• The PostSharp.IgnoreWarningAttribute class has been renamed SuppressWarningAttribute and moved to

the PostSharp.Extensibility namespace. You will get an obsolescence warning until you modify your code.

What's New in PostSharp 5.0

29

Deprecated platforms
• Silverlight, Windows Phone and WinRT are no longer supported. These projects will no longer build.
• Xamarin is temporarily unsupported. These projects will no longer build. Please contact our support team if

you are affected by this change.

Licensing changes
• PostSharp Professional has been renamed PostSharp Framework and no longer includes PostSharp

Diagnostics. Please contact our sales team if you have a PostSharp Professional license and rely on PostSharp
Diagnostics.

• PostSharp Express has been renamed PostSharp Essentials is no longer compatible with PostSharp Express 4.2
and earlier. The licensing of PostSharp Express was modified in PostSharp 4.3, but PostSharp 4.3 included a
backward-compatibility licensing mode. It has now been disabled.

• Use of the license server is now restricted to the new PostSharp Enterprise license. Please contact our sales
team if you are affected by this change.

TIP
Please contact our sales team if you are a commercial user and are affected by the licensing changes. We will find a
solution that is acceptable for both.

5.2. What's New in PostSharp 4.3
The objective of PostSharp 4.3 is to address the most important concerns of current PostSharp customers. We focused on
improving the existing features without adding brand new ones.
PostSharp 4.3 includes the following improvements:

• Improved build-time performance on page 30
• Improved debugging experience on page 30
• More flexible deployment on page 31
• Improvements in the NotifyPropertyChanged aspect on page 31
• Simplified licensing of PostSharp Express on page 31
• Source code sharing with non-licensed teams on page 31
• Automatic computing of build-time assembly binding redirections on page 31

Improved build-time performance
We understand that nobody likes to wait for the build to complete, so we've been working hard to optimize PostSharp's
build performance. PostSharp 4.3 is up to 1.5 times faster than PostSharp 4.2 (the improvement is especially visible in
large projects) and you don't need to change anything in your code.
But there's more. PostSharp 4.3 introduces a new feature called solution-wide build optimizations, which can double the
build speed in large solutions. Since this feature can break custom build-time logic, it is disabled by default. For details,
see Reducing Build Time on page 107.

Improved debugging experience
Debugging an application enhanced with aspects is now even easier thanks to the following improvements:

• Full support for Just My Code.

What's New

30

• During Step Into, aspect code is now stepped over by default.
• The call stack no longer contains PostSharp implementation details by default.

To learn more about the new debugging behaviors and how to disable them, see Debugging Run-Time
Logic on page 435.

More flexible deployment
PostSharp 4.3 brings more freedom when it comes to deployment and installation:

• Alternative to NuGet. Between versions 3.0 and 4.2, the PostSharp compiler and libraries were only
distributed as NuGet packages. Starting from version 4.3, we are re-introducing the old good zip file, and
integrate it better with PostSharp Tools for Visual Studio. See Installing PostSharp without NuGet on page 53
for details.

• Command Line Tool. Using PostSharp as a command-line tool is now a supported and documented scenario.
For details, see Executing PostSharp from the Command Line on page 71

• PostSharp Tools for Visual Studio no longer required. You will now be able to build a project that uses
PostSharp without having PostSharp Tools installed in Visual Studio. The tooling is still highly recommended
but no longer strictly required.

Improvements in the NotifyPropertyChanged aspect
PostSharp 4.3 brings two improvements to the NotifyPropertyChangedAttribute aspect:

• Support for Caliburn.Micro and MVVM Light. See Integrating with UI Frameworks on page 199.
• Option to avoid false positives. See Suppressing False Positives on page 207 for details.

Simplified licensing of PostSharp Express
The limitations of PostSharp Express, the free edition of PostSharp, are now clearer and easier to understand and
remember. For details, see Limitations of PostSharp Essentials on page 79.

Source code sharing with non-licensed teams
You no longer need a PostSharp license to build code that someone else wrote and uses PostSharp. A license is only
required for code that you build or edited yourself. See Sharing Source Code With Unlicensed Teams on page 80 for
details.

Automatic computing of build-time assembly binding redirections
It is no longer necessary to manually create an assembly binding redirection file for PostSharp. For details, see
Resolution of assembly binding redirections on page 106.

5.3. What's New in PostSharp 4.2
With PostSharp 4.2, we had two major objectives. The first was to dogfood our Threading Models into PostSharp Tools for
Visual Studio, which pushed us to add many improvements both to the threading aspects and to the underlying aspect
framework. The second focus was to expose code saving metrics, so you know how many lines of code you likely saved
thanks to PostSharp. Additionally, we kept up with Microsoft and implemented support for the Elvis operator in Notify-
PropertyChanged, and added experimental support for ASP.NET v5.
PostSharp 4.2 includes the following improvements:

• Improvements to Aggregatable Pattern on page 32

What's New in PostSharp 4.2

31

• Improvements to NotifyPropertyChanged on page 32
• Improvements to Threading Models on page 32
• Improvements to the Aspect Framework on page 33
• Improved Support for Visual Basic on page 33
• Code Saving Metrics on page 33
• Module Initializers on page 33
• Support for IncrediBuild (Experimental) on page 33
• Support for ASP.NET v5 (Experimental) on page 33

Improvements to Aggregatable Pattern
We added the following improvements to the Aggregatable pattern and to other patterns that depend on it:

• New advisable class AdvisableHashSetT in replacement of HashSetT.

• New methods to the AdvisableCollectionT class: AddRange(IEnumerableT), InsertRange(Int32,
IEnumerableT), RemoveRange(Int32, Int32).

• Support for immutable collections like ImmutableArray or ImmutableDictionary.

• Support for type adapters to allow third-party classes (at least read-only ones) to work with the Aggregatable
pattern. See TypeAdapter for details.

• Ability to programmatically and automatically mark a field as child or reference without having to use a
custom attribute in source code. See FieldRule for details.

• Performance improvement: memory no longer needs to be allocated at run time after objects are constructed,
resulting in lower load on garbage collection.

• New extensions methods for advisable collections. See Extensions.

Improvements to NotifyPropertyChanged
Improvements include to NotifyPropertyChangedAttribute include:

• Support for the Elvis operator (?.) and properties of local variables.

• Notification of the PropertyChanging event. See Implementing INotifyPropertyChanging on page 193 for
details.

• Better error messages.
• Inclusion of property dependencies in Visual Studio tooltips.
• Performance improvement: memory no longer needs to be allocated at run time after objects are constructed,

resulting in lower load on garbage collection.

Improvements to Threading Models
Improvements to threading models include:

• Performance improvement: memory no longer needs to be allocated at run time after objects are constructed,
resulting in lower load on garbage collection.

• Several performance improvements regarding the instantiation of large object graphs. See Run-Time
Performance of Threading Model on page 314 for details.

• New ThreadSafetyPolicy attribute to emit warning when a class is not assigned to any threading model or
when a static field is not of a thread-safe type. See Making a Whole Project or Solution Thread
Safe on page 307 for details.

What's New

32

• Better support for async methods: for lock-based models, locks are being awaited asynchronously instead of
synchronously. These new high-performance advices are not yet fully implemented and tested for general use,
therefore they are unsupported (except when they are used with our ready-made patterns) and undocu-
mented.

• Complete dogfooding in our PostSharp Tools for Visual Studio, resulting in dozen of bug fixes and usability
improvements.

• In the actor model, methods with non-void return type are now allowed and their execution will be done in
the actor context, but the calling thread will wait synchronously for the execution to complete. Void but non-
async methods must now be annotated with [Dispatched] (and until the next major version) to specify if
execution must be synchronous or asynchronous.

Improvements to the Aspect Framework
Improvements to the aspect framework include:

• New advice OnAspectsInitializedAdvice invoked after all aspects on the current objects have been
initialized.

• Ability to customize the description of aspects and advices in Visual Studio tooltips. See Customizing Aspect
Description in Tooltips on page 391 for details.

• In the OnMethodBoundaryAspect and related aspects, ability to yield (await) a state machine upon on entry and
resume.

CAUTION NOTE
To support performance improvements in ready-made patterns, we included a new family of advices that accept
context on the stack instead of the heap.

Improved Support for Visual Basic
Visual Basic is now supported and tested at the same level as C# both in PostSharp Compiler and PostSharp Tools for
Visual Studio.

Code Saving Metrics
PostSharp will now estimate the number of handwritten lines of code and the number of lines of code that you likely
saved using PostSharp. For details, see Estimating Code Savings on page 392.

Module Initializers
You can now define methods that get executed immediately after the assembly is loaded, before any other code is
executed. See Executing Code Just After the Assembly is Loaded on page 449 and ModuleInitializerAttribute for
details.

Support for IncrediBuild (Experimental)
If you use IncrediBuild, PostSharp can now be executed on a remote computer. Please contact PostSharp support for
details.

Support for ASP.NET v5 (Experimental)
You can now use PostSharp in ASP.NET v5 code. The support is currently limited to the .NET Framework (CoreCLR is not
supported). Support is not built-in in the normal PostSharp distribution. You need to download the PostSharp.Dnx
project from GitHub. Please see https://github.com/postsharp/PostSharp.Dnx for details.

What's New in PostSharp 4.2

33

https://github.com/postsharp/PostSharp.Dnx

5.4. What's New in PostSharp 4.1
The focus of PostSharp 4.1 was to broaden the set of supported platforms for both PostSharp, with the addition of Xamarin
and Visual Studio 2015, and improvements in the support of Windows Phone and Windows Store.
PostSharp 4.1 includes the following improvements:

• Support for Xamarin on page 34
• Threading Pattern Library: support for Windows Phone and Windows Store on page 34
• Support for Visual Studio 2015 on page 34
• PostSharp Assistant on page 34

Support for Xamarin
Xamarin has become an inseparable part of the .NET ecosystem and was the number-one feature request of the Post-
Sharp community. PostSharp 4.1 makes it possible to build applications for iOS and Android using Xamarin.
Note that Xamarin applications must be built using Visual Studio. Xamarin Studio is not supported.

Threading Pattern Library: support for Windows Phone and Windows Store
Threading Pattern Library newly supports Windows Phone, Windows Store and Xamarin. This allows you to create
thread-safe applications for both Windows and Windows Phone (both Silverlight and WinRT) in the same way as for
desktop applications.

Support for Visual Studio 2015
PostSharp Tools for Visual Studio have been almost completely rewritten to take advantage of the new compiler family
"Roslyn" at the heart of Visual Studio 2015. New features include integration with the light bulb (instead of the smart
tag), live code diagnostics and a few refactorings.

PostSharp Assistant
PostSharp Assistant guides you when you are implementing various patterns from Pattern Libraries so that you don't
miss any detail. For instance, it would point at relevant documentation articles or at pieces of code that need to be fixed.
PostSharp Assistant is supported in Visual Studio 2015.

5.5. What's New in PostSharp 4.0
The principal focus of PostSharp 4 was to redesign the Threading Pattern Library from the ground up and make it a real
solution to write thread-safe code with C# and VB. Additionally, we've introduced the undo/redo feature into the Model
Pattern Library. To achieve these objectives properly, we had to implement a good old concept from UML and object-
oriented modeling: aggregation and composition. We introduced significant improvements in the PostSharp Aspect
Framework to support these new features.
PostSharp 4.0 includes the following improvements:

• Aggregatable pattern on page 35
• Disposable pattern on page 35
• Immutable threading model on page 35
• Freezable threading model on page 35
• Synchronized threading model on page 35
• Redesign of reader-writer-synchronized, actor, and thread-unsafe threading models on page 35
• Recordable pattern (undo/redo) on page 35
• Dynamic location imports on page 35

What's New

34

• Aspect repository on page 35
• OnInstanceConstructed advice on page 36
• InitializeAspectInstance advice on page 36
• NotifyPropertyChanged optimization on page 36

Aggregatable pattern
As it turns out, multiple patterns rely on the notion of parent-child relationships. These concepts are a part of the UML
specification, where it is known as aggregation, but even modern programming languages don't implement the notions.
We fixed that in PostSharp 4.0 with our AggregatableAttribute aspect. For details, see Parent/Child, Visitor and
Disposable on page 223.

Disposable pattern
Once we have a notion of parent-child relationship, it is easy to build an aspect that recursively disposes a whole object
tree. This is our DisposableAttribute aspect. For details, see Automatically Disposing Children Objects
(Disposable) on page 231.

Immutable threading model
The Immutable patterns made functional languages popular for its great usefulness in multithreaded programs.
Unfortunately, the concept has traditionally been difficult to object-oriented programming. PostSharp 4.0 provides a
pragmatic implementation with the ImmutableAttribute aspect. For details, see Immutable Threading
Model on page 288.

Freezable threading model
Even a well-implemented Immutable pattern can be too strict for some object-oriented scenarios. In this case, the
Freezable patterns may be more suitable. Based on the Aggregatable pattern, the FreezableAttribute aspect makes it
possible to build freezable object trees. For details, see Freezable Threading Model on page 292.

Synchronized threading model
A threading model library could not be complete without it, so we added the SynchronizedAttribute aspect. For
details, see Synchronized Threading Model on page 295.

Redesign of reader-writer-synchronized, actor, and thread-unsafe threading models
We took the right way in PostSharp 3.0 with threading models, but the vision was not yet fully consistent and the
implementation was only partial. With PostSharp 3.2, we felt we had a better understanding of what we wanted to
achieve, and completely revisited our threading models. Based on the Aggregatable pattern, and based on a consistent
object model, the Threading Pattern Library is now much more powerful and consistent.

Recordable pattern (undo/redo)
The RecordableAttribute aspect, together with the Recorder class, make is possible to implement an undo/redo
feature at the domain level.

Dynamic location imports
To allow to import several fields and properties into a single aspect field (which was not possible using ImportMember-
Attribute, we added the IAdviceProvider interface and the ImportLocationAdviceInstance class.

Aspect repository
The new IAspectRepositoryService service exposes the list of all aspects added to the code model, both using custom
attributes or IAspectProvider, and offer a way to execute validation logic after all aspects have been discovered.

What's New in PostSharp 4.0

35

OnInstanceConstructed advice
The OnInstanceConstructedAdvice custom attribute allows you to define an advice that is executed after the instance
constructor exits.

InitializeAspectInstance advice
The InitializeAspectInstanceAdvice custom attribute allows you to define an advice that is similar to Runtime-
InitializeInstance but passes information about the reason why the aspect is initialized (constructor, clone, deseral-
ization).

NotifyPropertyChanged optimization
Our NotifyPropertyChangedAttribute is four times faster at run time on average.

5.6. What's New in PostSharp 3.1
PostSharp 3.1 builds on the vision of PostSharp 3.0, but makes it more convenient to use. It also catches up with the C#
compiler features, and add more flexible licensing options.
PostSharp 3.1 includes the following improvements:

• Better support for iterator and async methods on page 36
• Improved configuration system on page 36
• Build-time performance improvement on page 36
• Resolution of file and line of error messages on page 37
• Indentation in logging on page 37
• Separate licensing of Pattern Libraries on page 37

Better support for iterator and async methods
When you applied an OnMethodBoundaryAspect to a method that was compiled into a state machine, whether an
iterator or an async method, the code generated by PostSharp would not be very useful: the aspect would just be
applied to the method that implements the state machine. An OnException advice had no chance to get ever fired.
Starting from PostSharp 3.1, OnMethodBoundaryAspect understands that is being applied to a state machine, and works
as you would expect.

Improved configuration system
PostSharp 3.1 makes it easier to share configuration across several projects. For instance, you can now add aspects to all
projects of a solution in just a few clicks. This is not just a UI tweak. This scenario has been made possible by significant
improvements in the PostSharp configuration system:

• Support for solution-level configuration files (SolutionName.pssln), and well-known configuration files
(postsharp.config) additionally to project-level files (ProjectName.psproj). See Working with PostSharp Configu-
ration Files on page 97 for details.

• Support for conditional configuration elements
• Support for XPath in expressions (instead of only property references as previously). See Using Expressions in

Configuration Files on page 102 for details.

Build-time performance improvement
PostSharp can now optionally install itself in GAC and generate native images. This decreases build time of a fraction of
a second for each project: a substantial gain if you have a lot of projects.

What's New

36

Resolution of file and line of error messages
When previous versions of PostSharp had to report an error or a warning, it would include the name of the type and/or
method causing the message, but was unable to determine the file and line number. You can now double-click on an
error message in Visual Studio and you’ll get to the relevant location for the error message.

Indentation in logging
For better log readability, PostSharp Diagnostics Pattern Library now automatically indents log entries when entering
and exiting methods.

Separate licensing of Pattern Libraries
PostSharp Pattern Libraries can now be purchased separately, so you don't have to buy the full PostSharp Ultimate if
you just want to use INotifyPropertyChanged. The licensing system has been modified to support this scenario.

5.7. What's New in PostSharp 3.0
The focus in PostSharp 3.0 was to deliver more value to customers with less initial learning. Instead of having to learn the
product before being able to build aspects, customers can now choose from a set of ready-made implementations of some
of the most popular design pattern, and apply them to their application from the Visual Studio code editor, using smart
tags and wizards. We also improved support for Windows Phone, Silverlight, Windows Store and Portable Class Library.
PostSharp 3.0 includes the following improvements:

• Model Pattern Library on page 37
• Diagnostics Pattern Library on page 37
• Threading Pattern Library on page 37
• Smart tags and wizards in Visual Studio on page 38
• Better platform support through Portable Class Libraries on page 38
• Unified deployment through NuGet and Visual Studio Gallery on page 38
• Transparency to obfuscators on page 38
• Deprecation of old platforms on page 38

Model Pattern Library
The NotifyPropertyChangedAttribute aspect is a ready-made implementation of the NotifyPropertyChanged design
pattern. The PostSharp.Patterns.Contracts namespace provides code contracts that can validate, at run time, the
value of a parameter, a property, or a field.

Diagnostics Pattern Library
The LogAttribute and LogExceptionAttribute aspects provide a ready-made and high-performance implementation
of a tracing aspect. They are compatible with the most popular logging framework, including log4net, nlog, and
Enterprise Library.

Threading Pattern Library
PostSharp Threading Pattern Library invites you to raise the level of abstraction in which multithreading is being
addressed. It provides three threading models: actors (Actor), reader-writer synchronized (ReaderWriterSynchronized-
Attribute) and thread unsafe (ThreadUnsafeAttribute). Additionally, BackgroundAttribute and Dispatched-
Attribute allow you to easily dispatch a thread back and forth between a background and the UI thread.

What's New in PostSharp 3.0

37

Smart tags and wizards in Visual Studio
Smart tags allow for better discoverability of ready-made aspects and pattern implementations. When the aspect
requires configuration, a wizard user interface collects the parameters and then generates the proper code.

Better platform support through Portable Class Libraries
Windows Phone, Windows Store and Silverlight are now first-class citizens. All features that are available for the .NET
Framework now also work with these platforms. All platforms are supported transparently through the portable class
library. To provide this feature, we had to develop the PortableFormatter, a portable serializer similar in function to the
BinaryFormatter. All you have to do is to replace [Serializable] with [PSerializable].

Unified deployment through NuGet and Visual Studio Gallery
Installation of PostSharp is now unified and built on top of Visual Studio Gallery and NuGet Package Manager.

Transparency to obfuscators
PostSharp no longer requires specific support from obfuscators, as it no longer uses strings to refer to metadata
declarations.

Deprecation of old platforms
Support for Silverlight 3, .NET Compact Framework, and Mono has been deprecated.

5.8. What's New in PostSharp 2.1
The objective of release 2.1 was to fix a number of 'gray points' of the version 2.0, which added friction to the adoption
path of PostSharp, or even prevented people from using the product.
PostSharp 2.1 includes the following improvements:

• Build-time performance improvement on page 38
• Support for NuGet and improved no-setup experience on page 38
• Compatibility with obfuscators on page 38
• Extended reflection API on page 39
• Architectural validation on page 39
• Compatibility with Code Contracts on page 39
• Support for Silverlight 5.0 on page 39
• License server on page 39

Build-time performance improvement
We traded our old text-based compilation engine to a brand new binary writer.

Support for NuGet and improved no-setup experience
PostSharp 2.1 can be installed directly from NuGet5. Local installation is no longer a requirement to use the Visual
Studio Extension. However, because the setup program creates ngenned images, it still provides the faster experience.

Compatibility with obfuscators
PostSharp can now be used jointly, and without limitation of features, with some obfuscators.

5. http://www.nuget.org/List/Packages/PostSharp

What's New

38

http://www.nuget.org/List/Packages/PostSharp
http://www.nuget.org/List/Packages/PostSharp

Extended reflection API
The class ReflectionSearch allows you to programmatically navigate the structure of an assembly: find custom
attributes of a given type, find children of a given type, find members of a given type, find methods referring a given
type or members, or find members accessed from a given method.

Architectural validation
Architecture Validation allows you annotate your code with constraints, which define the conditions in which your API is
allowed to be used. Constraints are verified at build time and their violation generates a build warning and an error. See
Validating Architecture on page 409 for details.

Compatibility with Code Contracts
PostSharp 2.1 can be used jointly with Microsoft Code Contracts. Aspects and contracts can be applied to the same
method.

Support for Silverlight 5.0
Silverlight 5.0 is added to the list of supported platforms.

License server
The license server helps customer manage and deploy license keys. The license server is a simple ASP.NET application
that can be deployed easily on any Windows machine. Its use is optional.

5.9. What's New in PostSharp 2.0
PostSharp 1.0 and 1.5 made aspect-oriented programming (AOP) popular in the .NET community. PostSharp 2.0 makes it
mainstream by enhancing convenience (Visual Studio Extension), reliability (dependency enforcement), run-time
performance (optimizer), and features (composite aspects, property- and event-level aspects).
PostSharp 2.0 includes the following improvements:

• Visual Studio Extension on page 39
• Composite aspects (advices and pointcuts) on page 39
• Adaptive code generation on page 40
• Interception aspect for fields and properties on page 40
• Interception aspect for events on page 40
• Aspect dependencies on page 40
• Instance-scoped aspects on page 40
• Support for new platforms on page 40
• Build performance improvements on page 40

Visual Studio Extension
As developers start being comfortable with PostSharp and add more and more aspects to their code, two questions
become manifest: How can I know to which elements of code my aspect has been applied? How can I know which
aspects have been applied to the element of code I am looking at? Answering these two questions is precisely what the
PostSharp Extension for Visual Studio 2008 and 2010 has been designed for. It provides two new features to the IDE: an
Aspect Browser tool window and new adornments of enhanced elements of code with clickable tooltip.

Composite aspects (advices and pointcuts)
Part of the success of PostSharp 1.5 was due to its ability to introduce aspects without appealing to barbaric terms such
as advices and pointcuts. So why introduce them now? Because they make it easier to develop complex aspects. Thanks
to advices and pointcuts, you can implement complex patterns such as observability awareness (INotifyProperty-

What's New in PostSharp 2.0

39

Changed) with just a few lines of code. And just with PostSharp 1.5, you can still write your own aspects without
knowing about advices and pointcuts.

Adaptive code generation
PostSharp 2.0 generates much smarter, faster, and smaller code than before. Let's face it: PostSharp 1.5 was quite dumb.
It generated a lot of instructions that your aspects did not even need. PostSharp 2.0 analyzes your aspect to see which
features are actually being used at run time, and generates only instructions that support these features. Result: you
could probably not write much faster code by hand.

Interception aspect for fields and properties
PostSharp 2.0 comes with a new kind of aspect that handles fields and properties: LocationInterceptionAspect (in
replacement of OnFieldAccessAspect). The aspect is much more usable than its predecessor; for instance, it is possible
to call the field or property getter from the setter.

Interception aspect for events
The new aspect kind EventInterceptionAspect allows an aspect to intercept all event semantics: add, remove, and fire.

Aspect dependencies
By enforcing aspect dependency rules, PostSharp ensures that aspects behave in a predictable and robust way, even
when multiple aspects are applied to the same element of code. This feature is important for large and complex
projects, where aspects may be written by different teams, or provided by numerous third-party vendors who don't
know about each other.

Instance-scoped aspects
In PostSharp 1.5, all aspects had static scope, i.e. there was a single instance of the aspect for every element of code to
which they applied. It is now possible to define aspects that have instance lifetime. For instance, if the aspect is applied
to an instance field, a new instance of the aspect will be created for every instance of the type declaring the field. This is
named an instance-scoped aspect.

Support for new platforms
• Microsoft .NET Framework 4.0
• Microsoft Silverlight 3.0
• Microsoft Silverlight 4.0
• Microsoft Windows Phone 7 (Applications and Games)
• Microsoft .NET Compact Framework 3.5
• Novell Mono 2.6

Build performance improvements
Just starting the CLR and loading system assemblies takes considerable time, too much for an application (such as Post-
Sharp) that is typically started very frequently and whose running time is just a couple of seconds. To cope with this
issue, PostSharp now preferably runs as a background application

5.10. What's New in PostSharp 1.5
PostSharp 1.5 was published 3 years after the start of the project, and was the first release to be really production-ready.
PostSharp 1.5 includes the following improvements:

• Aspect inheritance on page 41
• Reading assemblies without loading them in the CLR on page 41
• Lazy loading of assemblies on page 41

What's New

40

• Build-time performance improvement on page 41
• Support for Mono on page 41
• Support for Silverlight 2.0 and the Compact Framework 2.0 on page 41
• Pluggable aspect serializer & partial trust on page 41

Aspect inheritance
It is now possible to put an aspect on an interface and have it implicitly applied to all classes implementing that
interface. The same works with classes, virtual or interface methods, and parameters of virtual or interface methods.
Read more...

Reading assemblies without loading them in the CLR
In version 1.0, PostSharp required assemblies to be loaded in the CLR (i.e. in the application domain) to be able to read
them. This limitation belongs to the past. When PostSharp processes a Silverlight or a Compact Framework assembly, it
is never loaded by the CLR.

Lazy loading of assemblies
When PostSharp has to load a dependency assembly, it now reads only the metadata objects it really needs, resulting in
a huge performance improvement and much lower memory consumption.

Build-time performance improvement
The code has been carefully profiled and optimized for maximal performance.

Support for Mono
PostSharp is now truly cross-platform. Binaries compiled on the Microsoft platform can be executed under Novell Mono.
Both Windows and Linux are tested and supported. A NAnt task makes it easier to use PostSharp in these environments.

Support for Silverlight 2.0 and the Compact Framework 2.0
You can add aspects to your projects targeting Silverlight 2.0 or the Compact Framework 2.0.

Pluggable aspect serializer & partial trust
Previously, all aspects were serializers using the standard .NET binary formatter. It is now possible to choose another
serializer or implement your own, and enhance assemblies that be executed with partial trust.

What's New in PostSharp 1.5

41

PART 2

Deployment and
Configuration

CHAPTER 6

Deployment

PostSharp has been designed for easy deployment in typical development environments. Over the years, source control and
build servers have become the norm, so we optimized PostSharp for this deployment scenario.
In most situations, PostSharp should work just fine without any advanced configuration. This chapter includes a detailed
description of all deployment and configuration scenarios.
It contains the following topics:

Chapter Description
Requirements and Compati-
bility on page 45

This topic lists the requirements for development, build and end-user devices.

PostSharp
Components on page 49

This topic contains a summary of PostSharp components.

Installing PostSharp Tools for
Visual Studio on page 50

This topic shows how to install PostSharp Tools for Visual Studio using an interactive
installer.

Installing PostSharp Tools for
Visual Studio Silently on page 51

This topic shows how to install PostSharp Tools for Visual Studio silently using a
command line interface.

Installing PostSharp Into a
Project on page 52

This topic shows how to install PostSharp Compiler into your project using NuGet
Package Manager.

Installing PostSharp without
NuGet on page 53

This topic shows how to install PostSharp Compiler into your project without NuGet
Package Manager.

Using PostSharp on a Build
Server on page 59

This topic shows how to use PostSharp on a build server and describes licensing details
for this scenario.

Upgrading from a Previous
Version of PostSharp on page 62

This topic explains how to upgrade from a previous version of PostSharp.

Uninstalling
PostSharp on page 64

This topic shows how to uninstall PostSharp from your projects and from Visual Studio.

Deploying PostSharp to End-
User Devices on page 70

This topic describes redistribution of PostSharp run-time libraries to end-user devices.

Executing PostSharp from the
Command Line on page 71

This topic shows how to execute PostSharp Compiler from the command line to
instrument an existing assembly including those where source code is not available.

6.1. Requirements and Compatibility
You can use PostSharp to build applications that target a wide range of target devices. This article lists the requirements for
development, build and end-user devices.

Requirements and Compatibility

45

This topic contains the following sections:
• Requirements on development workstations and build servers on page 46
• Requirements on end-user devices on page 46
• Compatibility with ASP.NET on page 47
• Compatibility with Microsoft Code Analysis on page 47
• Compatibility with Microsoft Code Contracts on page 47
• Compatibility with Obfuscators on page 47
• Known Incompatibilities on page 48
• Known Issues on page 48

Requirements on development workstations and build servers
The following software components need to be installed before PostSharp can be used:

• Any of the following versions of Microsoft Visual Studio:
◦ Visual Studio 2012 Update 5
◦ Visual Studio 2013 Update 5
◦ Visual Studio 2015 Update 3
◦ Visual Studio 2017 Update 2

Note that Visual Studio Express is not supported.
The debugging experience may be inconsistent with other IDEs than Visual Studio or when PostSharp Tools for
Visual Studio are not installed.

• .NET Framework 4.6 or 4.7.
• Windows 7 SP1, Windows 8.1, Windows 10, Windows Server 2008 SP2, Windows Server 2008 R2 SP1, Windows

Server 2012, Windows Server 2012 R2, Windows Server 2016
• NuGet Package Manager 2.8 or later.

Please also see our support policies6.

NOTE
The latest version of NuGet Package Manager will be installed automatically by PostSharp if NuGet 2.8 is not already
installed. This operation requires administrative privileges.

CAUTION NOTE
NuGet Package Manager needs to be configured manually in order to match the requirements of some corporate
environments, especially in situations with a large number of Visual Studio solutions. Please contact our technical
support if this is a concern for your team.

Requirements on end-user devices
The following table displays the versions of the target frameworks that are supported by the current release of Post-
Sharp and its components.

Package .NET Framework .NET Core .NET Standard
PostSharp 3.5 SP1, 4.0, 4.5, 4.6, 4.7 1.1 1.3

6. https://www.postsharp.net/support/policies

Deployment

46

https://www.postsharp.net/support/policies
https://www.postsharp.net/support/policies

Package .NET Framework .NET Core .NET Standard
PostSharp.Patterns.Common

PostSharp.Patterns.Aggregation

PostSharp.Patterns.Threading

PostSharp.Patterns.Model

PostSharp.Patterns.Diagnostics

4.0, 4.5, 4.6, 4.7 1.1 1.3

PostSharp.Patterns.Xaml 4.0, 4.5, 4.6, 4.7 - -
PostSharp.Patterns.Caching 4.6, 4.7 - -

NOTE
PostSharp does not implicitly support all platforms that support .NET Standard. Only platforms mentioned in this table
are supported.

NOTE
.NET Standard 2.0 and .NET Core 2.0 are supported in PostSharp 5.1.

Compatibility with ASP.NET
There are two ways to develop web applications using Microsoft .NET:

• ASP.NET Application projects are very similar to other projects; they need to be built before they can be
executed. Since they are built using MSBuild, you can use PostSharp as with any other kind of project.

• ASP.NET Site projects are very specific: there is no MSBuild project file (a site is actually a directory), and
these projects must not be built. ASP.NET Site projects are not supported.

Compatibility with Microsoft Code Analysis
By default, PostSharp reconfigures the build process so that Code Analysis is executed on the assemblies as they were
before being enhanced by PostSharp. If you are using Code Analysis as an integrated part of Visual, no change of
configuration is required.
You request the Code Analysis to execute on the output of PostSharp by setting the ExecuteCodeAnalysisOnPost-
SharpOutput MSBuild property to True. For more information, see Configuring Projects Using MSBuild on page 93.

Compatibility with Microsoft Code Contracts
PostSharp configures the build process so that Microsoft Code Contracts is executed before PostSharp. Additionally,
Microsoft Code Contracts' static analyzer will be executed synchronously (instead of asynchronously without PostSharp),
which will significantly impact the build performance.

Compatibility with Obfuscators
PostSharp generates assemblies that are theoretically compatible with all obfuscators.

NOTE
PostSharp Diagnostics is not designed to work with obfuscated assemblies.

Requirements and Compatibility

47

CAUTION NOTE
PostSharp constructs that are not emitted by Microsoft compilers (for instance methodof). These unusual constructs
may reveal bugs in third-party tools, because they are generally tested against the output of Microsoft compilers.

Known Incompatibilities
PostSharp is not compatible with the following products or features:

Product or Feature Reason Workaround
Visual Studio 2010 Not Supported Use PostSharp 3.1.
ILMerge Bug in ILMerge Use another merging product (such as ILPack,

SmartAssembly).
Edit-and-Continue Not Supported Rebuild the project after edits
Silverlight 3 or earlier No longer under Microsoft mainstream

support
Use PostSharp 2.1.

Silverlight 4 No longer under Microsoft mainstream
support

Use PostSharp 3.1.

Silverlight 5 Low customer demand. Use PostSharp 4.3.
.NET Compact
Framework

No support for PCL Use PostSharp 2.1.

.NET Framework 2.0 No longer under Microsoft mainstream
support

Target .NET Framework 3.5 or use PostSharp 3.1.

Windows Phone 7 No longer under Microsoft mainstream
support

Use PostSharp 3.1

Windows Phone 8,
WinRT

Low customer demand. Use PostSharp 4.3

Visual Studio Express Microsoft's licensing policy Use Visual Studio Community Edition
ASP.NET Web Sites Not built using MSBuild Convert the ASP.NET Web Site to an ASP.NET

Web Application.
Universal Windows
Platform (UWP)

Not supported (low customer demand) Contact PostSharp support team.

Xamarin Support suspended (deprioritized because
of low customer demand)

Use PostSharp 4.3. Contact PostSharp support
team to discuss prioritization.

Mono, Unity3D Unsupported None.
.NET Standard 2.0 Not supported. Use PostSharp 5.1.

Known Issues
Known issues are documented in the release notes of each product build.

Deployment

48

6.2. PostSharp Components
PostSharp is composed of the following artifacts:

• PostSharp Tools for Visual Studio on page 49
• NuGet packages on page 49
• Zip distribution on page 50

PostSharp Tools for Visual Studio
This is the user interface of PostSharp. It extends the Visual Studio editor and provides a new menu, option pages,
toolbox windows, diagnostics, code actions, and debugging enhancements.
For details regarding the installation of this component, see Installing PostSharp Tools for Visual Studio on page 50 and
Installing PostSharp Tools for Visual Studio Silently on page 51.

NuGet packages
All build-time and run-time artifacts are released as NuGet packages. Build-time packages are required to build your
projects, but only the content of run-time packages is required to execute your applications.
If you build NuGet packages that use PostSharp but does not define custom aspects, your package should only
reference the relevant PostSharp run-time packages, not the build-time ones.

NOTE
The PostSharp License Agreement refers to run-time packages as redistributables. The license agreement allows for
royalty-free redistribution of run-time packages, but stricter conditions apply to the redistribution of build-time
packages.

The following table lists all PostSharp packages:

Run-time package Build-time package Description
PostSharp.Redist PostSharp PostSharp Framework. The build-

time package includes the
PostSharp compiler.

PostSharp.Patterns.Common.Redist PostSharp.Patterns.Common Common logic shared between
pattern libraries. Code contracts.

PostSharp.Patterns.Aggregation.Redist PostSharp.Patterns.Aggregation Aggretable and Disposable aspects.
PostSharp.Patterns.Model.Redist PostSharp.Patterns.Model NotifyPropertyChanged aspect and

Undo/Redo.
PostSharp.Patterns.XAML.Redist PostSharp.Patterns.XAML Command, Dependency Property

and Attached Property aspects.
WPF controls for undo/redo.

PostSharp.Patterns.Threading.Redist PostSharp.Patterns.Threading Threading models, thread
dispatching aspects, deadlock
detection.

PostSharp.Patterns.Caching.Redist PostSharp.Patterns.Caching Caching aspect.
PostSharp.Patterns.Caching.Redis N/A Redis connector for

PostSharp.Patterns.Caching.

PostSharp Components

49

Run-time package Build-time package Description
PostSharp.Patterns.Caching.Azure N/A Azure connector for

PostSharp.Patterns.Caching.
PostSharp.Patterns.Diagnostics.Redist PostSharp.Patterns.Diagnostics Logging aspect.
PostSharp.Patterns.Diagnostics.ApplicationInsights N/A Application Insights connector for

PostSharp.Patterns.Diagnostics.
PostSharp.Patterns.Diagnostics.CommonLogging N/A Common.Logging connector for

PostSharp.Patterns.Diagnostics.
PostSharp.Patterns.Diagnostics.EnterpriseLibrary N/A Enterprise Library connector for

PostSharp.Patterns.Diagnostics.
PostSharp.Patterns.Diagnostics.Log4Net N/A Log4Net connector for

PostSharp.Patterns.Diagnostics.
PostSharp.Patterns.Diagnostics.Microsoft N/A Microsoft.Extensions.Logging

connector for
PostSharp.Patterns.Diagnostics.

PostSharp.Patterns.Diagnostics.NLog N/A NLog connector for
PostSharp.Patterns.Diagnostics.

PostSharp.Patterns.Diagnostics.Serilog N/A Serilog connector for
PostSharp.Patterns.Diagnostics.

PostSharp.Patterns.Diagnostics.Tracing N/A System.Diagnostics connector for
PostSharp.Patterns.Diagnostics.

PostSharp.Patterns.Diagnostics.Loupe N/A Loupe connector for
PostSharp.Patterns.Diagnostics.

Zip distribution
For teams that cannot use NuGet, PostSharp also comes as one zip archive containing the files otherwise contained in
all NuGet packages.
In this archive, the lib folder contains run-time libraries (redistributables), and the tools folder contains all build-time
components.
See Installing PostSharp without NuGet on page 53 for details.

6.3. Installing PostSharp Tools for Visual Studio
PostSharp Tools for Visual Studio are PostSharp's user interface. Install them on a developer's computer, does not affect the
projects until the PostSharp NuGet package has been added to this project. See Installing PostSharp Into a
Project on page 52 for details.

To install PostSharp Tools for Visual Studio:
1. Download the file PostSharp-full-X.X.X.exe from http://www.postsharp.net/download.
2. Run the file PostSharp-full-X.X.X.exe.

Deployment

50

http://www.postsharp.net/download

3. Complete the installation configuration wizard. You will be asked to enter a license key or to start the trial period.
The wizard may ask the permission to install NuGet Package Manager or to uninstall the user interface of Post-
Sharp.

NOTE
The installer mentioned above contains Visual Studio extension packages for each version of Visual Studio supported by
PostSharp. To save some space, use the file PostSharp-web-X.X.X.exe from https://www.postsharp.net/downloads. This file
contains the installer only and each Visual Studio extension package is downloaded on the fly during the installation
process. The packages for Visual Studio versions not installed on your machine are not downloaded.

6.4. Installing PostSharp Tools for Visual Studio Silently
PostSharp is composed of a user interface (PostSharp Tools for Visual Studio) and build components (NuGet packages). Nu-
Get packages are usually checked into source control or retrieved from a package repository at build time (see Restoring
Packages at Build Time on page 59), so its deployment does not require additional automation. The user interface is
typically installed by each user. It does not require administrative privileges.
In large teams, it might be inconvenient to install PostSharp Tools for Visual Studio on each machine manually. For this
purpose, PostSharp installer enables silent installation using a command line interface. You can install PostSharp automat-
ically for a large number of users using the silent installer.

To install PostSharp unattended:
1. Download the installer from http://www.postsharp.net/download. The installer is a file named PostSharp-full-X.X.X.

exe.
2. Extract the installer files using the following command line:

PostSharp-full-X.X.X.exe /extract %TEMP%\PostSharp-full.X.X.X

Installing PostSharp Tools for Visual Studio Silently

51

https://www.postsharp.net/downloads
http://www.postsharp.net/download

3. Execute the following command line:

%TEMP%\PostSharp-full.X.X.X\PostSharp.Settings.exe /setup

In the command line above, the following arguments are optional but recommended:

Argument Description
/ceip Allows PostSharp to collect anonymous information about the way you are using the

software. We never collect your source code. See our privacy policy7 for details.
If you don't specify this flag, CEIP will be disabled, and the user will not be asked to
enable it.

/license
000-AAAAAAAAAAAAAAA

Installs the license key for the current user in registry. In this argument,
000-AAAAAAAAAAAAAAA must be replaced by the license key or the URL to the license
server.

/license-all
000-AAAAAAAAAAAAAAA

Installs the license key for all users in registry. In this argument,
000-AAAAAAAAAAAAAAA must be replaced by the license key or the URL to the license
server.

CAUTION NOTE
If the /license and /license-all arguments are omitted, the license keys on the machine will remain
unchanged or uninstalled.

NOTE
If any Visual Studio instance or other processes affected by the installer is running during the installation process, the
installer lists all the blocking processes, and fails. You need to run silent installation when none of these processes is
running.

6.5. Installing PostSharp Into a Project
The compiler components of PostSharp are distributed as a NuGet package named simply PostSharp. If you want to use
PostSharp in a project, you simply have to add this NuGet package to the project.
This topic contains the following sections:

• Adding PostSharp to a project on page 52
• Including files in your source control system on page 53

Adding PostSharp to a project
To add PostSharp to a project:

1. Open the Solution Explorer in Visual Studio.
2. Right-click on the project.
3. Click on Add PostSharp.

7. https://www.postsharp.net/company/legal/privacy-policy#ceip

Deployment

52

https://www.postsharp.net/company/legal/privacy-policy#ceip
https://www.postsharp.net/company/legal/privacy-policy#ceip

TIP
Remember that adding PostSharp to a project just means adding the PostSharp NuGet package. If you want to add
PostSharp to several projects in a solution, it may be easier to use NuGet to manage packages at the solution level.
You may need to select the Include Prerelease option to install a prerelease version of PostSharp.

TIP
NuGet Package Manager can be configured using a file named nuget.config, which can be checked into source control
and can specify, among other settings, the location of the package repository (if it must be shared among several
solutions, for instance) or package sources (if packages must be pre-approved). See NuGet Configuration File8 and Nu-
Get Configuration Settings9 for more information.

Including files in your source control system
After you add PostSharp to a project, you need to add the following files to source control:

• packages.config

• postsharp.config, if any
• *.psproj, if any
• *.pssln, if any

Some of the files above might not be present depending on the package management format you use (packages.
config/PackageReference) and on which PostSharp packages you have installed in your project.
Optionally, if you use the packages.config package management format, you can also include the packages folder in
your source control. Note that there are negative consequences on this practice. See Omitting NuGet packages in
source control systems10 for more information. If you choose not to include the packages folder in your source control
system, read Restoring Packages at Build Time on page 59.
Once you have all of these files included in your source code repository, any other developer getting that source code
from the repository will have the required information to be able to build the application.

6.6. Installing PostSharp without NuGet
The most common way to add PostSharp to your project is by installing PostSharp NuGet packages. The main benefit of
using NuGet Package Manager is that it provides a standard way to install and manage all dependencies for your .NET
projects. NuGet, however, also comes with some disadvantages that are inherent in its design (as described by NuGet team
in the post NuGet: Broken By Design11):

• hard-coded dependency versions inside project files;
• more frequent merge conflicts in project files;
• unexpected and unwanted auto-upgrades of the dependencies;
• additional overhead in software configuration management;

8. http://docs.nuget.org/docs/reference/nuget-config-file
9. http://docs.nuget.org/docs/reference/nuget-config-settings

10. https://docs.microsoft.com/en-us/nuget/consume-packages/packages-and-source-control
11. http://blog.nuget.org/20141010/nuget-is-broken.html

Installing PostSharp without NuGet

53

http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings
http://docs.nuget.org/docs/reference/nuget-config-settings
https://docs.microsoft.com/en-us/nuget/consume-packages/packages-and-source-control
https://docs.microsoft.com/en-us/nuget/consume-packages/packages-and-source-control
http://blog.nuget.org/20141010/nuget-is-broken.html
http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings
https://docs.microsoft.com/en-us/nuget/consume-packages/packages-and-source-control
http://blog.nuget.org/20141010/nuget-is-broken.html

• the lack of global package installation option.

For some development teams these NuGet disadvantages become a significant obstacle for NuGet adoption in their
projects. This is especially true when strict dependency versioning policies are in place.
If using NuGet Package Manager in your project is not a viable option, then you can install PostSharp without NuGet by
following the procedures described in this article. The first time you want to add PostSharp to a project without NuGet, you
must first enable PostSharp installation without NuGet. Then, you can specify a folder on your hard drive where PostSharp
files will be copied. The next time you will add PostSharp to a project, the same folder can be used.
This topic contains the following sections:

• Adding PostSharp without NuGet into a first project in a solution on page 54
• Adding PostSharp to a second or next project in the same solution on page 56
• Sharing the same PostSharp installation folder in several solutions on page 56
• Removing PostSharp from a project without NuGet on page 57
• Updating PostSharp to a newer version on page 58
• See Also on page 0

Adding PostSharp without NuGet into a first project in a solution
This is the procedure to install the PostSharp package into a new folder on your computer and reference this package
from your project. If you have an existing PostSharp installation, see Sharing the same PostSharp installation folder in
several solutions on page 56.

To install PostSharp into a folder without NuGet:
1. By default, PostSharp is always installed using NuGet Package Manager. To change this option, on the Post-

Sharp menu in Visual Studio, click Options, then on the General page of the dialog, select the check box
"Always ask before using NuGet Package Manager".

2. Right click on your project in the solution explorer and then click "Add PostSharp to Project". The PostSharp
package installation wizard opens.

Deployment

54

3. On the first page of the wizard click "Install PostSharp <version> into a new folder and reference it".

4. Set the "Path to PostSharp folder". The PostSharp package will be unpacked into this folder. The installer
does not overwrite the contents of the target folder, so you need to delete the folder contents if you want to
replace the existing installation.

5. Change the additional installation options, if needed:
◦ Store relative path - indicates whether to store relative or absolute paths for PostSharp references

and imports in your project files. By default, the relative paths are stored.
◦ Use the same options for all projects in the current solution - if enabled, the path to the Post-

Sharp package folder is stored in the <SolutionName>.pssln file. Next time you add PostSharp to
another project in the same solution, the package path will be reused and you won’t need to type it
again. Disable this option if projects in your solution need to reference different versions of Post-
Sharp package (not recommended).

6. Click Next and finish the wizard.

As a result of this procedure:
• the PostSharp files will be copied into the selected folder;
• the PostSharp assembly reference will be added to your project;

Installing PostSharp without NuGet

55

• the PostSharp.targets file import will be added to your project file.

<ImportProject="..\..\..\postsharp\Tools\PostSharp.targets"/>

• your installation options will be stored in the MySolution.pssln file (given you have a solution file named My-
Solution.sln).

<PropertyName="PostSharpPackageManager"Value="Folder"/><PropertyName="PostSharpRootPath"Value="..\lib\PostSharp"/>

Adding PostSharp to a second or next project in the same solution
By default, PostSharp will use installation options stored in the MySolution.pssln file. It means that by default, all projects
in the same solution will use the same PostSharp installation folder. PostSharp will not show the wizard page asking
about the installation method.
If you want to specify different installation options for the next time you will add PostSharp to a project of this solution,
edit the MySolution.pssln file and remove the two following properties: PostSharpPackageManager and PostSharpRoot-
Path.

The next time you will try to install PostSharp, the wizard will now include the page asking about the installation
method.

Sharing the same PostSharp installation folder in several solutions
Once PostSharp is copied to any folder on your machine, you can use it in any project or solution.

To add PostSharp to a project and reference an existing PostSharp folder:
1. Right click on your project in the solution explorer and then click "Add PostSharp to Project". The PostSharp

package installation wizard opens.
2. On the first page of the wizard click "Reference an existing PostSharp folder".

3. Set the "Path to PostSharp folder". The path must point to the root folder of the PostSharp package. This is a
folder that contains lib and tools sub-folders.

Deployment

56

4. Change the additional installation options, if needed:
◦ Store relative path - indicates whether to store relative or absolute paths for PostSharp references

and imports in your project files. By default, the relative paths are stored.
◦ Use the same options for all projects in the current solution - if enabled, the path to the Post-

Sharp package folder is stored in the <SolutionName>.pssln file. Next time you add PostSharp to
another project in the same solution, the package path will be reused and you won’t need to type it
again. Disable this option if projects in your solution need to reference different versions of Post-
Sharp package (not recommended).

5. Click Next and finish the wizard.

As a result of this procedure:
• the PostSharp assembly reference will be added to your project;

• the PostSharp.targets file import will be added to your project file.

<ImportProject="..\..\..\postsharp\Tools\PostSharp.targets"/>

• your installation options will be stored in the MySolution.pssln file (given you have a solution file named My-
Solution.sln).

<PropertyName="PostSharpPackageManager"Value="Folder"/><PropertyName="PostSharpRootPath"Value="..\lib\PostSharp"/>

Removing PostSharp from a project without NuGet
This is the procedure to uninstall PostSharp from your project if you have previously installed PostSharp package into
your project without NuGet.

To uninstall PostSharp without NuGet:
1. Open the properties window for your project in Visual Studio.

Installing PostSharp without NuGet

57

2. On the PostSharp page of the properties window click "Remove PostSharp from this project" and follow the
wizard.

As a result of this procedure:
• the PostSharp assembly reference will be removed from your project;
• the PostSharp.targets file import will be removed from your project file.

Updating PostSharp to a newer version
The nice thing about the non-NuGet deployment is that updating PostSharp is so easy: you just have to extract the new
zip file into the PostSharp folder. But because we're trying to look serious and complete in this documentation, here is
the formal procedure:

To update PostSharp when you are not using NuGet:
1. Remove all files from the PostSharp folder.
2. Download the zip distribution from https://www.postsharp.net/downloads (a file named PostSharp-4.x.x.zip)
3. Extract the zip file into the PostSharp folder.

That's it!
While NuGet Package Manager represents a standard and proven way to manage your .NET project dependencies, you
can still find projects where using NuGet is not possible or causes too much overhead. PostSharp supports you by
providing an option to install without NuGet.

Deployment

58

https://www.postsharp.net/downloads

6.7. Using PostSharp on a Build Server
PostSharp has been designed for frictionless use on build servers. PostSharp build-time components are deployed as NuGet
packages, and are integrated with MSBuild. No component needs to be installed or configured on the build server, and no
extra build step is necessary. If you choose not to check in NuGet packages in your source control, read Restoring Packages
at Build Time on page 59.

Installing a License on the Build Server
The License Agreement specifies that build servers don’t need their own license. PostSharp will not attempt to enforce
licensing if it detects that it runs in unattended mode. PostSharp uses several heuristics to detect whether it is running
unattended. These heuristics include the use of Environment.UserInteractive, checking Process.SessionId (from
Windows Vista, all processes running in session 0 are unattended), or checking the parent process.
If this check does not work for any reason, you may use the license key of any licensed user for the build server. This will
not be considered a license infringement. However, it is better to report the issue to our technical support so that we
can fix the detection algorithms.
It is recommended to include the license key in the source control. See Deploying License Keys on page 75 for details.

CAUTION NOTE
When building assemblies which use PostSharp Diagnostics, you need to add your license key to postsharp.config,
otherwise the build server will fall back to PostSharp Diagnostics Developer Edition. See Licensing of PostSharp
Diagnostics on page 173 for details.

6.7.1. Restoring Packages at Build Time
NuGet Package Manager has the ability to restore packages from their repository during the build. This allows teams to
avoid storing NuGet packages in their source repository.
You can restore the PostSharp package at build time as long as the package is restored before MSBuild is invoked to build
the project.
The reason is that the PostSharp.targets file is required during the build, otherwise PostSharp is not inserted in the build
process, and simply does not work. Because of the design of MSBuild, PostSharp.targets must be present when the build
starts, so it cannot be restored from the package repository during the same build. The build that triggers the package
restore will either fail or run without PostSharp, and subsequent builds will succeed. A rebuild is then required.
This behavior is acceptable on developer workstations. However, on build servers, you must ensure that the packages are
restored before the project is built.
The way you restore packages differs with the version of NuGet:

• NuGet 2.7 and Later on page 59
• Visual Studio 2017 and Later on page 60
• .NET Core Command Line Interface on page 60
• NuGet 2.0 to 2.6 on page 60

NuGet 2.7 and Later
To restore the PostSharp package at build time, add a preliminary step before building the Visual Studio solutions or
projects. This step should execute the following command:

NuGet.exe restore MySolution.sln

Using PostSharp on a Build Server

59

In this command, the MySolution.sln is the solution for which packages have to be restored.
To restore packages for a solution where some projects use the packages.config package management format and
others use the PackageReference package management format, use this way as well. It will restore packages in all the
projects, regardless of the package management format used.
See NuGet Command-Line Reference12 for details.

Visual Studio 2017 and Later
If all your projects use the PackageReference package management format, you can use the MSBuild Restore target to
restore NuGet packages. To restore the PostSharp package at build time, add a preliminary step before building the
Visual Studio solutions or projects. This step should execute the following command:

MSBuild /T:Restore MySolution.sln

In this command, the MySolution.sln is the solution for which packages have to be restored. Eventually, you can call the
MSBuild target from your MSBuild script.

CAUTION NOTE
If some projects of your solution use the packages.config project management format, those will not get the NuGet
packages restored this way. Use the NuGet.exe command described in the first section instead.

See NuGet pack and restore as MSBuild targets13 for details.

.NET Core Command Line Interface
If all your projects are .NET Core projects, you can use the .NET Core Command Line Interface to restore NuGet
packages. To restore the PostSharp package at build time, add a preliminary step before building the Visual Studio
solutions or projects. This step should execute the following command:

dotnet restore MySolution.sln

In this command, the MySolution.sln is the solution for which packages have to be restored.

CAUTION NOTE
If some projects of your solution are not .NET Core projects, those will not get the NuGet packages restored this way
correctly. Use the NuGet.exe command described in the first section instead.

See dotnet-restore14 for details.

NuGet 2.0 to 2.6
To restore the PostSharp package at build time, add a preliminary step before building the Visual Studio solutions or
projects. This step should execute the following command for every packages.config file in your solution (typically, for
every project):

NuGet.exe install packages.config -OutputDirectory SolutionDirectory\packages

In this command, where SolutionDirectory\packages is the directory where the NuGet packages should be installed.

12. http://docs.nuget.org/docs/reference/command-line-reference
13. https://docs.microsoft.com/en-us/nuget/schema/msbuild-targets#restore-target
14. https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore

Deployment

60

http://docs.nuget.org/docs/reference/command-line-reference
https://docs.microsoft.com/en-us/nuget/schema/msbuild-targets#restore-target
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore
http://docs.nuget.org/docs/reference/command-line-reference
https://docs.microsoft.com/en-us/nuget/schema/msbuild-targets#restore-target
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore

Please look at the NuGet Command-Line Reference15 for details.

TIP
You can use PowerShell or MSBuild to execute the nuget install command to all packages.config files in your source
repository.

6.7.2. Using PostSharp with Visual Studio Online
When hosting your source code on Visual Studio Online, adding PostSharp to the codebase is no different than for any
other build server situation.
Visual Studio Online offers an online build server environment. Once configured the build server will retrieve your source
code and compile the application for you. As part of this build process, you will want any PostSharp aspects to be added in
the same way that it occurs on your local development machine. To do this you will have to ensure that your codebase
includes PostSharp as outlined in the Installing PostSharp Into a Project on page 52 section. You will also need to configure
a build definition as outlined in the Create or edit build definition16 article on MSDN.
Once you are able to successfully run the build you will want to review the build logs and verify the artifacts that were
created by that build. Here's how you can verify that your build included your PostSharp aspects.

Verifying Visual Studio Online Builds
1. To review the build logs, open the successful build.

2. Select the Diagnostics tab.

15. http://docs.nuget.org/docs/reference/command-line-reference
16. http://msdn.microsoft.com/en-us/library/ms181716.aspx

Using PostSharp on a Build Server

61

http://docs.nuget.org/docs/reference/command-line-reference
http://msdn.microsoft.com/en-us/library/ms181716.aspx
http://docs.nuget.org/docs/reference/command-line-reference
http://msdn.microsoft.com/en-us/library/ms181716.aspx

3. Ensure that the installation of PostSharp and any PostSharp patterns libraries that you used.

If you see entries like these in your build log you know that the build process correctly downloaded the PostSharp
components.
If you do not see any entries for the downloading of the PostSharp components you will want to ensure that the
packages.config file is correctly included in your source code repository and that the PostSharp dependencies are
referenced in the appropriate projects.

6.8. Upgrading from a Previous Version of PostSharp
This section explains how to upgrade from a previous version of PostSharp.
This topic contains the following sections:

• Upgrading PostSharp Tools for Visual Studio on page 62
• Upgrading solutions from PostSharp 3 or later on page 63
• Upgrading large repositories on page 63
• Upgrading solutions from PostSharp 2 on page 63

TIP
Other sections of this chapter, specifically Installing PostSharp Tools for Visual Studio on page 50, Deploying License
Keys on page 75 and Using PostSharp on a Build Server on page 59, are also useful if you need to upgrade from an earlier
version of PostSharp.

Upgrading PostSharp Tools for Visual Studio
After you install PostSharp Tools for Visual Studio, you will still be able to open solutions that use older versions of Post-
Sharp.
PostSharp Tools for Visual Studio are backward compatible with older versions of PostSharp. However, several versions
of the extension cannot coexist. Therefore, installing a new version of PostSharp Tools will uninstall the previous version.
To upgrade PostSharp Tools for Visual Studio, simply download it from http://www.postsharp.net/download and
execute the installation package.

Deployment

62

http://www.postsharp.net/download

CAUTION NOTE
Upgrading PostSharp Tools for Visual Studio does not implicitly upgrade your source code.

Upgrading solutions from PostSharp 3 or later

CAUTION NOTE
Before you upgrade your project to a different major release of PostSharp, check that the new version still supports
your version Visual Studio and the target framework of your application. Check the release notes for an accurate
compatibility list of the specific version you are installing.

You can use several versions of PostSharp side-by-side on the same machine. However, it is recommended that you use
the same version in all projects of the same solution.

To upgrade a solution from PostSharp 3 or later:
1. Open the Solution Explorer in Visual Studio.
2. Right-click on the solution.
3. Click on Manage NuGet Packages for Solution.
4. Click on Updates.
5. Find the PostSharp package and click on Update.
6. Select all projects, click OK.
7. Repeat the operation for all PostSharp.Patterns.* packages.

Upgrading large repositories
If your source contains a large number of solutions, upgrading manually using NuGet may be too labor intensive. In this
situation, it is better to use our upgrade PowerShell script.

To upgrade a large number of solutions with the PowerShell script:
1. Download the following Git repository: https://github.com/sharpcrafters/PostSharp.Utilities. You can download

it manually from the web page or execute the following command:

git clone https://github.com/sharpcrafters/PostSharp.Utilities.git

2. Follow instructions on in README.md.

CAUTION NOTE
This script does not support other platforms than the .NET Framework and does not support PostSharp Pattern
Libraries.

Upgrading solutions from PostSharp 2
Every project can have only references to a single version of PostSharp. This applies both to direct and indirect
references. The PostSharp 3 or later compiler is not backward compatible with PostSharp 2, and PostSharp 3 will refuse
to compile projects that have a reference to PostSharp 2. Therefore, you will typically use a single version of PostSharp
in every solution.
You can upgrade projects from PostSharp 2 to PostSharp 3 by adding the PostSharp NuGet package to these projects.

Upgrading from a Previous Version of PostSharp

63

https://github.com/sharpcrafters/PostSharp.Utilities

To upgrade a solution from PostSharp 2:
1. Open the Solution Explorer in Visual Studio.
2. Right-click on the solution.
3. Click on Manage NuGet Packages for Solution.
4. Click on Online.
5. In the search box, type PostSharp. You may want to select the Select prereleases option (instead of the

default Stable Only) to install a pre-release version of PostSharp.
6. Find the PostSharp package and click on Install.
7. Select all projects, click OK.

Although PostSharp 3 or later is mostly backward compatible with PostSharp 2 at source-code level, you may need to
perform small adjustments to your source code:

• Every occurrence of the _Assembly interface has been replaced by the Assembly classes. You may have to
change the signatures of some methods derived from AssemblyLevelAspect.

• Aspects that target Silverlight, Windows Phone or Windows Store must be annotated with the
PSerializableAttribute custom attribute.

• PostSharp Toolkits 2.1 need to be uninstalled using NuGet. Instead, you can install PostSharp Pattern Libraries
3 from NuGet. Namespaces and some type names have been changed.

6.9. Uninstalling PostSharp
If you make the decision to remove PostSharp from your project we are sorry to see you leave.
There are two scenarios you may want to consider: removing PostSharp from individual projects or solutions, and removing
PostSharp from Visual Studio.
This topic contains the following sections:

• Removing PostSharp from your projects and solutions on page 64
• Removing PostSharp from Visual Studio on page 67

Removing PostSharp from your projects and solutions
Here are some steps to follow to remove PostSharp from your project.

CAUTION NOTE
As you'll see in these steps, removing the product from your project is not that difficult. However, replacing the
aspects that you were using will be a much more arduous task that will require a great deal of planning.
You will need to replace the aspects by handwritten source code that implement the same behaviors. Depending on
how intensively you used PostSharp, your codebase could significantly increase as a result of stopping using Post-
Sharp. Other products and frameworks that pretend to implement aspect-oriented programming actually only provide
a small subset of the features you are got used to with PostSharp.
Because every project will use aspects differently, and some will have custom aspects, we are unable to provide you
with any generic piece of advice about how to replace specific aspects.

Deployment

64

To remove PostSharp from a project, you simply have to remove all PostSharp packages from it. The following
procedure demonstrates how to remove PostSharp for the whole solution.

Removing PostSharp with NuGet Packages Manager for Solution
1. Open the Package Manager for Solution windows

2. Select the All tab from the left side of the window.

Uninstalling PostSharp

65

3. Find the PostSharp packages in the list and select one of the PostSharp Library packages. Click the Manage
button.

NOTE
Start by selecting the PostSharp Library Packages and working in reverse dependency order. This will result in
the main PostSharp package being the last one that you select to remove.

4. Ensure that you uncheck all of the projects listed in the window and click OK.

5. Repeat steps 3 and 4 for each of the PostSharp packages that show in the Packages Manager for Solution
window.

6. To verify that all of the PostSharp packages have been removed from your codebase, ensure that there are no
PostSharp packages listed in the Packages Manager for Solution window.

Once you have removed all of the PostSharp packages from your codebase it is most probable that your application will
no longer compile. Compilation errors will be registered where PostSharp aspect attributes exist in the codebase as well
as where custom aspects were written. You will need to remove these entries from your codebase to get it to compile
again.
Simply deleting the offending code can accomplish this. You must remember that in the process of removing PostSharp
from your codebase these errors indicate locations where you are removing functionality from the codebase as well. If
the functionality that is being removed is required by the application you will need to determine how to provide that
functionality in the codebase going forward. This is the most difficult part of removing PostSharp from your codebase.

Deployment

66

Because aspects can be used in a multitude of different manners, and custom aspects can be created for any number of
different uses, there is no practical way to tell you how to replace the functionality being lost.

NOTE
You now have removed PostSharp from your codebase. At this point, you are able to continue on your development
effort without making use of PostSharp.
If you would like to remove PostSharp from Visual Studio, proceed with the following steps.

Removing PostSharp from Visual Studio
Before you uninstall PostSharp Tools for Visual Studio, we suggest you remove the compiled images.

Removing Native Compiled Images
1. Open the Visual Studio Options dialog.

Uninstalling PostSharp

67

2. Expand the PostSharp node in the tree and select the Compiled Images node.

3. Select an entry in the list box and click Uninstall .

4. Follow the wizard to uninstall the compiled images for the selection you made. There are no choices to be
made, simply click Next and Finish until the wizard is completed.

NOTE
You will need to perform the previous steps for each of the versions listed in the PostSharp Compiled Image
page in the Options dialog.

The next step is to remove PostSharp from Visual Studio.

Deployment

68

Uninstalling the PostSharp Tools for Visual Studio
1. Open the Extensions and Updates window.

2. Select the All tab on the left of the window.

3. Find the PostSharp entry, select it and click the Uninstall button.

Uninstalling PostSharp

69

4. Click Yes to confirm that you want to uninstall the PostSharp extension.

5. Repeat the two previous steps and uninstall the extension named PostSharp Backward Compatibility Tools.
6. Restart Visual Studio.

Finally, you can remove the temporary files created by PostSharp. These files would be recreated as necessary the next
time you run PostSharp.
Other than occupying disk space, there is no impact of not removing these files.

Cleaning temporary files
1. Open Windows Explorer and navigate to C:\ProgramData\PostSharp.

2. Select the C:\ProgramData\PostSharp folder and delete it.

6.10. Deploying PostSharp to End-User Devices
Although PostSharp is principally a compiler technology, it contains run-time libraries that need to be deployed along with
your application to end-user devices.
This topic contains the following sections:

• Redistribution of PostSharp run-time libraries without NuGet
• Redistribution of PostSharp run-time libraries using NuGet

Redistribution of PostSharp run-time libraries without NuGet
If you do not deliver your final product using NuGet, you can bundle all the referenced PostSharp run-time libraries in
your product. These libraries are the ones included in the lib subdirectory of the NuGet packages and the ZIP distri-
bution.
These run-time libraries can be distributed to end-users free of charge. However, the build-time parts of PostSharp
cannot be redistributed under the terms of the standard license agreement.

Deployment

70

Besides including these run-time libraries, no other action or configuration is required.

Redistribution of PostSharp run-time libraries using NuGet
If you deliver your final product using NuGet, you can add PostSharp redistributable NuGet packages as a dependency
to your NuGet package instead of including all the run-time libraries inside your NuGet package.
PostSharp NuGet packages are either intended for build-time or for run-time. We do not mix both in any of our NuGet
packages. See PostSharp Components on page 49 for a description of how to distinguish them.
Thanks to this fact, you only need to set the run-time PostSharp NuGet packages as a dependency of your NuGet
package.

Sample NuGet package
In the following example, there is a NuGet package specification of a package which has the PostSharp.Redist package
as its dependency. This way, there's no need to include the PostSharp run-time libraries inside the package.

<?xmlversion="1.0"encoding="utf-8"?><packagexmlns="http://schemas.microsoft.com/packaging/2013/05/nuspec.xsd"><metadata><id>MyLibrary</id><version>1.0.0</version><authors>John Smith</authors><owners>John Smith</owners><requireLicenseAcceptance>false</requireLicenseAcceptance><description>This is my library created with a help of PostSharp.</description><dependencies><!-- TODO: Replace X.X.X with a version of PostSharp you want to be dependent. --><dependencyid="PostSharp.Redist"version="X.X.X"/></dependencies></metadata><files><filesrc="bin\Release\MyLibrary.dll"target="lib\net46"/><!-- NOTE: No need to include PostSharp run-time libraries inside the package. --></files></package>

See .nuspec reference17 for details.

Using the Pack MSBuid target or .NET Core CLI
In the following example, you see a .NET Core project which uses the PackageReference package management format.
Creating a NuGet package using the Pack MSBuid target or .NET Core CLI command dotnet pack from this project will
create a NuGet package which will depend on the run-time PostSharp packages only.

<ProjectSdk="Microsoft.NET.Sdk"><PropertyGroup><OutputType>Exe</OutputType><TargetFramework>netcoreapp1.1</TargetFramework></PropertyGroup><ItemGroup><!-- TODO: Replace X.X.X with a version of PostSharp you want to be dependent. --><PackageReferenceInclude="PostSharp"Version="X.X.X"><!-- NOTE: Thanks to the following element, the PostSharp build-time NuGet package
will not be a dependency of the NuGet package created from this project. --><PrivateAssets>All</PrivateAssets></PackageReference><!-- TODO: Replace X.X.X with a version of PostSharp you want to be dependent. --><PackageReferenceInclude="PostSharp.Redist"Version="X.X.X"/><!-- NOTE: The PostSharp.Redist run-time NuGet package

will be a dependency of the NuGet package created from this project. --></ItemGroup></Project>

See Package references (PackageReference) in project files18 for details.

6.11. Executing PostSharp from the Command Line
You can execute PostSharp from the command line whenever you want to instrument an existing assembly – whether or
not you have the source code of that assembly.
PostSharp has been primarily designed as an extension to the C# and VB languages that automates the implementation or
validation of patterns. Most patterns need to be present for the application to work. Think for instance of INotify-
PropertyChanged. It does not make sense to have a build of your application that does not implement INotifyProperty-
Changed. Therefore, the best way to invoke PostSharp is to use the default MSBuild integration.

However, if you think of instrumentation aspects such as logging, tracing, performance measurement, then the situation is
different. It is perfectly valid to add logging to an existing assembly. In this case, executing PostSharp from the command
line may be your best option.
In general, you can use the command-line interface in the following situations:

• When you have access to the source code of a project and you want to add instrumentation as a separate step,
instead of using the normal C#/VB project file.

• When you don’t have access to the source code of the assembly you want to instrument. In this case, make sure
your license allows you to modify the assembly.

17. https://docs.microsoft.com/en-us/nuget/schema/nuspec#dependencies
18. https://docs.microsoft.com/en-us/nuget/consume-packages/package-references-in-project-files

Executing PostSharp from the Command Line

71

https://docs.microsoft.com/en-us/nuget/schema/nuspec#dependencies
https://docs.microsoft.com/en-us/nuget/consume-packages/package-references-in-project-files
https://docs.microsoft.com/en-us/nuget/schema/nuspec#dependencies
https://docs.microsoft.com/en-us/nuget/consume-packages/package-references-in-project-files

Instrumenting assembly from the command line
To instrument assembly from the command line:

1. Download and extract PostSharp ZIP distribution.
a. Go to https://www.postsharp.net/downloads/.
b. Choose the desired version of PostSharp (only 4.3 or later).
c. Download the file named PostSharp-<version>.zip and extract it on your local machine.

2. Create a PostSharp configuration file for your project (see Working with PostSharp Configuration
Files on page 97). These are the most common items to specify in the configuration file:

◦ Set the Input property to the file path of the input assembly (relative to the project file location).

◦ Set the Output property to the file path of the output assembly (relative to the project file location).

◦ Declare the aspects that you want to apply to your assembly (see Adding Aspects Using
XML on page 131).

◦ Add the SearchPath element to specify where PostSharp should look for assemblies and plug-ins (in
addition to PostSharp package directory and input assembly directory).

Example 1. Instrumenting assembly with the PostSharp logging aspect.

<Project xmlns="http://schemas.postsharp.org/1.0/configuration">
<Property Name="Input" Value="MyAssembly.dll" />
<Property Name="Output" Value="MyAssembly.Instrumented.dll" />
<Property Name="LoggingBackend" Value="Console" />
<Multicast>

<LogAttribute xmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics" />
</Multicast>

</Project>

Example 2. Instrumenting assembly with a custom aspect.

<Project xmlns="http://schemas.postsharp.org/1.0/configuration">
<Property Name="Input" Value="MyAssembly.dll" />
<Property Name="Output" Value="MyAssembly.Instrumented.dll" />
<SearchPath Path="C:\Path\MyAspects" />
<Multicast>

<ProfileAttribute xmlns="clr-namespace:MyAspects;assembly:MyAspects" />
</Multicast>

</Project>

Deployment

72

https://www.postsharp.net/downloads/

3. Invoke PostSharp. PostSharp executables are located under the tools folder of the extracted archive. You can
choose between these two executables:

◦ postsharp-net40-x64-native.exe – use to transform x64 assemblies.
◦ postsharp-net40-x86-native.exe – use to transform any other assemblies.

To apply the transformation to your project, invoke the PostSharp executable and specify the path to the
project configuration file as a command line argument. For example:

c:\PostSharp\tools\postsharp-net40-x86-native.exe postsharp.config

Upon completing the instrumentation of your assembly, PostSharp will output the “complete” message with
the PostSharp version number and total numbers of errors and warnings, if any.

PostSharp 4.3 [4.3.x.0, postsharp-net40-x86-native.exe, CLR 4.0.30319.394254, Release] complete -- 0 errors, 2 warnings, processed in 1000 ms

You can also specify the input assembly as a command line argument. In this case, PostSharp recognizes the
argument type based on the file name extension (e.g. *.config, *.pssln, *.psproj for project files, *.exe, *.dll for
input assemblies). The input assembly specified on the command line overrides the corresponding Input
property in the project file.

c:\PostSharp\tools\postsharp-net40-x86-native.exe postsharp.config MyAssembly.dll

By following the steps outlined in this article, you add instrumentation to an existing assembly without having to
recompile it from the source code.

Executing PostSharp from the Command Line

73

Deployment

74

CHAPTER 7

Licensing

This chapter addresses some technical questions related to the licensing of PostSharp. For business questions, please refer
to our web site19.
It contains the following topics:

Chapter Description
Deploying License
Keys on page 75

This topic shows how each developer can install the license key using the UI and how
this can be done centrally by adding the license key to source control.

License Audit on page 79 This topic explains that PostSharp does not validate the license key in a blocking way,
but audits the use of license keys.

Limitations of PostSharp
Essentials on page 79

This topic explains the limitations of PostSharp Essentials.

Sharing Source Code With
Unlicensed Teams on page 80

This topic explains that you don't need to purchase a license if you need to build code
that you didn't write yourself but uses PostSharp.

Using PostSharp License
Server on page 85

This topic shows how users can obtain a license from a license server.

Installing and Servicing
PostSharp License
Server on page 81

This topic describes how system administrators can install and maintain the license
server.

7.1. Deploying License Keys
This section explains how to install PostSharp license keys.
Whether you are using a free or commercial edition, PostSharp requires you to enter a license key before being able to
build a project.
This topic contains the following sections:

• Registering a license key using the user interface on page 75
• Installing the license key in your source control on page 78

Registering a license key using the user interface
Registering a license key using the user interface is the preferred procedures for individual developers and small teams.

19. https://www.postsharp.net/purchase/faq

Deploying License Keys

75

https://www.postsharp.net/purchase/faq
https://www.postsharp.net/purchase/faq

To register a license key using the user interface:
1. Open Visual Studio.
2. Click on menu PostSharp, then Options.
3. Open the License option page.
4. Click on the Register a license link.
5. Click on Register a license.

Licensing

76

6. Paste the license key and click Next .

Deploying License Keys

77

7. Read the license agreement and check the option I agree. Click on Next.

TIP
If you are registering the license key on a build server, also check the option Register these settings for all
accounts on this machine.

8. Click Next on the notice regarding license metering.

Installing the license key in your source control
It is possible to install the license key in your source control, so that these settings are automatically applied during the
build.

To install the license the in source control:
1. Create a file named postsharp.config in the root directory of your source repository, or in any parent directory

of the Visual Studio project file (*.csproj or *.vbproj).
2. Add the following content to the postsharp.config file:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><LicenseValue="000-AAAAAAAAAAAAAAA"/></Project>

In this code, 000-AAAAAAAAAAAAAAA must be replaced by the license key or the URL to the license server.

See Working with PostSharp Configuration Files on page 97 for details about this configuration file.

Licensing

78

7.2. License Audit
Although most software packages are protected with a license activation mechanism, we think that the practice is not
adequate for software development tools:

• The source code is sometimes compiled several years after it has been written, and there is no guarantee that the
license activation server will still be functional.

• Development teams want their tools to be included in the source control repository together with the source
code, and want the license key to be deployed the same way.

Instead of license activation, PostSharp relies on asynchronous, fail-safe license audit. PostSharp audits the use of license
keys on each client machine and periodically reports it to our license servers. The mechanism does not require a permanent
network connection, and PostSharp will not fail if the license server is not available.
The licensing client will contact our licensing servers in the following cases:

• When a license is registered on a computer with the user interface.
• Once per week, for every user and every device using PostSharp.

No personally identifiable information is transmitted during this process except the license key. In case we suspect a rough
violation of the License Agreement, we reserve the right to contact the legitimate owner of this license.

TIP
If license audit is not acceptable in your company, please contact us with a request to disable license audit. Our sales
teams will evaluate your request and answer with a license key containing an audit waiver. Global licenses and site licenses
are not subject to license audit by default. The use of the license server does not implicitly disable license audit. For more
information, see Using PostSharp License Server on page 85.

7.3. Limitations of PostSharp Essentials
PostSharp Essentials contains all the features of PostSharp Ultimate, but the number of types to which you can apply
aspects is limited to 10 per project or 50 per solution.
To know how many types are already using aspects, open the PostSharp Metrics tool window in Visual Studio.
This topic contains the following sections:

• Limitations of PostSharp Architecture Framework on page 79
• Limitations of PostSharp Diagnostics on page 80
• Enforcement of the solution-level limit on page 80
• Diagnosing licensing issues on page 80

Limitations of PostSharp Architecture Framework
PostSharp Architecture Framework has no concept of aspect and no concept of aspect target, therefore the number of
types is computed differently. Instead, what is limited is the number of types for which you can call APIs like
ReflectionSearch or ISyntaxReflectionService.

License Audit

79

Limitations of PostSharp Diagnostics
There is no limit on the number of types to which you can apply aspects of the PostSharp.Patterns.Diagnostics
namespace. However, when using PostSharp Essentials, your application will emit log records only one day after it has
been built. After this period, your application will still work normally, but log records will no longer be emitted.
See Licensing of PostSharp Diagnostics on page 173 for details.

Enforcement of the solution-level limit
The limitation of 50 types per solution is implemented not by looking at the sln file, but by counting the number of
classes in all assemblies that are referenced by the current assembly. That is, the limit is actually 50 types in the whole
assembly closure.

Diagnosing licensing issues
If you don't understand why PostSharp is requiring a commercial licens, you can generate a licensing diagnostic log by
building your project with the following command line:

msbuild /p:PostSharpTraceLicensing=True

If you're calling the PostSharp command-line interface instead of the MSBuild integration, add the /TraceLicensing
argument.
The log file is created in the %ProgramData%\PostSharp\LicensingTrace directory. The full path to the log file is
mentioned in the build output.

7.4. Sharing Source Code With Unlicensed Teams
You only need a license if you create or modify code using PostSharp. If you only build code that is using PostSharp, you
don't need to purchase a license.
PostSharp can determine whether you modify the code or just build it by looking at your source control repository. If your
working copy has modifications against your base commit in your source control repository, PostSharp will consider that
you are creating or modifying the code yourself, and will require a valid license.
By default, checking the modifications in the source control is disabled for performance reasons. It means that by default
PostSharp always requires a valid license during the build. You can enable source control checking by editing the PostSharp
Configuration File for your project or solution (see Working with PostSharp Configuration Files on page 97).

To enable source code sharing with unlicensed teams:
1. Open the file postsharp.config that is located in the root directory of your solution or project. If the file doesn't

exist then create a new postsharp.config file in that location with the following content:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"></Project>

2. Add a Property element under the Project element, set the Name attribute to VcsCheckEnabled and the Value
attribute to True.

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><PropertyName="VcsCheckEnabled"Value="True"/></Project>

NOTE
The following source control systems are supported: Git and TFS. If you are not using any of these systems, PostSharp will
always require a license at build time.

Licensing

80

CAUTION NOTE
When building unmodified source code without a commercial license, PostSharp Diagnostics Developer Edition and
limitations to PostSharp Diagnostics features will apply to your build. See Licensing of PostSharp Diagnostics on page 173
for details.

7.5. Installing and Servicing PostSharp License Server
This topic covers PostSharp License Server from the point of view of the system administrator and license administrator.
We designed our license server to help our customers, not to enforce our license agreements. The application is open-
source, it uses a clear SQL database and provides the ability to workaround issues by canceling leases or purging tables.
This topic contains the following sections:

• System Requirements on page 81
• Installing PostSharp License Server on page 81
• Installing a license key on page 82
• Testing the license server on page 83
• Displaying license usage on page 83
• Canceling leases on page 84
• Maintenance on page 84

System Requirements
PostSharp License Server is an ASP.NET 4.5 application backed by a Microsoft SQL database.
It requires:

• Windows Server 2003 or later with Internet Information Services installed.
• Microsoft SQL Server 2005 or later (any edition, including the Express edition).

If the license server can be configured with a sufficiently long lease renewal period, there is no need to deploy the
application and its database in high-availability conditions. You need to plan that the amount of time between the lease
renewal and the lease end is larger than the longest expected outage. Frequent backups are not critical unless usage
information is required for accounting purposes in case of pay-as-you-use licenses, where the Export Logs feature is
required.

CAUTION NOTE
Deploying the ASP.NET application to several machines is not supported because the lease algorithm uses application
locking instead of database locking.

Installing PostSharp License Server
The setup procedure is simple but must be performed manually.
To install PostSharp License Server, you will need administrative access on a Windows Server machine and the
permission to create a new database.

Installing and Servicing PostSharp License Server

81

To install PostSharp License Server:
1. Download the latest version of PostSharp License Server from GitHub20.

NOTE
It is not necessary that the version of PostSharp License Server exactly matches the version of PostSharp. You
do not have to upgrade PostSharp License Server as long as the license keys you want to use are compatible
with the server version.

2. Using Internet Information Services (IIS) Manager, configure a new web application whose root is the folder
containing the file web.config.

3. The application pool should be configured to use ASP.NET 4.5.
4. Configure the authentication mode of the web application: disable Anonymous Authentication, and enable

Windows Authentication.
5. Create an MS SQL database (the free MS SQL Express server is supported).
6. Execute the script CreateTables.sql in the context of this database. The file is located in the zip archive of the

license server.
7. Set up the security on this database so that the user account under which the ASP.NET application pool is

running (typically NETWORK SERVICE) can access the database.
8. Edit the file web.config:

a. configuration/connectionStrings: Correct the connection string (server name and database
name) to match your settings.

b. configuration/system.net/mailSettings: Set the name of the SMTP server used to send warning
emails.

c. configuration/applicationSettings: this section contains several settings that are documented
inside the web.config file. The most important settings are the email addresses for shortage notifi-
cations and the duration of leases duration and renewal delay.

d. configuration/system.web/authorization: Set up the security of the whole application to restrict
the persons who are allowed to borrow a license. Optional.

e. configuration/location[@path='Admin']/system.web/authorization: Specify who has access to
the administrative interface of the application. Optional.

Installing a license key
Before developers can start using the license server, you need to install a license key.

To install a license key into the license server:
1. Open the home page of the license server using a web browser.
2. Click on the link Install a new license.

20. https://github.com/postsharp/PostSharp.LicenseServer/releases

Licensing

82

https://github.com/postsharp/PostSharp.LicenseServer/releases
https://github.com/postsharp/PostSharp.LicenseServer/releases

3. Paste the license key and click on button Add.

Testing the license server
If you have installed the license server at the address http://localhost/PostSharpLicenseServer, you can test it opening the
URL http://localhost/PostSharpLicenseServer/Lease.ashx?product=PostSharp30&user=me&machine=other using Firefox or
Chrome. If the license acquisition was successful, the browser will display the license key and the duration of the lease.
You can also then see the resulting allocation on the home page http://localhost/PostSharpLicenseServer, and cancel the
lease.

Displaying license usage
PostSharp License Server makes it easy to know how many people are currently using the product, and to display
historical data.

Overview of installed license keys and current number of leases

Installing and Servicing PostSharp License Server

83

Detail of leases

History of license usage. The figure demonstrates a 30-day, +30% grace period.

Canceling leases
You can cancel a lease from the lease list by clicking on the Cancel hyperlink. Note that canceling a lease on the server
does not cancel the lease on the client. It is not possible to cancel leases on the client.

Maintenance
The license server is designed to keep a history of all leases. Therefore, it can grow indefinitely, depending on the
number of users and lease duration. It is safe to delete all records from the Lease table at any time unless these records
are necessary for accounting purposes.
Using SQL Agent, you can schedule a job that purges old records of the Lease table:

DELETEFROM [dbo].[Leases] WHERE EndTime < DATEADD(day, -90, GETDATE());

Licensing

84

7.6. Using PostSharp License Server
If the license audit is not acceptable in your company for regulatory or other reasons, you can consider using the PostSharp
License Server.
PostSharp License Server is a server application that customers can install into on their own premises to measure the
number of concurrent users of PostSharp. The application is based on ASP.NET and Microsoft SQL Server.
This topic contains the following sections:

• Disclaimer on page 85
• Design Principles on page 85
• Subscribing to the license server on page 85
• Installing the license settings in your source control on page 89

If you are a system administrator or license administrator, see also Installing and Servicing PostSharp License
Server on page 81.

Disclaimer
Using the license server is optional. Only a few enterprise customers chose to use it. Alternative approaches are:

• To rely on the default license audit mechanism (see License Audit on page 79 for details).
• To acquire enough licenses for the whole team with some reserve margin.
• To use a spreadsheet to keep track of who is using the software.
• To use other software audit products, although this approach is imperfect because PostSharp is not installed

on the developer's machine as a standalone and indentifiable application.

Design Principles
The license server manages leases of a license to a given user on a given machine (the “client”). Once the lease is
provided to the client, it is cached on the client. Upon client request, the server will return a license key and two dates:
the lease end date and the lease renewal date. The lengths of the lease and of the renewal period are configurable. The
client will not contact the license server before the renewal date, so the client can go offline during the duration of the
lease. Then, a new lease will be reserved for the client. If the client is not able to renew its lease from the server after the
lease renewal date, the client will still be able to use PostSharp until the end of the lease. Then, the use of PostSharp will
be prevented. To avoid loss of productivity due to lack of network connection or server outages, we recommend setting
a large delay between the lease renewal period and the lease period.
If the number of concurrent users exceeds the licensed number, the license administrator will receive an email, and
additional users will be allowed during a grace period. At the end of the grace period, only the licensed number of
concurrent users will be allowed. The duration of the grace period and the number of excess users depend on the kind
of license. By default, it is set to 30% of users and 30 days.

IMPORTANT NOTE
If you have subscribed to a license server, you will need periodic connections to the company network. The licensing
client will automatically try to renew a lease when it comes close to expiration and if the license server is available.
Lease duration and renewal settings can be configured by the administrator of the license server. A connection to the
license server is not necessary while the lease is valid.

Subscribing to the license server
If your company uses PostSharp License Server, you can register using a similar procedure as for registering a license
key:

Using PostSharp License Server

85

To subscribe to a license server using the user interface:
1. Open Visual Studio.
2. Click on menu PostSharp, then Options.
3. Open the License option page.
4. Click on the Subscribe to a license server link.

Licensing

86

5. Paste the URL of the license server. You can click on the Open hyperlink to verify that the URL is correct and
that you have access to it. Click Next.

Using PostSharp License Server

87

6. Read the license agreement and check the option I accept. Click on Next.

TIP
If you are registering the license server on a build server, also check the option Register the license for all
accounts on this machine.

Licensing

88

7. You are done.

Installing the license settings in your source control
It is possible to subscribe to the license server using a file stored in your source control system by using the exact same
mechanism as to register a license key.

To install license settings in your source control system:
1. Create a file named postsharp.config in the root directory of your source repository, or in any parent directory

of the Visual Studio project file (*.csproj or *.vbproj).
2. Add the following content to the postsharp.config file:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"x:xmlns="http://schemas.postsharp.org/1.0/configuration"><LicenseValue="http://server/path"/></Project>

In this code, http://server/path must be replaced by the URL to the license server.

See Working with PostSharp Configuration Files on page 97 for details about this configuration file.

Using PostSharp License Server

89

Licensing

90

CHAPTER 8

Configuration

For most use cases, PostSharp does not require any custom configuration. PostSharp gets its default configuration from
three sources:

• MSBuild integration. PostSharp gets most of its configuration settings directly from the parent MSBuild project.
• NuGet integration. Some PostSharp plug-ins delivered as NuGet packages may modify PostSharp configuration

files during installation.
• PostSharp Tools. When adding aspects and policies from Visual Studio, PostSharp may automatically modify

some configuration files.

Even if most configuration settings are correct by default, you may want to understand the configuration system to
troubleshoot configuration and installation issues, or simply to implement more advanced configuration scenarios.
PostSharp can be configured using the Visual Studio user interface, by editing MSBuild project files, or by editing PostSharp
configuration files.

8.1. Configuring Projects in Visual Studio
PostSharp accepts several configuration settings such as the version and processor architecture of the CLR that is used at
build time, the search path of dependencies, and whether some features are enabled.
Although the default configuration is appropriate for most situations, you may have to fine-tune some of them to cope with
particular cases.
Most common properties can be edited directly from Visual Studio using the PostSharp project property page.
This topic contains the following sections:

• Opening PostSharp project properties tab on page 91
• Understanding configuration settings on page 92

Opening PostSharp project properties tab
To open the PostSharp project property page in Visual Studio

1. Open the Solution Explorer.
2. Right-click on the project then select Properties at the bottom of the menu.
3. Select the PostSharp tab.

Configuring Projects in Visual Studio

91

The PostSharp property page in the Visual Studio project properties dialog.

Understanding configuration settings
Note that all settings are dependent on the selected project configuration (for instance Debug) and platform (for
instance Any CPU).

Setting Description
Disable
PostSharp

True if PostSharp should not execute in for the selected configuration and platform, otherwise False.
This setting maps to the MSBuild property SkipPostSharp.

Additional
search path

A semicolon-separated list of directories where plug-ins and libraries have to be searched for. This
property can reference other MSBuild properties, for instance: ..\MyWeaver\bin\$(Configuration). All
project references are already added to the search path by default. This setting maps to the MSBuild
property PostSharpSearchPath.

Additional
properties

A semicolon-separated list of property definition, for instance: Name1=Value1;Name2=Value2. This
property can reference other MSBuild properties, for instance: RootNamespace=$(RootNamespace).
Several properties are defined by default; for details, see Well-Known PostSharp Properties on page 101.
This setting maps to the MSBuild property PostSharpProperties

Suppress
warnings

A semicolon-separated list of warning identifiers that must be ignored, or * if all warnings have to be
ignored. This setting maps to the MSBuild property PostSharpDisabledMessages.

Treat
warnings as
errors

A semicolon-separated list of warning identifiers that must be escalated into errors, or * if all warnings
must be treated as errors. This setting maps to the MSBuild property PostSharpEscalatedMessages.

Architecture
Validation

Enabled if constraints must be validated, otherwise Disabled. The default value is Enabled. For details
regarding architecture validation, see Validating Architecture on page 409.

CLR Version The version of the CLR that hosts PostSharp. PostSharp currently only supports the CLR 4.0 so this
setting is disabled. This setting maps to the MSBuild property PostSharpTargetFrameworkVersion.

Configuration

92

Setting Description
Processor
Architecture

The processor architecture (x86 or x64) of the process hosting PostSharp. Since PostSharp needs to
execute the current project during the build, the processor architecture of the PostSharp process must
be compatible with the target platform of the current project. The default value is x86, or x64 if the
target platform of the current project is x64. This setting maps to the MSBuild property
PostSharpTargetProcessor.

Build Host The kind of process hosting PostSharp, which influences the assembly loading mechanism, compatibility
and performance features. This setting maps to the MSBuild property PostSharpHost. For details, see
Configuring Projects Using MSBuild on page 93.

Optimization
Mode

When set to Build Time, PostSharp will use a faster algorithm to generate the final assembly. When set
to Size, PostSharp will use a slower algorithm that generates smaller assemblies. The default value is
Build Time by default, or Size when the C# or VB compiler is set to generate optimal code (typically, in
release builds). This settings maps to the MSBuild property PostSharpOptimizationMode.

8.2. Configuring Projects Using MSBuild
Most configuration settings of PostSharp can be set as MSBuild properties.

NOTE
The integration of PostSharp with MSBuild is implemented in files PostSharp.tasks and PostSharp.targets. These files define
some properties and items that are not documented here. They are considered implementation details and may change
without notice.

This topic contains the following sections:
• Setting MSBuild properties with a text editor on page 93
• Configuring several projects at a time on page 94
• Setting MSBuild properties from the command line on page 94
• List of properties on page 94

Setting MSBuild properties with a text editor
To set a property that persistently applies to a specific project, but not to the whole solution, the best solution is to
define it directly inside the C# or VB project file (*.csproj or *.vbproj, respectively) using a text editor.

Adding a project-level MSBuild property using Visual Studio
1. Open the Solution Explorer, right-click on the project name, click on Unload project, then right-click again

on the same project and click on Edit.
2. Insert the following XML fragment just before the <Import /> elements:

<PropertyGroup><PropertyName>PropertyValue</PropertyName></PropertyGroup>

See Configuring Projects Using MSBuild on page 93 for the list of MSBuild properties used by PostSharp.
3. Save the file. If the project was open in Visual Studio, go to the Solution Explorer, right-click on the project

name, then click on Reload project.

Configuring Projects Using MSBuild

93

NOTE
For more information regarding MSBuild properties, see MSDN Documentation21.

Configuring several projects at a time
Instead of editing every project file, you can define shared settings in a file named PostSharp.Custom.targets and store in
the same directory as the project file or in any parent directory of the parent file (up to 7 levels from the project
directory).
Files PostSharp.Custom.targets are loaded from the root directory to the project directory, so that files that are closer to
the project directory are loaded after and override files in parent directories.
Thanks to this mechanism, it is possible to define settings that apply to a large set of projects and control the grain of
settings.
Files PostSharp.Custom.targets are normal MSBuild project or targets files; they should have the following content:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.microsoft.com/developer/msbuild/2003"><PropertyGroup><PropertyName>PropertyValue</PropertyName></PropertyGroup></Project>

See Configuring Projects Using MSBuild on page 93 for the list of MSBuild properties used by PostSharp.

NOTE
For more information regarding MSBuild project files, see MSDN Documentation22.

Setting MSBuild properties from the command line
When an MSBuild property does not need to be set permanently, it is convenient to set is from the command prompt
by appending the flag /p:PropertyName=PropertyValue to the command line of msbuild.exe, for instance:

msbuild.exe /p:PostSharpHost=Native

List of properties
General Properties
The following properties are most commonly overwritten. They can also be edited in Visual Studio using the PostSharp
project property page.

Property Name Description
PostSharpSearchPath A semicolon-separated list of directories added to the PostSharp search

path. PostSharp will probe these directories when looking for an
assembly or an add-in. Note that several directories are automatically
added to the search path: the .NET Framework reference directory, the
directories containing the dependencies of your project and the
directories added to the reference path of your project (tab Reference
Path in the Visual Studio project properties dialog box).

SkipPostSharp True if PostSharp should not be executed.

21. http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
22. http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx

Configuration

94

http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx

Property Name Description
PostSharpOptimizationMode When set to OptimizeForBuildTime, PostSharp will use a faster algorithm

to generate the final assembly. The other possible value is
OptimizeForSize. The default value of the PostSharpOptimizationMode
property is OptimizeForBuildTime by default and OptimizeForSize when
the C# or VB compiler is set to generate optimal code (typically, in
release builds).

PostSharpDisabledMessages Comma-separated list of warnings and messages that should be
ignored.

PostSharpEscalatedMessages Comma-separated list of warnings that should be escalated to errors.
Use * to escalate all warnings.

PostSharpLicense License key or URL of the license server.

PostSharpProperties Additional properties passed to the PostSharp project, in format
Name1=Value1;Name2=Value2. See Well-Known PostSharp
Properties on page 101.

PostSharpConstraintVerificationEnabled Determines whether verification of architecture constraints is enabled.
The default value is True.

Hosting Properties
Because PostSharp not only reads but also executes the assemblies it transforms, it must run under the proper version
and processor architecture of the CLR. Additionally, for each version and processor architecture. The following
properties allow influencing the choice of the PostSharp host process.

Property Name Description
PostSharpTargetFrameworkVersion Version of the CLR that hosts the PostSharp process. The only valid value is 4.0.

PostSharpTargetProcessor Processor architecture of the PostSharp hosting process. Valid values are x86
and x64. Since PostSharp needs to execute the current project during the build,
the processor architecture of the PostSharp process must be compatible with
the target platform of the current project. The default value is x86, or x64 if the
target platform of the current project is x64.

PostSharpHost Kind of process hosting PostSharp. This setting is usually changed for
troubleshooting only. The following values are supported:

• PipeServer means that PostSharp will run as a background process
invoked synchronously from MSBuild. Using the pipe server results in
lower build time, since PostSharp would otherwise have to be started
every time a project is built. The pipe server uses native code and the
CLR Hosting API to control the way assemblies are loaded in
application domains; the assembly loading algorithm is generally more
accurate and predictable than with the managed host.

• Native uses the same native code as the pipe server, but the process
runs synchronously and terminates immediately after an assembly has
been processed. For this reason, it does not have the same build-time
performance as the pipe server, but it has exactly the same assembly
loading algorithm and is useful for diagnostics.

• Managed is a purely managed application. The assembly loading
algorithm may be less reliable in some situations because PostSharp
has less control over it. Note that this host is no longer being tested
and officially supported.

Configuring Projects Using MSBuild

95

Property Name Description
PostSharpBuild Build configuration of PostSharp. Valid values are Release, Diag and Debug. Only

the Release build is distributed in the normal PostSharp packages.

PostSharpHostConfigurationFile A semicolon-separated list of configuration files containing assembly binding
redirections that should be taken into account by the PostSharp hosting process,
such as app.config or web.config.

Diagnostic Properties
Property Name Description
PostSharpAttachDebugger If this property is set to True, PostSharp will break before starting execution,

allowing you to attach a debugger to the PostSharp process. The default value
is False. For details, see Debugging Build-Time Logic on page 439.

PostSharpTrace A semicolon-separated list of trace categories to be enabled. The property is
effective only when PostSharp runs in diagnostic mode (see property
PostSharpBuild here above). Additionally, the MSBuild verbosity should be set
to detailed at least. For details, see Debugging Build-Time Logic on page 439.

PostSharpUpdateCheckDisabled True if the periodic update check mechanism should be disabled, False
otherwise.

PostSharpExpectedMessages A semicolon-separated list of codes of expected messages. PostSharp will
return a failure code if any expected message was not emitted. This property is
used in unit tests of aspects, to ensure that the application of an aspect results
in the expected error message.

PostSharpIgnoreError If this property is set to True, the PostSharp MSBuild task will succeed even if
PostSharp returns an error code, allowing the build process to continue. The
project or targets file can check the value of the ExitCode output property of
the PostSharp MSBuild task to take action.

PostSharpFailOnUnexpectedMessage This property should be used jointly with PostSharpExpectedMessages. If it set
to True, PostSharp will fail if any unexpected message was emitted, even if this
message was not an error. This property is used in unit tests of aspects, to
ensure that the application of an aspect did not result in other messages than
expected.

Other Properties
Property Name Description
PostSharpProject Location of the PostSharp project (*.psproj) to be executed by

PostSharp, or the string None to specify that PostSharp should
not be invoked. If this property is defined, the standard
detection mechanism based on references to the PostSharp.dll
is disabled.

PostSharpUseHardLink Use hard links instead of file copies when creating the snapshot
for Visual Studio Code Analysis (FxCop). This property is True by
default.

ExecuteCodeAnalysisOnPostSharpOutput When set to True, executes Microsoft Code Analysis on the
output of PostSharp. By default, the analysis is done on the
input of PostSharp, i.e. on the output of the compiler. This
property has no effect when Microsoft Code Analysis is disabled
for the current build.

Configuration

96

Property Name Description
PostSharpCopyCodeAnalysisDependenciesDisabled When set to True, PostSharp will not copy the all dependencies

of the current project output into the obj\Debug\Before-
PostSharp directory, which contains the copy of the assembly on
which Microsoft Code Analysis is executed by default. This
property has no effect when Microsoft Code Analysis is disabled
for the current build or when the
ExecuteCodeAnalysisOnPostSharpOutput property has been
set to True.

8.3. Working with PostSharp Configuration Files
PostSharp is designed as a modular post-compilation platform, whose functionality can be extended using plug-ins. For
instance, the Diagnostics Pattern Library is implemented as a plug-in. Although writing custom plug-ins is out of the scope
of this documentation, you should be able, as a PostSharp user, to understand how plug-ins can be added to a project and
how they can be configured.
This topic contains the following sections:

• PostSharp configuration files on page 97
• Sharing configuration between projects on page 97
• Order of processing of configuration files on page 98

PostSharp configuration files
The configuration system of PostSharp is based on configuration files.
By default, if you have a project named MyProject.csproj, PostSharp will try to load, from the same directory, a config-
uration file, named MyProject.psproj. Configuration file is optional. Most projects don't need it.

See Configuration File Schema Reference on page 98 for details about the format of this file.
For instance, the following code is the configuration file of a project using two plug-ins:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><PropertyName="LoggingBackend"Value="nlog"/><UsingFile="..\..\Build\bin\{$Configuration}\PostSharp.Patterns.Diagnostics.Weaver.dll"/><UsingFile="..\..\Build\bin\{$Configuration}\PostSharp.Patterns.Diagnostics.Weaver.NLog.dll"/><Multicast><LogAttributexmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"AttributeTargetTypes="PostSharp.Patterns.Diagnostics.Tests.NLog.Person"/></Multicast></Project>

The principal use cases for end-users are the following:
• Adding license keys. See the License on page 98 configuration element for details.
• Configuring properties. See the Property on page 98 configuration element for details.
• Including a plug-in. See the Using on page 98 configuration element for details.
• Adding aspects or constraints without modifying your source code. See Adding Aspects Using

XML on page 131 for details.
• Editing logging profiles. See Configuration File Schema Reference on page 98 and [logging-profiles] for

details.

Sharing configuration between projects
You will often want to share some configuration settings between several projects. A typical example is to add the
license key to all projects of your source code repository.
This can be achieved by adding a well-known configuration file to your source tree, or thanks to the Using on page 98
configuration element.

Working with PostSharp Configuration Files

97

Well-known configuration files
PostSharp will automatically load a few well-known configuration files if they are present on the file system, in the
following order:

1. Any file named postsharp.config located in the directory containing the MSBuild project file (csproj or vbproj,
typically), or in any parent directory, up to the root. These files are loaded in ascending order, i.e. up from the
root directory to the project directory.

2. Any file named MySolution.pssln located in the same directory as the solution file MySolution.sln .

3. Any file named MyProject.psproj located in the same directory as the project file MyProject.csproj or My-
Project.vbproj .

For instance, the files may be loaded in the following order:
1. c:\src\BlueGray\postsharp.config

2. c:\src\BlueGray\FrontEnd\postsharp.config

3. c:\src\BlueGray\FrontEnd\BlueGray.FrontEnd.Web\postsharp.config

4. c:\src\BlueGray\Solutions\BlueGray.pssln assuming that the current solution file is c:\src\BlueGray\
Solutions\BlueGray.sln.

5. c:\src\BlueGray\FrontEnd\BlueGray.FrontEnd.Web\BlueGray.FrontEnd.Web.psproj assuming that the
current project file is c:\src\BlueGray\Solutions\BlueGray.sln.

Explicit configuration sharing
The second technique to share a configuration file among several projects is to use the Using on page 98 configuration
element to import a configuration file into another configuration file.

Order of processing of configuration files
Elements of configuration files are processed in the following order:

1. License on page 98 elements are loaded.
2. Property on page 98 elements are loaded. Properties are evaluated at this moment unless they are marked for

deferred evaluation.
3. SearchPath on page 98 elements are loaded.
4. Using on page 98 elements are loaded and referenced plug-ins and configuration files are immediately

loaded.
5. SectionType on page 98 elements are loaded.
6. Service on page 98 elements are loaded, but they are not yet instantiated.
7. Extension elements are loaded, but they are not evaluated at this moment.
8. Finally, services and other tasks are instantiated and the project is executed.

8.3.1. Configuration File Schema Reference
The basic format of a PostSharp configuration file is as follows:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:x="http://schemas.postsharp.org/1.0/configuration"><!-- The following elements must appear in the proper order. --><LicenseValue="[<license-key>|<url>](;[<license-key>|<url>])*"/><PropertyName="<string>"Value="<expression:string>"Overwrite="[true|false]"Sealed="[true|false]"Deferred="[true|false]"Condition="<expression:bool>"/><SearchPathPath="<expression:string>(;<expression:string>)*"ReferenceDirectory="<expression:string>"PathKind="[File|Directory]"Condition="<expression:bool>"/><UsingFile="<expression:string>"ProjectName="<expression:string>"Condition="<expression:bool>"/><SectionTypeLocalName="<string>"Namespace="<string>"/><ServiceTypeName="<string>"AssemblyFile="<string>"Condition="<expression:bool>"/><!-- The rest of the file contains extension elements defined using <SectionType /> elements.
PostSharp itself defines the following extension elements: --><Multicast><MyMulticastAspectMyAttributeName="<value>"xmlns="clr-namespace:<namespace>;assembly:<assembly>"x:Condition="<expression:bool>"/></Multicast><LoggingProfilesxmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"x:Condition="<expression:bool>"><LoggingProfileName="<string>"OnEntryLevel="<LogLevel>"OnSuccessLevel="<LogLevel>"OnExceptionLevel="<LogLevel>"OnEntryOptions="<LogOptions>"OnSuccessOptions="<LogOptions>"OnSuccessOptions="<LogOptions>"/></LoggingProfiles></Project>

Configuration

98

Schema elements
The configuration file includes these elements, described in detail in subsequent sections in this topic:
Project on page 99
License on page 99
SearchPath on page 99
Using on page 99
SectionType on page 100
Property on page 100
Service on page 100
Multicast on page 0

Project
This element is the root of the configuration file.

License
This element allows loading one or more license keys.

Attribute Type Description
Value string Required. A semicolon-separated list of license keys, or an URL to the license server.

SearchPath
This element adds a file or a directory to the list of paths in which PostSharp searches for assemblies and plug-ins.

Attribute Type Description
Path string

expression
Required. A semicolon-separated list of files or directories that must be added to the
path.

PathKind File or
Directory

Optional. Specifies the kind of items contained in the Path property. If this property is
not specified, the item kind is automatically determined for each individual item of the
Path property.

ReferenceDirectory string
expression

Optional. The directory from which relative paths in the Path property.

Condition boolean
expression

Optional. true if the element is considered, false if it must be ignored.

Using
This element imports another configuration file into the current project.

Attribute Type Description
File string

expression
Required. Name of the file to be imported. Unless the name is qualified by a relative or
absolute path, the file will be searched for using the search path. In this case, a file with
extension psplugin or dll will be searched.

ProjectName string Optional. In case that a single dll includes several configurations, specifies which configu-
ration should be loaded.

Working with PostSharp Configuration Files

99

Attribute Type Description
Condition boolean

expression
Optional. true if the element is considered, false if it must be ignored.

SectionType
This element defines custom sections for the current project. Custom sections can appear under the Project element
under all system-defined elements.

Attribute Type Description
LocalName string Required. The local name of the XML element representing the custom section.
Namespace string Required. The namespace of the XML element representing the custom section.

Property
This element defines a property for the current project.

Attribute Type Description
Name string Required. The property name.
Value string

expression
Required. The value that is assigned to the property.

Overwrite boolean Optional. true if the element will overwrite any previously-defined property of the same name,
otherwise false. The default value is true.

Sealed boolean Optional. true if an attempt to overwrite this property should result in an error, otherwise false.
The default value is false.

Deferred boolean Optional. true if the expression in the Value attribute should be dynamically evaluated every
time the property value is requested, or false if the expression should be set at the time the
property is defined. The default value is false.

Condition boolean
expression

Optional. true if the element is considered, false if it must be ignored.

Service
This element registers a service to the service locator for the current project.

Attribute Type Description
TypeName string Required. The full type name implementing the service. This class must have a public

parameterless constructor and implement the IService interface.

AssemblyFile string
expression

Optional. The path of the assembly defining the service class. If the attribute is not provided,
the type will be searched for in the assembly being currently processed by PostSharp.

Condition boolean
expression

Optional. true if the element is considered, false if it must be ignored.

Multicast
This element can be used to add aspects, policies or constraints to a project without adding the C# project as custom
attributes. Adding elements to this section is equivalent to adding them to source code at assembly level.
The Multicast section is convenient to add aspect to several projects from a single file.

Configuration

100

For details regarding this section, see Including CLR Objects in Configuration on page 101.

8.3.2. Well-Known PostSharp Properties
The following table lists the PostSharp properties that may be set from the MSBuild project. The second column specifies
the name of the MSBuild property that influences the value of the PostSharp property, if any.

Property Name MSBuild Property Name Description
Configuration Configuration Build configuration (typically Debug or Release).

Platform Platform Target processor architecture (typically AnyCPU, x86 or x64).

MSBuildProjectFullPath MSBuildProjectFullPath Full path of the C# or VB project being built.

IgnoredAssemblies Comma-separated list of assembly short names (without
extension) that should be ignored by the dependency
scanning algorithm. Add an assembly to this list if it is
obfuscated, or contains native code, and causes PostSharp
to fail.

ReferenceDirectory MSBuildProjectDirectory Directory with respect to which relative paths are resolved.

SearchPath PostSharpSearchPath Comma-separated list of directories containing reference
assemblies and plug-ins.

TargetFrameworkIdentifier TargetFrameworkIdentifier Identifier of the target framework of the current project (i.e.
the framework on which the application will run). For
instance .NETFramework or Silverlight.

TargetFrameworkVersion TargetFrameworkVersion Version of the target framework of the current project (i.e.
the framework on which the application will run). For
instance v4.0.

TargetFrameworkProfile TargetFrameworkProfile Profile of the target framework of the current project (i.e.
the framework on which the application will run). For
instance WindowsPhone.

Other properties are recognized but are of little interest for end-users. For a complete list of properties, see PostSharp.
targets.

Using custom properties
By defining your own PostSharp properties, you can pass information from the build environment to aspects, or to any
code running in PostSharp. Custom PostSharp properties behave exactly as other PostSharp properties, so they can be
defined and read using the same procedures.

8.3.3. Including CLR Objects in Configuration
PostSharp includes a basic facility to describe CLR objects using XML. This facility is used to implement the
Multicast on page 98 and LoggingProfiles on page 98 sections of the configuration file, and can be used to define custom
sections.
The facility is consciously limited in features. It was only designed to provide the same features as custom attributes in
programming languages.

Working with PostSharp Configuration Files

101

This topic contains the following sections:
• Basic rules on page 102
• Formatting of attributes on page 102
• Specific rules for the Multicast section on page 102

Basic rules
The basic rules apply to XML serialized objects:

• The local name of the XML element must exactly match the type name of the CLR type. An exception to this
rule is that the Attribute prefix can be omitted.

• The XML namespace of the element must be in the form clr-namespace:namespace;assembly:assembly
where namespace is the namespace of the CLR type and assembly is the name of the assembly declaring the
type.

• The type must have a public parameterless constructor.
• Names of XML attributes must exactly match the name of a public field or property of the CLR type.

Formatting of attributes
Values of XML attributes, mapping to CLR fields and properties, must be formatted according to the rule relevant for
each type:

Type Formatting
Intrinsics An intrinsic is any of the following types: bool, char, sbyte, byte, short, ushort, int, uint, long, ulong,

float, double or string. Conversion is done using the Convert class.

Arrays A semicolon-separated list of elements.
Enumerations A list of enumeration member names separated by characters | or +. Names in the list are combined

using the + operator.
Types An assembly-qualified type name.
Object Fields and properties of type Object are not supported.

Specific rules for the Multicast section
The following additional rules apply to the Multicast on page 98 section of the configuration file:

• The class must derive from MulticastAttribute.

• The AttributePriority property may not be defined. This attribute is added automatically according to the
order of the XML element in the section.

8.3.4. Using Expressions in Configuration Files
Many attributes of the configuration schema accept expressions, which are dynamically evaluated. Expressions in the Post-
Sharp configuration system work similarly as in XSLT. Substrings enclosed by curled brackets, for instance {$property}, are
interpreted as XPath expressions.
For instance, the following code contains two XPath expressions:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><PropertyName="LoggingEnabled"Value="{has-plugin('PostSharp.Patterns.Diagnostics')}"Deferred="true"/><Multicast><WhenCondition="{$LoggingEnabled}"><d:Log/></When></Multicast></Project>

Configuration

102

Please check the MSDN documentation23 for general information about XPath.

NOTE
In the context of PostSharp configuration files, XPath expressions cannot refer to XML elements or attributes, but only to
variables, functions, operators and constants.

Accessing properties
PostSharp properties are mapped to XPath variables.
For instance, the expression {$LoggingEnabled} evaluates o the value of the LoggingEnabled property.

Using operators and functions
You can use any XPath function and operators.
Additionally to standard XPath 1.0 functions24, PostSharp defines the following functions:

Function Description
has-plugin(name) Evaluates to true if the given plug-in is loaded, otherwise false.

environment(variable) Returns the value of an environment variable.

Mixing expressions and literal strings
An attribute value can contain both text and expressions. This is illustrated in the following example:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><PropertyName="A"Value="A"/><!-- Evaluates to A --><PropertyName="B"Value="B;{$A}"/><!-- Evaluates to B;A --><PropertyName="C"Value="C;{$B};{$A}"/><!-- Evaluates to C;B;A;A --></Project>

8.4. Accessing Configuration from Source Code
Even if most configuration settings are consumed by PostSharp or its add-in, it is sometimes useful to access configuration
elements from user code. The PostSharp.dll library gives access to both configuration properties and extension configu-
ration elements.
This topic contains the following sections:

• Accessing properties on page 103
• Accessing custom sections on page 104

Accessing properties
You can read the value of any PostSharp property by including it in an XPath expression and evaluating it using the
EvaluateExpression(String) method of PostSharpEnvironmentCurrentProject:

stringvalue = PostSharpEnvironment.CurrentProject.EvaluateExpression("{$PropertyName}")

For details regarding expressions, see Using Expressions in Configuration Files on page 102.

23. http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
24. http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx

Accessing Configuration from Source Code

103

http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx

Accessing custom sections
You can get a list of custom sections of a given name and namespace by calling the GetExtensionElements(String,
String) method of PostSharpEnvironmentCurrentProject:

IEnumerable<ProjectExtensionElement> elements =
PostSharpEnvironment.CurrentProject.GetExtensionElements("MyElement", "uri:MyNamespace");

Extension elements must be declared using the SectionType on page 97 element.

8.5. Working with Errors, Warnings, and Messages
As any compiler, PostSharp can emit messages, warnings, and errors, commonly referred to as message. Custom code
running at build time (typically the implementation of CompileTimeValidate or of a custom constraint) can use PostSharp
messaging facility to emit their own messages.
In this section:

• Ignoring and Escalating Warnings on page 104
• Emitting Errors, Warnings, and Messages on page 105.

TIP
PostSharp 2.1 contains an experimental feature that adds file and line information to errors and warnings. The feature
requires Visual Studio. In must be enabled manually in the PostSharp tab of Visual Studio options.

8.5.1. Ignoring and Escalating Warnings
As with conventional compilers, warnings emitted by PostSharp, as well as those emitted by custom code running at build
time in PostSharp, can be ignored (in that case they will not be displayed) or escalated into errors.
Warnings can be ignored either globally, using a project-wide setting, or locally for a given element of code. Warnings can
be escalated only globally.

Ignoring or escalating warnings globally
There are several ways to ignore or escalate a warning for a complete project:

• In Visual Studio, in the PostSharp tab of the project properties dialog. See Configuration on page 91 for
details.

• By defining the PostSharpDisabledMessages or PostSharpEscalatedMessages MSBuild properties. See
Configuration on page 91 and Configuring Projects Using MSBuild on page 93 for details.

NOTE
The value * can be used to escalate all warnings into errors.

Configuration

104

Ignoring warnings locally
Most warnings are related to a specific element of code. To disable a specific warning for a specific element of code,
add the IgnoreWarningAttribute custom attribute to that element of code, or to any enclosing element of code (for
instance, adding the attribute to a type will make it effective for all members of this type).
You can create your own custom attribute derived from IgnoreWarningAttribute and make it conditional to a
compilation symbol by using the ConditionalAttribute custom attribute.

8.5.2. Emitting Errors, Warnings, and Messages
Custom code running in PostSharp at build time can use the messaging facility to emit its own messages, warnings, and
errors. These messages will appear in the MSBuild output and/or in Visual Studio. User-emitted warnings can be ignored or
escalated using the same mechanism as for system messages.

Emitting messages
If you just have a few messages to emit, you may simply use one of the overloads of the Write method of the Message
class.
All messages must have a severity SeverityType, a message number (used as a reference when ignoring or escalating
messages), and a message text. Additionally, and preferably, messages may have a location (MessageLocation).

NOTE
To benefit from the possibility to ignore messages locally, you should always use provide a relevant location with your
messages. Previous API overloads, which did not require a message location, are considered obsolete.

TIP
Do not use string.Format to format your messages. Instead, pass message arguments to the messaging facility,
which will format some argument types, for instance reflection objects, in a more readable way.

Emitting messages using a message source
If you want the text of all messages to be stored in a single location, you have to emit messages through a Message-
Source. Typically, you would create a singleton instance of MessageSource for each component, and associate each
instance with a message dispenser. A message dispenser is a custom-written class implementing the IMessage-
Dispenser interface. The MessageDispenser provides a convenient abstract implementation.

NOTE
Although it is tempting to use a ResourceManager as the backend of a message dispenser, comes with a non-
negligible performance penalty because of the cost of instantiating the ResourceManager.

Working with Errors, Warnings, and Messages

105

8.6. Resolution of assembly binding redirections
PostSharp executes your project assemblies at compile time. This is why PostSharp must follow assembly binding
redirections at compile time. Although the default assembly redirection mechanism works fine in most cases, there may be
situations where you will need to override it.

NOTE
To learn why PostSharp executes your project assemblies at compile time, see Understanding Aspect Lifetime and
Scope on page 365.

Default assembly binding redirections
In order to follow the same assembly binding redirections as you application does at run time, PostSharp analyzes your
projects and configuration files (typically app.config or web.config) and generates assembly binding redirection configu-
ration. PostSharp stores the assembly binding redirection in a file named PostSharpHost.config and stored in the obj
folder. You can review the PostSharpHost.config file to get an idea of what configuration PostSharp uses to resolve
assemblies. For an empty ASP.NET MVC 5 application the PostSharpHost.config may look like this

<?xmlversion="1.0"encoding="utf-8"?><configuration><runtime><assemblyBindingxmlns="urn:schemas-microsoft-com:asm.v1"><dependentAssembly><assemblyIdentityname="Microsoft.Owin.Security"publicKeyToken="31bf3856ad364e35"/><bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/></dependentAssembly><dependentAssembly><assemblyIdentityname="Microsoft.Owin.Security.OAuth"publicKeyToken="31bf3856ad364e35"/><bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/></dependentAssembly><dependentAssembly><assemblyIdentityname="Microsoft.Owin.Security.Cookies"publicKeyToken="31bf3856ad364e35"/><bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/></dependentAssembly><dependentAssembly><assemblyIdentityname="Microsoft.Owin"publicKeyToken="31bf3856ad364e35"/><bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/></dependentAssembly></assemblyBinding></runtime></configuration>

NOTE
We didn't reinvent the wheel. Under the hood, PostSharp relies on the GenerateBindingRedirects25 MSBuild task.

Overriding default assembly redirections
In case the default mechanism does not work, you can disable it by setting the MSBuild property PostSharpDisable-
DefaultBindingRedirects to True in your project file:

<PropertyGroup><PostSharpDisableDefaultBindingRedirects>True</PostSharpDisableDefaultBindingRedirects></PropertyGroup>

With this configuration PostSharp doesn’t analyze assembly binding redirections.

CAUTION NOTE
Do not set PostSharpDisableDefaultBindingRedirects to True unless you really have to. It may produce difficult to
predict results.

NOTE
The default algorithm is always disabled for Windows Phone Silverlight projects because it does not work.

If you disable default binding redirections, you may want to specify a file with your own assembly binding redirection
configuration

<PropertyGroup><PostSharpDisableDefaultBindingRedirects>True</PostSharpDisableDefaultBindingRedirects><PostSharpHostConfigurationFile>web.config</PostSharpHostConfigurationFile></PropertyGroup>

25. https://msdn.microsoft.com/en-us/library/microsoft.build.tasks.generatebindingredirects.aspx

Configuration

106

https://msdn.microsoft.com/en-us/library/microsoft.build.tasks.generatebindingredirects.aspx
https://msdn.microsoft.com/en-us/library/microsoft.build.tasks.generatebindingredirects.aspx

With this configuration PostSharp uses explicit assembly binding redirection configuration from the web.config file.

8.7. Reducing Build Time
Although we're working hard at PostSharp to provide fast builds by default, there are a few actions you can take to further
improve the performance of your build.

Chapter Description
Enabling Solution-Wide Build on page 107 This section describes how to decrease build time by enabling whole-

solution build.
Using IncrediBuild and PostSharp
Together on page 109

This section describes how to distribute the build to several machines
using IncrediBuild.

8.7.1. Enabling Solution-Wide Build
By default, PostSharp processes each project in its own AppDomain. The overhead of creating a new AppDomain for each
project is quite large: not the new AppDomain has to be loaded, but all assembly references need to be loaded and indexed
over and over again.
This overhead can be dramatically reduced by enabling solution-wide build. When this option is enabled, PostSharp will
reuse the AppDomains as much as possible. By enabling solution-wide build, you can make PostSharp 1.5 to 2 times faster.
This topic contains the following sections:

• Differences of solution-wide build on page 107
• Enabling solution-wide build on page 108

Differences of solution-wide build
Before you enable solution-wide build, you should check that your custom aspects do not depend on characteristics
that differ between the default (project-wide) build and the solution-wide build. These differences are the following:

• Static variables are shared between several projects instead of being local to a single project. Make sure that
the build-time logic of your aspect does not store information in static fields. Replace static fields with
accesses to PostSharpEnvironment.CurrentProject.StateStore, which provides a project-scoped state
store. See IProjectStateStore and IStateStore for details.

• When you reflect dependent assemblies using System.Reflection, you may randomly get the pre-PostSharp or
post-PostSharp binary assembly. Do not rely on the fact that you get any of these variants of the assembly.

• Assembly binding redirections are computed for the whole solution (or sub-solution) instead of the sole
project. For a specific project, it can happen that you will get a higher version of a reference assembly in
solution-wide build than in project-wide build.

CAUTION NOTE
The set of projects processed in the same AppDomain and the order of processing should be considered random.

Reducing Build Time

107

Enabling solution-wide build

CAUTION NOTE
Solution-wide build is an experimental feature. If it does not work for you, please report the issue to PostSharp support
and disable the feature.

To enable solution-wide build for a solution:
1. In Solution Explorer, right-click on the solution node, and select Properties.
2. Select the PostSharp tab under Common Properties.
3. Check the check box Enable solution-wide build optimizations.

The PostSharp property page in the Visual Studio solution properties dialog.

As a result, PostSharp will attempt to reuse AppDomains when building this solution from Visual Studio. The setting is
stored in a file named MySolution.pssln in the same directory as MySolution.sln.

NOTE
Solution-wide build only works when the build is triggered by Visual Studio. Command-line builds are not affected.

TIP
PostSharp needs to create at least one AppDomain per specific version of the target framework. To optimize the App-
Domain reuse and therefore build time, make sure to consolidate the target framework versions of your projects.

Configuration

108

8.7.2. Using IncrediBuild and PostSharp Together
Despite all the efforts we put into PostSharp optimizations, building a solution with PostSharp will always take more time
than without it. If your build time was already borderline without PostSharp, you may find that it becomes unacceptably
slow with PostSharp.
If you are working on large solutions containing a lot of projects that can be built in parallel, you may consider using
IncrediBuild26.

NOTE
IncrediBuild is a product of Xoreax. PostSharp Technologies is not affiliated to Xoreax.

This topic contains the following sections:
• What is IncrediBuild? on page 109
• Who benefits from IncrediBuild? on page 109
• Building a solution with IncrediBuild on page 109

What is IncrediBuild?
IncrediBuild speeds large C# build time for Visual Studio – up to 10x times faster – by transforming every developer’s
workstation or build server into a super computer consisting of as many idle CPUs you currently have in your entire
network. Instead of working on your 4 or 8 core machine IncrediBuild transforms your workstation into a virtual 200
cores machine. IncrediBuild is already trusted by over 100,000 users at more than 2,000 leading companies.
We at PostSharp have been working with IncrediBuild to make our products compatible. That means that you can now
win twice:

• Lower development time thanks to PostSharp.
• Lower waiting time thanks to IncrediBuild.

Who benefits from IncrediBuild?
You will find IncrediBuild useful for you if you’re in the following situation:

• Your total build time is over 2 minutes.
• Your solution is composed of dozens of projects with loosely coupled dependencies, so that a high level of

parallelism can be reached.

Building a solution with IncrediBuild
To build a PostSharp-enabled solution with IncrediBuild:

1. Download and install IncrediBuild27 .
2. Create a file (name it for instance IncrediBuild.xml) in your source folder with the following content:

<?xmlversion="1.0"encoding="UTF-8"standalone="no"?><ProfileFormatVersion="1"><Tools><ToolFilename="postsharp-net40-x86-native"AllowRemoteIf="/AllowRemote"DeriveCaptionFrom="firstparam"SkipIfExistsOutputFileMasks="*.psmap"/><ToolFilename="postsharp-net40-x64-native"AllowRemoteIf="/AllowRemote"DeriveCaptionFrom="firstparam"SkipIfExistsOutputFileMasks="*.psmap"/></Tools></Profile>

26. https://www.incredibuild.com/
27. https://www.incredibuild.com/

Reducing Build Time

109

https://www.incredibuild.com/
https://www.incredibuild.com/
https://www.incredibuild.com/
https://www.incredibuild.com/

3. Build your solution using the following command line:
BuildConsole.exe MySolution.sln /Rebuild /Profile=C:\Path\To\IncrediBuild.xml

Make sure the path to the XML file is correct, otherwise the flag will be silently ignored.

Configuration

110

PART 3

Adding Aspects to Code

CHAPTER 9

Adding Aspects Declaratively Using
Attributes

In .NET, you normally need to write one line of code for any application of a target attribute. If a custom attribute applies to
all types of a namespace, you have to manually add the custom attribute to every single type.
By contrast, multicast custom attributes allow you to apply a custom attribute on multiple declarations from a single line of
code by using wildcards or regular expressions, or by filtering on some attributes. It makes it easy to apply an aspect to, say,
all public static methods of a namespace, with a single line of code.
Multicast attributes can be inherited: you can put it on an interface and ask it to apply to all classes implementing this
interface. Attribute inheritance also works for classes, virtual or interface methods, and parameters of virtual or interface
methods.
Custom attributes supporting multicasting needs to be derived from MulticastAttribute. All PostSharp aspects and
constraints are derived from this class.

NOTE
Multicasting of custom attribute is a feature of PostSharp. If you do not transform your assembly using PostSharp,
multicast attributes will behave as plain old custom attributes.

NOTE
This documentation often refers to this as “aspect” multicasting and inheritance. This is not totally accurate. Although this
feature has been developed to support aspects, you can use it for your own custom attributes, even if they are not
aspects. To use multicasting and inheritance for custom attributes that are not aspects, simply derive the attribute class
from MulticastAttribute instead of Attribute.

Attribute multicasting supports the following scenarios:
• Adding Aspects to a Single Declaration on page 114
• Adding Aspects to Multiple Declarations on page 114
• Adding Aspects to Derived Classes and Methods on page 119
• Overriding and Removing Aspect Instances on page 125
• Reflecting Aspect Instances at Runtime on page 128

For a conceptual overview of this feature, see:
• Understanding Attribute Multicasting on page 116
• Understanding Aspect Inheritance on page 123

Reducing Build Time

113

9.1. Adding Aspects to a Single Declaration
Aspects in PostSharp are plain custom attributes. You can apply them to any element of code as usual.
In the following example, the Trace aspect is applied to two methods.

publicclass CustomerService
{

[Trace]
public Custom GetCustomer(int customerId)
{

// Details skipped.
}

[Trace]
publicvoid MergeCustomers(Customer customer1, Customer customer2);
{

// Details skipped.
}

}

9.2. Adding Aspects to Multiple Declarations
Once have written an aspect we have to apply it to the application code so that it will be used. There are a number of ways
to do this so let's take a look at one of them: custom attribute multicasting. Other ways include XML Multicasting (see the
section Adding Aspects Using XML on page 131) and dynamic aspect providers (see more in the section Adding Aspects
Programmatically using IAspectProvider on page 133).
This topic contains the following sections:

• Applying to all members of a class on page 114
• Applying an aspect to all types in a namespace on page 114
• Excluding an aspect from some members on page 115
• Filtering by class visibility on page 115
• Filtering by method modifiers on page 116
• Programmatic filtering on page 116

Applying to all members of a class
When we are trying to apply a method level aspect we can place an attribute to each of the methods.

[OurLoggingAspect]
publicclass CustomerServices

As our codebase grows this approach becomes tedious. We need to remember to add the attribute to all of the
methods on the class. If you have hundreds of classes, you may have thousands of methods you need to manually add
the aspect attribute to. It's an unsustainable proposition. Thankfully, there is a way to make this easier. Instead of
applying your aspect on each method you can add that attribute to the class and PostSharp will ensure that the aspect
is applied to all of the methods on that class.

Applying an aspect to all types in a namespace
Even though we don't have to apply an aspect to all methods in all classes in our application, adding the aspect
attribute to every class could still be an overwhelming task. If we want to apply our aspect in a broad stroke we can
make use of PostSharp's MulticastAttribute.

Adding Aspects Declaratively Using Attributes

114

The MulticastAttribute is a special attribute that will apply other attributes throughout your codebase. Here's how we
would use it.

1. Open the AssemblyInfo.cs, or create a new file GlobalAspects.cs if you prefer to keep things separate (the
name of this file does not matter).

2. Add an [assembly:] attribute that references the aspect you want to apply.

3. Add the AttributeTargetTypes property to the aspect constructor and define the namespace that you would
like the aspect applied to.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*")]

This one line of code is the equivalent of adding the aspect attribute to every class in the desired namespace.

NOTE
When setting the AttributeTargetTypes you can use wildcards (*) to indicate that all sub-namespaces should have
the aspect applied to them. It is also possible to indicate the targets of the aspect using regex. Add "regex:" as a
prefix to the pattern you wish to use for matching.

Excluding an aspect from some members
Multicasting an attribute can apply the aspect with a very broad brush. It is possible to use AttributeExclude to restrict
where the aspect is attached.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*", AttributePriority = 1)]
[assembly: OurLoggingAsepct(AttributeTargetMembers="Dispose", AttributeExclude = true, AttributePriority = 2)]

In the example above, the first multicast line indicates that the OurLoggingAspect should be attached to all methods in
the Controllers namespace. The second multicast line indicates that the OurLoggingAspect should not be applied to
any method named Dispose.

NOTE
Notice the AttributePriority property that is set in both of the multicast lines. Since there is no guarantee that the
compiler will apply the attributes in the order you have specified in the code, it is necessary to declare an order to
ensure processing is completed as desired.
In this case, the OurLoggingAspect will be applied to all methods in the Controllers namespace first. After that is
completed, the second multicast of OurLoggingAspect is performed which then excludes the aspect from methods
named Dispose.

See Overriding and Removing Aspect Instances on page 125 for more details about excluding and overriding aspects.

Filtering by class visibility
Now that you've been able to apply our aspect to all classes in a namespace and its sub-namespaces, you may be faced
with the need to restrict that broad stroke. For example, you may want to apply your aspect only to classes defined as
being public.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

Adding Aspects to Multiple Declarations

115

2. Set the AttributeTargetTypeAttributes value to Public.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*",
AttributeTargetTypeAttributes = MulticastAttributes.Public)]

By combining AttributeTargetTypeAttributes values you are able to create many combinations that are appropriate
for your needs.

NOTE
When specifying attributes of target members or types, do not forget to provide all categories of flags, not only the
category on which you want to put a restriction.

Filtering by method modifiers
Filtering at a class level may not be granular enough for your needs. Aspects can be attached at the method level and
you will want to control filtering on these aspects as well. Let's look at an example of how to apply aspects only to
methods marked as virtual.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

2. Set the AttributeTargetTypeAttributes value to VirtualVirtual.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*", AttributeTargetMemberAttributes = MulticastAttributes.Virtual)]

Using this technique you can apply a method level aspect, or stop it from being applied, based on the existence or non-
existence of things like the static, abstract, and virtual keywords.

Programmatic filtering
There are situations where you will want to filter in a way that isn't based on class or method declarations. You may
want to apply an aspect only if a class inherits from a specific class or implements a certain interface. There needs to be
a way for you to accomplish this.
The easiest way is to override the CompileTimeValidate(Object) method of your aspect class, where you can perform
your custom filtering. This is the opt-out approach. Have the CompileTimeValidate(Object) method return false
without emitting any error, and the candidate target will be ignored. See the section Validating Aspect
Usage on page 369 for details.
The second approach is opt-in. See the section Adding Aspects Programmatically using IAspectProvider on page 133 for
details.

9.2.1. Understanding Attribute Multicasting
This topic contains the following sections:

• Overview of the Multicasting Algorithm
• Filtering Target Elements of Code
• Filtering Properties
• Overriding Filtering Attributes

Overview of the Multicasting Algorithm
Every multicast attribute class must be assigned a set of legitimate targets using the MulticastAttributeUsage-
Attribute custom attribute, which is the equivalent and complement of AttributeUsageAttribute for multicast

Adding Aspects Declaratively Using Attributes

116

attributes. Multicast attributes can be applied to types, methods, fields, properties, events, or/or parameters. For
instance, a caching aspect targets methods. A field validation aspect targets fields.
When a field-level multicast attribute is applied to a type, the attribute is implicitly applied to all fields of that type.
When it is applied to an assembly, it is implicitly applied to all fields of that assembly.
The general rule is: when a multicast attribute is applied to a container, it is implicitly (and recursively) applied to all
elements of that container.
The next table illustrates how this rule translates for different kinds of targets.

Directly applied to Implicitly applied to
Assembly or Module Types, methods, fields, properties, parameters, and events contained in this assembly or module.
Type Methods, fields, properties, parameters, and events contained in this type.
Property or Event Accessors of this property or event.
Method This method and the parameters of this method.
Field This field.
Parameter This parameter.

Filtering Target Elements of Code
Note that the default behavior is maximalist: we apply the attribute to all contained elements. However, PostSharp
provides a way to restrict the set of elements to which the attribute is multicast: filtering.
Both the attribute developer and the user of the aspect can specify filters.

Developer-Specified Filtering
Just like normal custom attributes should be decorated with the [AttributeUsage] custom attribute, multicast custom
attributes must be decorated by the [MulticastAttributeUsage] attribute (see MulticastAttributeUsageAttribute).
It specifies which are the valid targets of the multicast attributes.
For instance, the following piece of code specifies that the attribute GuiThreadAttribute can be applied to instance
methods. Aspect users experience a build-time error when trying to use this aspect on a constructor or static method.

[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
[AttributeUsage(AttributeTargets.Assembly|AttributeTargets.Class|AttributeTargets.Method, AllowMultiple = true)]
[PSerializable]
publicclass GuiThreadAttribute : MethodInterceptionAspect
{
// Details skipped.
}

Note the presence of the AttributeUsageAttribute attribute in the sample above. It tells the C# or VB compiler that
the attribute can be directly applied to assemblies, classes, constructors, or methods. But this aspect will never be
eventually applied to an assembly or a class. Indeed, the MulticastAttributeUsageAttribute attribute specifies that
the sole valid targets are methods. Furthermore, the TargetMemberAttributes property establishes a filter that includes
only instance methods.
Therefore, if the aspect is applied to a type containing an abstract method, the aspect will not be multicast to this
method, neither to its constructors.

Adding Aspects to Multiple Declarations

117

TIP
Additionally to multicast filtering, consider using programmatic validation of aspect usage. Any custom attribute can
implement IValidableAnnotation to implement build-time validation of targets. Aspects that derive from Aspect
already implement these interfaces: your aspect can override the method CompileTimeValidate(Object).

TIP
As an aspect developer, you should enforce as many restrictions as necessary to ensure that your aspect is only used in
the way you intended, and raise errors in other cases. Using an aspect in an unexpected way may result in runtime
errors that are difficult to debug.

User-Specified Filtering
The attribute user can specify multicasting filters using specific properties of the MulticastAttribute class. To make it
clear that these properties only impact the multicasting process, they have the prefix Attribute.
As an aspect user, it is important to understand that you can only apply aspects to elements of codes that have been
allowed by the developer of the aspect.
For instance, the following element of code adds a tracing aspect to all public methods of a namespace:

[assembly: Trace(AttributeTargetTypes="AdventureWorks.BusinessLayer.*", AttributeTargetMemberAttributes = MulticastAttributes.Public)]

Filtering Properties
The following table lists the filters available to users and developers of aspects:

MulticastAttribute Property MulticastAttributeUsage-
Attribute Property

Description

AttributeTargetElements ValidOn Restricts the kinds of targets (assemblies,
classes, value types, delegates, interfaces,
properties, events, properties, methods,
constructors, parameters) to which the
attribute can be indirectly applied.

AttributeTargetAssemblies Wildcard expression or regular expression
specifying to which assemblies the attribute is
multicast.

AllowExternalAssemblies Determines whether the aspect can be
applied to elements defined in a different
assembly than the current one.

AttributeTargetTypes Wildcard expression or regular expression
filtering by name the type to which the
attribute is applied, or the declaring type of
the member to which the attribute is applied.

AttributeTargetTypeAttributes TargetTypeAttributes Restricts the visibility of the type to which the
aspect is applied, or of the type declaring the
member to which the aspect is applied.

AttributeTargetMembers Wildcard expression or regular expression
filtering by name the member to which the
attribute is applied.

Adding Aspects Declaratively Using Attributes

118

MulticastAttribute Property MulticastAttributeUsage-
Attribute Property

Description

AttributeTargetMemberAttributes TargetMemberAttributes Restricts the attributes (visibility, virtuality,
abstraction, literality, ...) of the member to
which the aspect is applied.

AttributeTargetParameters Wildcard expression or regular expression
specifying to which parameter the attribute is
multicast.

AttributeTargetParameterAttributes TargetParameterAttributes Restricts the attributes (in/out/ref) of the
parameter to which the aspect is applied.

AttributeInheritance Inheritance Specifies whether the aspect is propagated
along the lines of inheritance of the target
interface, class, method, or parameter (see
Understanding Aspect
Inheritance on page 123).

CAUTION NOTE
Whenever possible, do not rely on naming conventions to apply aspects (properties AttributeTargetTypes,
AttributeTargetMembers and AttributeTargetParameters). This may work perfectly today, and break tomorrow if
someone renames an element of code without being aware of the aspect.

Overriding Filtering Attributes
Suppose we have two classes A and B, B being derived from A. Both A and B can be decorated with Multicast-
AttributeUsageAttribute. However, since B is derived from A, filters on B cannot be more permissive than filters on A.

In other words, the MulticastAttributeUsageAttribute custom attribute is inherited. It can be overwritten in derived
classes, but derived class cannot enlarge the set of possible targets. They can only restrict it.
Similarly (and hopefully predictably), the aspect user is subject to the same rule: she can restrict the set of possible
targets supported by the aspect, but cannot enlarge it.

9.3. Adding Aspects to Derived Classes and Methods
By default, aspects apply to the class or class member which your attribute has been applied to. However, PostSharp
provides the ability to specify aspect inheritance which can allow your attributes to be inherited in derived classes. This
feature, named aspect inheritance can be specified on types, methods, and parameters, but not on properties or events.

NOTE
PostSharp Framework or higher edition is required for aspect inheritance.

This topic contains the following sections:
• Applying aspects to derived types on page 120
• Setting inheritance on a per-usage basis on page 120
• Applying aspects to overridden methods on page 121

Adding Aspects to Derived Classes and Methods

119

• Applying aspects to new methods of derived types on page 123

Applying aspects to derived types
One way to implement aspect inheritance is to add a MulticastAttributeUsageAttribute custom attribute to your
aspect class. Aspects that apply to types are typically derived from TypeLevelAspect or InstanceLevelAspect.

The benefit of this approach is that the aspect will be automatically applied to all derived classes, eliminating the need
to manually setup attributes in the derived classes. Moreover, this logic lives in one place.
The following steps describe how to enable aspect inheritance on existing aspect, derived from TypeLevelAspect, which
applies a DataContractAttribute attribute to the base and all derived classes, and a DataMemberAttribute attribute to
all properties of the base class and those of derived classes:

How to enable aspect inheritance on existing aspect:
1. Create a TypeLevelAspect which implements IAspectProvider.

2. Decorate AutoDataContractAttribute with the MulticastAttribute, and set the Inheritance to Strict.
Note that MulticastInheritance.Strict and MulticastInheritance.Multicast have the same effect when
applied to type-level aspects.

[MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[PSerializable]
publicsealedclass AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

3. Decorate your base class with AutoDataContractAttribute. The following snippet shows a base customer
class and a derived customer class:

[AutoDataContractAttribute]
class Document
{

publicstring Title { get; set; }
publicstring Author { get; set; }
public DateTime PublishedOn { get; set; }

}

class MultiPageArticle : Document
{

public List<ArticlePage> Pages { get; set; }
}

When the attribute is applied to the base class, the DataContractAttribute and DataMemberAttribute attributes will
be applied at compile time to both classes. If other derived classes were added, then these would be decorated
automatically as well.

Setting inheritance on a per-usage basis
Specifying targets and attribute inheritance can also be done on a per-usage basis rather than hard-coding it into the
custom attribute. In the following snippet, we’ve removed the MulticastAttributeUsageAttribute attribute from
AutoDataContractAttribute:

// [MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[PSerializable]
publicsealedclass AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

Adding Aspects Declaratively Using Attributes

120

Now the inheritance mode can be specified directly on the AutoDataContractAttribute instance by setting the
AttributeInheritance property as shown here:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document
{

// Details skipped.
}

Applying aspects to overridden methods
The following example shows a custom attribute which when applied to a class, writes a message to the console window
whenever a method enters and exits:

[PSerializable]
publicsealedclass TraceMethodAttribute : OnMethodBoundaryAspect
{

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

Console.WriteLine(string.Format("Entering {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));
}

publicoverridevoid OnExit(MethodExecutionArgs args)
{

Console.WriteLine(string.Format("Leaving {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));
}

}

Specifying inheritance is simply a matter of adding the MulticastAttributeUsageAttribute attribute and specifying
the inheritance type, or to set the AttributeInheritance property on the custom attribute usage.

In the snippet below, we have added the TraceMethod aspect to a virtual method and used the AttributeInheritance
property to require the aspect to be automatically applied to all overriding methods:

class Document
{

// Details skipped.// This method will be traced.
[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
publicvirtualvoid RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// This method will be traced.publicoverridevoid RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page inthis.Pages)
{

page.RenderHtml(html);
}

}

// This method will NOT be traced.publicvoid RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

}

Adding Aspects to Derived Classes and Methods

121

In this example, TraceMethodAttribute will output entry and exit messages for Document.RenderHtml method and
MultiPageArcticle.RenderHtml method as shown here:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml
Leaving Document.RenderHtml
Leaving MultiPageArcticle.RenderHtml

NOTE
Aspect inheritance works with virtual, abstract and interface methods and their parameters.

We would get the similar result by adding the TraceMethod attribute to the Document class. Indeed, by virtue of
attribute multicasting (see section Adding Aspects to Multiple Declarations on page 114 for more details), adding a
method-level attribute to a class implicitly adds it to all method of this class.

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document
{

// All property getters and setters will be traced. publicstring Title { get; set; }
publicstring Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.publicvirtualvoid RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// Property getters and setters will NOT be traced.public List<ArticlePage> Pages { get; set; }

// This method will be traced.publicoverridevoid RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page inthis.Pages)
{

page.RenderHtml(html);
}

}

// This method will NOT be traced.publicvoid RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

}

However, by adding the TraceMethod aspect to all methods of the Document type, we added it to property getters and
setters, influencing the output:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml
Entering Document.get_Title
Leaving Document.get_Title
Entering Document.get_Author
Leaving Document.get_Author
Leaving Document.RenderHtml
Leaving MultiPageArcticle.RenderHtml

Adding Aspects Declaratively Using Attributes

122

Applying aspects to new methods of derived types
In the previous section the TraceMethod attribute used Strict inheritance which means that if the base class is decorated
with the attribute, it will only be applied to methods which are declared in the base class and overridden in the derived
class.
By changing the inheritance mode to Multicast, we specify that the aspect should be also be applied to new methods
of the derived class, i.e. not only methods that are overridden from the base class.
In the following snippet we’ve changed inheritance from Strict to Multicast:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Multicast)]
class Document
{

// All property getters and setters will be traced. publicstring Title { get; set; }
publicstring Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.publicvirtualvoid RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// Property getters and setters will ALSO be traced.public List<ArticlePage> Pages { get; set; }

// This method will be traced.publicoverridevoid RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page inthis.Pages)
{

page.RenderHtml(html);
}

}

// This method will ALSO be traced.publicvoid RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

}

With Strict inheritance in use, TraceMethodAttribute applied to Document was not applied to the RenderHtmlPage
method and the Pages property. In other words, as the name suggests, Strict inheritance is strictly applying the attribute
on base members and any derived members which are inherited. However, with Multicast inheritance, the aspect is also
applied to the RenderHtmlPage method and the Pages property.

Strict inheritance evaluates multicasting and then inheritance, but Multicast inheritance evaluates inheritance and then
multicasting.

9.3.1. Understanding Aspect Inheritance
This topic contains the following sections:

• Lines of Inheritance
• Strict and Multicast Inheritance

Adding Aspects to Derived Classes and Methods

123

Lines of Inheritance
Aspect inheritance is supported on the following elements.

Aspect Applied On Aspect Propagated To
Interface Any class implementing this interface or any other interface deriving this

interface.
Class Any class derived from this class.
Virtual or Abstract Methods Any method implementing or overriding this method.
Interface Methods Any method implementing that interface semantic.
Parameter or Return Value of an abstract,
virtual or interface method

The corresponding parameter or to the return value of derived methods
using the method-level rules described above.

Assembly All assemblies referencing (directly or not) this assembly.

NOTE
Aspect inheritance is not supported on events and properties, but it is supported on event and property accessors. The
reason for this limitation is that there is actually nothing like event inheritance or property inheritance in MSIL (events
and properties have nearly no existence for the CLR: these are pure metadata intended for compilers). Obviously,
aspect inheritance is not supported on fields.

Strict and Multicast Inheritance
To understand the difference between strict and multicast inheritance, remember the original role of Multicast-
Attribute: to propagate custom attributes along the lines of containment. So, if you apply a method-level attribute to a
type, the attribute will be propagated to all the methods of this type (some methods can be filtered out using specific
properties of MulticastAttribute, or MulticastAttributeUsageAttribute; see Adding Aspects Declaratively Using
Attributes on page 113 for details).
The difference between strict and multicasting inheritance is that, with multicasting inheritance (but not with strict
inheritance), even inherited attributes are propagated along the lines of containment.
Consider the following piece of code, where A and B are both method-level aspects.

[A(AttributeInheritance = MulticastInheritance.Strict)]
[B(AttributeInheritance = MulticastInheritance.Multicast)]
publicclass BaseClass
{

// Aspect A, B.publicvirtualvoid Method1();
}

publicclass DerivedClass : BaseClass
{

// Aspects A, B.publicoverridevoid Method1() {}

// Aspect B.publicvoid Method2();
}

If you just look at BaseClass, there is no difference between strict and multicasting inheritance. However, if you look at
DerivedClass, you see the difference: only aspect B is applied to MethodB.

The multicasting mechanism for aspect A is the following:

1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass.Method1 to DerivedClass.Method.

Adding Aspects Declaratively Using Attributes

124

For aspect B, the mechanism is the following:

1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass.Method1 to DerivedClass.Method1.

3. Propagation along the lines of inheritance from BaseClass to DerivedClass.

4. Propagation along the lines of containment from DerivedClass to DerivedClass.Method1and DerivedClass.
Method2.

In other words, the difference between strict and multicasting inheritance is that multicasting inheritance applies
containment propagation rules to inherited aspects; strict inheritance does not.

Avoiding Duplicate Aspects
If you read again the multicasting mechanism for aspect B, you will notice that the aspect B is actually applied twice to
DerivedClass.Method1: one instance comes from the inheritance propagation from BaseClass.Method1, the other
instance comes from containment propagation from DerivedClass.

To avoid surprises, PostSharp implements a mechanism to avoid duplicate aspect instances. The rule: if many paths lead
from the same custom attribute usage to the same target element, only one instance of this custom attribute is applied
to the target element.

CAUTION NOTE
Attention: you can still have many instances of the same custom attribute on the same target element if they have
different origins (i.e. they originate from different lines of code, typically). You can enforce uniqueness of custom
attribute instances by using AllowMultiple. See the section Overriding and Removing Aspect Instances on page 125
for details.

9.4. Overriding and Removing Aspect Instances
Having multiple instances of the same aspect on the same element of code is sometimes the desired behavior. With
multicasting custom attributes (MulticastAttribute), it is easy to end up with that situation. Indeed, many multicasting
paths can lead to the same target.
However, most of the time, a different behavior is preferred. We could define a method-level aspect on the type (this aspect
would apply to all methods) and override (or even exclude) the aspect on a specific method.
The multicasting engine has both the ability to apply multiple aspect instances on the same target, and the ability to
replace or remove custom attributes.

Understanding the Multicasting Algorithm
Before going ahead, it is important to understand the multicasting algorithm. The algorithm relies on a notion of order
of processing of aspect instances.

IMPORTANT NOTE
This section covers how PostSharp handles multiple instances of the same aspect type for the sole purpose of
computing how aspect instances should be overridden or removed. See Coping with Several Aspects on the Same
Target on page 385 to understand how to cope with multiple instances of different aspects.

Overriding and Removing Aspect Instances

125

The following rules apply:
1. Aspect instances defined on a container (for instance a type) have always precedence over instances defined

on an item of that container (for instance a method). Elements of code are processed in the following order:
assembly, module, type, field, property, event, method, parameter.

2. When multiple aspect instances are defined on the same level, they are sorted by increasing value of the
AttributePriority.

The algorithm builds a list of aspect instances applied (directly and indirectly) on an element of code, sorts these
instances, and processes overrides or removals as described below.

Applying Multiple Instances of the Same Aspect
The property MulticastAttributeUsageAttributeAllowMultiple determines whether multiple instances of the same
aspect are allowed on an element of code. By default, this property is set to true for all aspects.

In the following example, the methods in type MyClass are enhanced by one, two and three instances of the Trace
aspect (see code comments).

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;
using Samples3;

[assembly: Trace(AttributeTargetTypes = "Samples3.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples3.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples3
{

[PSerializable]
publicsealedclass TraceAttribute : OnMethodBoundaryAspect
{

publicstring Category { get; set; }

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

publicclass MyClass
{

// This method will have 1 Trace aspect with Category set to A.privatevoid Method1()
{
}

// This method will have 2 Trace aspects with Category set to A, Bpublicvoid Method2()
{
}

// This method will have 3 Trace aspects with Category set to A, B, C.
[Trace(Category = "C")]
publicvoid Method3()
{
}

}
}

Adding Aspects Declaratively Using Attributes

126

Overriding an Aspect Instance Manually
You can require an aspect instance to override any previous one by setting the aspect property AttributeReplace. This
is equivalent to a deletion followed by an insertion (see below).
In the following examples, the first two methods of type MyClass are enhanced by aspects applied at assembly level, but
these aspects are replaced by a different one on Method3.

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;
using Samples5;

[assembly: Trace(AttributeTargetTypes = "Samples5.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples5.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples5
{

[PSerializable]
publicsealedclass TraceAttribute : OnMethodBoundaryAspect
{

publicstring Category { get; set; }

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

publicclass MyClass
{

// This method will have 1 Trace aspect with Category set to A.privatevoid Method1()
{
}

// This method will have 2 Trace aspect with Category set to A, B.publicvoid Method2()
{
}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C", AttributeReplace = true)]
publicvoid Method3()
{
}

}
}

Overriding an Aspect Instance Automatically
To cause a new aspect instance to automatically override any previous one, the aspect developer must disallow multiple
instances by annotating the aspect class with the custom attribute MulticastAttributeUsageAttribute and setting the
property AllowMultiple to false.

In the following example, the methods in type MyClass are enhanced by a single Trace aspect:

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;
using Samples4;

Overriding and Removing Aspect Instances

127

[assembly: Trace(AttributeTargetTypes = "Samples4.My*", AttributePriority = 1, Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples4.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, AttributePriority = 2, Category = "B")]

namespace Samples4
{

[MulticastAttributeUsage(MulticastTargets.Method, AllowMultiple = false)]
[PSerializable]
publicsealedclass TraceAttribute : OnMethodBoundaryAspect
{

publicstring Category { get; set; }

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

publicclass MyClass
{

// This method will have 1 Trace aspect with Category set to A.privatevoid Method1()
{
}

// This method will have 1 Trace aspects with Category set to B.publicvoid Method2()
{
}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C")]
publicvoid Method3()
{
}

}
}

Deleting an Aspect Instance
The MulticastAttributeAttributeExclude property removes any previous instance of the same aspect on a target.

This is useful, for instance, when you need to exclude a target from the matching set of a wildcard expression. For
instance:

[assembly: Configurable(AttributeTypes = "BusinessLayer.*")]

namespace BusinessLayer
{

[Configurable(AttributeExclude = true)]
publicstaticclass Helpers
{

}
}

9.5. Reflecting Aspect Instances at Runtime
Attribute multicasting has been primarily designed as a mechanism to add aspects to a program. Most of the time, the
custom attribute representing an aspect can be removed after the aspect has been applied.
By default, if you add an aspect to a program and look at the resulting program using a disassembler or System.
Reflection, you will not find these corresponding custom attributes.

Adding Aspects Declaratively Using Attributes

128

If you need your aspect (or any other multicast attribute) to be reflected by System.Reflection or any other tool, you have
to set the MulticastAttributeUsageAttributePersistMetaData property to true.

For instance:

[MulticastAttributeUsage(MulticastTargets.Class, PersistMetaData = true)]
publicclass TagAttribute : MulticastAttribute
{

publicstring Tag;
}

NOTE
Multicasting of attributes is not limited only to PostSharp aspects. You can multicast any custom attribute in your
codebase in the same way as shown here. If a custom attribute is multicast with the PersistMetaData property set to
true, when reflected on the compiled code will look as if you had manually added the custom attribute in all of the
locations.

Reflecting Aspect Instances at Runtime

129

Adding Aspects Declaratively Using Attributes

130

CHAPTER 10

Adding Aspects Using XML

PostSharp not only allows aspects to be applied in code, but also through XML. This is accomplished by adding them to
your project’s .psproj file.
Adding aspects through XML gives the advantage of applying aspects without modifying the source code, which could be
an advantage in some legacy projects.

Specifying an attribute in XML
namespace MyCustomAttributes
{

// We set up multicast inheritance so the aspect is automatically added to children types.
[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
[PSerializable]
publicsealedclass AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

}

Normally AutoDataContractAttribute would be applied to Customer in code as follows:

namespace MyNamespace
{

[AutoDataContractAttribute]
class Customer
{

publicstring FirstName {get; set;}
publicstring LastName { get; set; }

}
}

Using XML instead, we can remove the custom attribute from source code and instead specify a Multicast element in
the PostSharp project file, a file that has the same name as your project file (csproj or vbproj), but with the .psproj
extension:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><Multicastxmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly"><my:AutoDataContractAttributeAttributeTargetTypes=" MyNamespace.Customer"/></Multicast></Project>

In this snippet, the xmlns:my attribute associates a prefix to an XML namespace, which must be mapped to the .NET
namespace and assembly where custom attributes classes are defined:

<Multicastxmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly">

The next line then specifies the custom attribute to apply and the target attributes to apply the custom attributes to:

<my:AutoDataContractAttributeAttributeTargetTypes="MyNamespace.Customer"/>

The XML element name must be the name of a class inside the .NET namespace and assembly as defined by the XML
namespace. Attributes of this XML element map to public properties or fields of this class.

Reflecting Aspect Instances at Runtime

131

Note that any property inherited from MulticastAttribute can be used here in order to apply the aspect to several
classes at a time. See the section Adding Aspects to Multiple Declarations on page 114 for details about these
properties.

Adding Aspects Using XML

132

CHAPTER 11

Adding Aspects Programmatically using
IAspectProvider

You may have situations where you are looking to implement an aspect as part of a larger pattern. Perhaps you want to add
an aspect, implement an interface and dynamically inject some logic into the target code. In those situations, you will want
to apply an aspect to the target code and have that aspect then add other aspects to other elements of code.
The theoretical concept can cause some mental gymnastics, so let's take a look at the implementation.

1. Create an aspect that implements that IAspectProvider interface.

publicclass ProviderAspect : IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

thrownew System.NotImplementedException();
}

}

2. Cast the target object parameter to the type that will be targeted by this aspect: Assembly, Type, MethodInfo,
ConstructorInfo or LocationInfo.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type type = (Type) targetElement;

thrownew NotImplementedException();
}

3. In the ProvideAspects(Object) method returns an AspectInstance of the aspect type you want, for every target
element of code.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type type = (Type)targetElement;

return type.GetMethods().Select(
m => returnnew AspectInstance(targetElement, new LoggingAspect()));

}

This aspect will now add aspects dynamically at compile time. Use of the IAspectProvider interface and technique is
usually reserved for situations where you are trying to implement a larger design pattern. For example, it would be used
when implementing an aspect that created the NotifyPropertyChangedAttribute pattern across a large number of
locations in your codebase. It is overkill for many of the situations that you will encounter. Use it only for complicated
pattern implementation aspects that you will create.

Reflecting Aspect Instances at Runtime

133

NOTE
To read more about NotifyPropertyChangedAttribute, see Handling Corner Cases on page 195.

NOTE
PostSharp does not automatically initialize the aspects provided by IAspectProvider, even if the method CompileTime-
Initialize is defined. Any initialization, if necessary, should be done in the ProvideAspects method or in the constructor
of provided aspects.
However, these aspects are initialized at run time just like normal aspects using the RunTimeInitialize method.

Creating Graphs of Aspects
It is common that aspects provided by IAspectProvider (children aspects) form a complex object graph. For instance,
children aspects may contain a reference to the parent aspect.
An interesting feature of PostSharp is that object graphs instantiated at compile-time are serialized, and can be used at
run-time. In other words, if you store in a child aspect a reference to another aspect, you will be able to use this
reference at run time.

Adding Aspects Programmatically using IAspectProvider

134

PART 4

Logging

CHAPTER 12

Adding Detailed Logging to your Solution

When you're working with your codebase, it's common to need to add logging either as a non-functional requirement or
simply to assist during the development process. In either situation, you will want to include information about the
parameters passed to the method when it was called as well as the parameter values once the method call has completed.
This can be a tedious and brittle process. As you work and refactor methods, the order and types of parameters may
change, parameters may be added and some may be removed. Along with performing these refactorings, you have to
remember to update the logging messages to keep them in sync. This is something that is easy to forget, and once
forgotten, the output of the logging is much less useful.
Logging is one of the examples of a boilerplate code. Performing logging imperatively not only leads to the problems with
refactoring mentioned above. It also makes your code harder to understand.
PostSharp offers a solution to all of these problems. PostSharp Logging allows you to configure where logging should be
performed and takes over the task of keeping your log entries in sync as you add, remove and refactor your codebase.
Using the PostSharp Logging does not require changing your codebase allowing you to keep the production code clearly
understandable with no boilerplate code.
Let's take a look at how you can add a trace logging for the start and completion of method calls.
This topic contains the following sections:

• Step 1. Adding logging to your projects on page 137
• Step 2. Choose your logging framework on page 138
• Step 3. Configure PostSharp logging at run-time on page 138
• Step 4. Configure your logging framework. on page 139
• Result on page 139

Step 1. Adding logging to your projects
To add logging to a specific project:

1. Add a reference to the PostSharp.Patterns.Diagnostics package to your project.
2. Create a source code file where you will add all project-wise aspects. We suggest naming this file Global-

Aspects.cs.
Add the following content to this file:

using PostSharp.Patterns.Diagnostics;
using PostSharp.Extensibility;

[assembly: Log(AttributePriority = 1, AttributeTargetMemberAttributes = MulticastAttributes.Protected | MulticastAttributes.Internal | MulticastAttributes.Public)]
[assembly: Log(AttributePriority = 2, AttributeExclude = true, AttributeTargetMembers = "get_*")]

This code adds logging to all methods except private methods and except property getters. You can edit this
code to target methods relevant to your scenarios. See Adding Aspects to Code on page 111 for details.

PostSharp will now add logging before and after the execution of all methods targeted by the logging aspect.

Reflecting Aspect Instances at Runtime

137

NOTE
If there are several projects in your solution, repeat this procedure for each project. Note that you can share the
GlobalAspects.cs file among several projects.

The next step is to configure logging at run-time. You should at least determine using which logging framework the
records should be written. We call this concept the logging backend.

Step 2. Choose your logging framework
The role of PostSharp Logging is to generate logging records, but PostSharp itself does not intent to write these logs to
files, databases, or network services. Several excellent open-source projects and commercial services already fulfill this
role. In PostSharp terminology, the target logging framework is called the logging back-end. In order to see the logged
records, you first need to choose and then configure a logging back-end.
PostSharp integrates with several logging frameworks right out of the box. You can choose from the following
implementations:

Name Class Package
Microsoft Application Insights ApplicationInsightsLoggingBackend PostSharp.Patterns.Diagnostics.ApplicationInsights

Common.Logging CommonLoggingLoggingBackend PostSharp.Patterns.Diagnostics.CommonLogging

System.Console.WriteLine ConsoleLoggingBackend PostSharp.Patterns.Diagnostics

Enterprise Library EnterpriseLibraryLoggingBackend PostSharp.Patterns.Diagnostics.EnterpriseLibrary

ETW
(System.Diagnostics.EventSource)

EventSourceLoggingBackend PostSharp.Patterns.Diagnostics.Tracing

Log4Net Log4NetLoggingBackend PostSharp.Patterns.Diagnostics.Log4Net

Microsoft.Extensions.Logging MicrosoftLoggingBackend PostSharp.Patterns.Diagnostics.Microsoft

NLog NLogLoggingBackend PostSharp.Patterns.Diagnostics.NLog

Serilog SerilogLoggingBackend PostSharp.Patterns.Diagnostics.Serilog

System.Diagnostics.Trace TraceLoggingBackend PostSharp.Patterns.Diagnostics.Tracing

System.Diagnostics.TraceSource TraceSourceLoggingBackend PostSharp.Patterns.Diagnostics.Tracing

Loupe LoupeLoggingBackend PostSharp.Patterns.Diagnostics.Loupe

Alternatively, you can easily implement a custom backend. See Implementing an Adapter to a Custom Logging
Framework on page 165 for details.

Step 3. Configure PostSharp logging at run-time
To configure logging:

1. Identify the startup method of your solution. In a console application and an ASP.NET Core application, the
startup method is usually named Program.Main. In a XAML application, this is the Startup event handler. In an
ASP.NET application, this is the Application_Start method in the Global.asax source file.

2. To the startup project, add a reference to the package containing the implementation of your logging
backend, as listed in the table above.

3. Import the PostSharp.Patterns.Diagnostics namespace in the startup file.

using PostSharp.Patterns.Diagnostics;

Adding Detailed Logging to your Solution

138

https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.ApplicationInsights/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.CommonLogging/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.EnterpriseLibrary/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Tracing/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Log4Net/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Microsoft/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.NLog/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Serilog/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Tracing/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Tracing/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Loupe/

4. Add the following code on the top of the startup method:

LoggingServices.DefaultBackend = new Patterns.Diagnostics.Backends.Console.ConsoleLoggingBackend();

In the code snippet above, you can replace ConsoleLoggingBackend by any of the logging backends.
5. It is essential that you configure logging before any logged type (i.e. any type containing a logged method or

field) is initialized, otherwise TypeInitializationException will be thrown at build time. Therefore, you
should add the following custom attribute on the top of the startup class:

[Log(AttributeExclude = true)]
class Program
{
// ...
}

IMPORTANT NOTE
You should exclude the logging aspect from any class that is executed before you set up and configure the
backend. If this is too cumbersome, you can create a module initializer for your startup project using the
ModuleInitializerAttribute aspect.

Step 4. Configure your logging framework.
Remember that PostSharp emits records to the logging framework of your choice. Some of these frameworks may need
additional configuration. Please refer to the documentation of the logging framework for details.

Result
Now that you have added logging to your project method, you will get a super-detailed log of your program execution,
including parameter values and return values. You are able to add, remove, or rename a method or its parameters with
the confidence that your log entries will be kept in sync with each of those changes. Adding logging to your codebase
and maintaining it becomes a very easy task.

Reflecting Aspect Instances at Runtime

139

Adding Detailed Logging to your Solution

140

CHAPTER 13

Customizing the Appearance of Log
Records

PostSharp offers several ways to customize the apprarance and the content of log records. This article maps different
customization scenarios to a procedure, then explains each procedure in detail.
This topic contains the following sections:

• Scenarios on page 141
• Editing a build-time configuration on page 142
• Editing run-time options on page 143
• Implementing a custom formatter on page 143
• Overriding a backend on page 143

Scenarios
Scenario Procedure
Include execution time.
Emit a warning when execution time exceeds a given
threshold.
Include source file and line information.
Include information about which task or method is being
awaited by the await operator.

Edit the build-time configuration on page 142
(LoggingProfile) in postsharp.config.

Include parameter name, type, or value.
Include return value.
Include this parameter.

Set the LogLevel.

Edit the build-time configuration on page 142
(LoggingOptions) in postsharp.config.

Set the maximum length of a record.
Set formatting options such as the delimiter character or the
number of indentation spaces
Include the type name, namespace, or name.
Include exception details.
Specify which exceptions should be logged.

Edit run-time options on page 143
(TextLoggingBackendOptions or a derived class).

Change how parameter values of a specific type are
rendered.

Implement a custom formatter on page 143.

Change any other behavior. Override the backend on page 143.

Reflecting Aspect Instances at Runtime

141

Editing a build-time configuration
Some configuration settings affect the way how PostSharp generates instructions. These settings can have an important
effect on run-time execution speed or assembly size. These settings are defined in the postsharp.config file. This file can
be private to a project or shared among several projects. See Working with PostSharp Configuration Files on page 97 for
details about the postsharp.config file.
Because settings in postsharp.config affect code generation, you will have to rebuild your project after you modify this
file.
In large applications, you may need to configure logging differently for different areas or layers in your application. For
example, exceptions in the service that cleans up old data in the database can be logged with a "Warning" level, while
exceptions in the customer-facing web service must be logged with the "Error" level.
PostSharp enables you to organize your logging options using Logging Profiles. You apply a given logging profile by
providing its name as an argument for the constructor of the LogAttribute constructor.

Logging aspects are assigned to a default profile, as shown in the following table:

Aspect Default logging profile
LogAttribute default

LogExceptionAttribute exceptions

AuditAttribute audit (see Adding Audit to your Solution on page 161).

To edit the default logging profile:
1. Open the file postsharp.config in your project. If it does not exist, create an XML file with the following content:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"></Project>

NOTE
If you create postsharp.config in a directory, the file will be used for any project located under that directory.
This allows you to share the logging profile among several projects. See Working with PostSharp Configu-
ration Files on page 97 for details.

2. Edit postsharp.config as in the following example:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><Loggingxmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"><Profiles><LoggingProfileName="default"IncludeSourceLineInfo="True"><DefaultOptions><LoggingOptionsIncludeParameterType="True"/></DefaultOptions></LoggingProfile></Profiles></Logging></Project>

See the documentation of the LoggingProfile and LoggingOptions classes for details.

To create and use a new logging profile:
1. Configure a logging profile in postsharp.config, but choose a different name than default, exceptions or audit.

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><Loggingxmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"><Profiles><LoggingProfileName="detailed"IncludeSourceLineInfo="True"IncludeExecutionTime="True"IncludeAwaitedTask="True"><DefaultOptions><LoggingOptionsIncludeParameterType="True"IncludeThisValue="True"/></DefaultOptions></LoggingProfile></Profiles></Logging></Project>

Customizing the Appearance of Log Records

142

2. Specify the profile name when you add the LogAttribute aspect to a method, type, or project.

[assembly: Log("detailed", AttributeTargetTypes = "My.Namespace.*", AttributePriority = 1, AttributeTargetMemberAttributes = MulticastAttributes.Public)]

NOTE
Alternatively, you can create a new aspect class and derive it from LogAttributeBase.

Editing run-time options
The run-time options are available on the Options property of the backend class. Each backend can expose a specific
set of options.
Contrarily to the build-time options, the run-time options are not organized into profiles. They affect all profiles that use
the backend you configure.
To edit run-time options, go to the startup method where PostSharp Logging is initialized, and set the backend options:

var backend = new Patterns.Diagnostics.Backends.Console.ConsoleLoggingBackend();
backend.Options.Delimiter = " \u00A6 ";
backend.Options.UseColors = false;
LoggingServices.DefaultBackend = backend ;

Implementing a custom formatter
When you include parameter values in log records, PostSharp will invoke the ToString method of the object by default.
To learn when and how to override the default formatter, see Implementing a Custom Formatter on page 145.

Overriding a backend
If none of the previous options are sufficient, you can create your own backend. Instead of creating your own
implementation from scratch, you can derive any existing implementation and override relevant methods.
See Implementing an Adapter to a Custom Logging Framework on page 165 for details.

Reflecting Aspect Instances at Runtime

143

Customizing the Appearance of Log Records

144

CHAPTER 14

Implementing a Custom Formatter

Formatters are responsible for representing an object as a string. Formatters are used in two contexts: logging and
caching. This article describes how to implement a custom formatter.
This topic contains the following sections:

• When to implement a custom formatter on page 145
• Implementing the IFormattable interface on page 145
• Implementing the Formatter class on page 146
• Registering the custom formatter on page 146

When to implement a custom formatter
You may consider implementing a custom formatter in two situations:

• You want the object to be formatted differently in different contexts, i.e. you want the logging representation
to be different than the caching representation or than the ToString representation.

• The formatting is performance-critical. Since custom formatters are based on the UnsafeStringBuilder class,
they are much faster than formatters based on ToString or string.Format.

Implementing the IFormattable interface
If you own the source code of a type, the easiest way to implement a custom formatter is to make the type implement
the IFormattable interface, which has a single method named Format(UnsafeStringBuilder, FormattingRole).

The following example shows how to implement the IFormattable interface:

using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Formatters;

namespace PostSharp.Samples.Logging
{

class CustomerData : PostSharp.Patterns.Formatters.IFormattable
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }

[Log(AttributeExclude=true)]
void Patterns.Formatters.IFormattable.Format(UnsafeStringBuilder stringBuilder, FormattingRole role)
{

stringBuilder.Append("{CustomerData FirstName=\"");
stringBuilder.Append(this.FirstName);
stringBuilder.Append("\", LastName=\"");
stringBuilder.Append(this.LastName);
stringBuilder.Append("}");

}
}

}

Reflecting Aspect Instances at Runtime

145

TIP
To prevent the formatter from being logged, add [Log(AttributeExclude=true)] to the formatting method.

When you implement the IFormattable interface, you don't need to register the formatter because the formatter is the
object itself.

Implementing the Formatter class
If you don't own the source code of a type, you cannot implement the IFormattable. Instead, you can create a new
class derived from the FormatterT class and implement the Write(UnsafeStringBuilder, T) method.

The following example illustrates a formatter for the Int32 class.

using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Formatters;

[Log(AttributeExclude=true)]
class FancyIntFormatter : Formatter<int>
{

publicoverridevoid Write(UnsafeStringBuilder stringBuilder, intvalue)
{

switch (value)
{

case0:
stringBuilder.Append("zero");
break;

case1:
stringBuilder.Append("one");
break;

case2:
stringBuilder.Append("two");
break;

case3:
stringBuilder.Append("three");
break;

default:
stringBuilder.Append(value);
break;

}
}

}

TIP
To prevent the formatter from being logged, add [Log(AttributeExclude=true)] to the formatting method.

Registering the custom formatter
Creating a new formatter class does not cause PostSharp to use it. You still need to register it.
Use the following code to register your formatter with PostSharp Logging:

LoggingServices.Formatters.Register(new FancyIntFormatter());

To use the same formatter in PostSharp Caching, use:

CachingServices.Formatters.Register(new FancyIntFormatter());

Implementing a Custom Formatter

146

CHAPTER 15

Adding Custom Log Records Manually

When you're using the LogAttribute aspect, PostSharp automatically generates code that emits log records before and
after the execution of a method. But there are times when you will want to write your own records. For instance, you may
want to log a custom error or warning. You may want this message to be displayed even when trace-level logging is
disabled. But when it is enabled, you want this message to appear in the right context, with the proper indentation.
For these scenarios, you can use the methods provided by the Logger class.

This topic contains the following sections:
• Emitting custom log records on page 147
• Logging records with parameters on page 148
• Logging custom activities on page 149
• Changing the severity level of custom activities on page 150

IMPORTANT NOTE
All projects that use the Logger facility to emit manual log records and activities MUST be processed by PostSharp,
otherwise the execution of your application will fail. Therefore your projects must have a reference to the PostSharp.
Patterns.Common package (a reference to PostSharp.Patterns.Common.Redist is not sufficient), and PostSharp may not be
disabled on this project.

Emitting custom log records
To write a custom log record, use the LoggerWrite(LogLevel, String) method.

To write custom log records:
1. Define a static field of type Logger in the class emitting the log records and initialize it using the LoggerGet-

Logger(String) method.

2. Emit log records using the LoggerWrite(LogLevel, String) method.

Example
staticclass Hasher
{

staticreadonly Logger logger = Logger.GetLogger();

publicstaticasync Task ReadAndHashAsync(string url)
{

if (string.IsNullOrEmpty(url))
{

logger.Write(LogLevel.Warning, "Empty URL passed. Skipping this method.");
return;

}

// Details skipped.
}

}

Reflecting Aspect Instances at Runtime

147

Logging records with parameters
Most of the time, you won't log constant strings, but you will want to include variable pieces of information. In this case,
you can use one of the overloads of the LoggerWrite(LogLevel, String) that accepts formatting parameters.

Note that the specification of the formatting string used by the Logger class is not identical to the one used by string.
Format.

The formatting string used by the Logger class is designed to support named parameters (for use with logging
backends that support it, i.e. semantic logging) and for high-performance evaluation. It has the following specifications:

• Named parameters must be surrounded by curly brackets, e.g. {MyParameter}.
• Values are matched to named parameters by position. This means that the order of named parameters in the

formatting string must match the order of corresponding values passed to the LoggerWrite(LogLevel,
String) method and that two named parameters with the same name are not matched to the same value.

• Anything inside a pair of curly brackets is considered as the parameter name and will be passed to the
backend as it, without further parsing.

• Formatting specifiers are not supported but may be partially supported in the future. Do not use colons (:) in
your parameter names, as they may be interpreted differently in future versions of PostSharp.

• Use the escaped form of curly brackets {{ and }} if you want to include curly brackets in the formatted string.

IMPORTANT NOTE
Consider the performance impact of using string.Format or equivalent constructs such as interpolated strings. Post-
Sharp Logging is highly optimized and is able to generate a logging record without allocating any memory on the
heap. If you're using a high-performance backend, using string.Format can bring a significant performance overhead
to your logging.

Example
staticclass Hasher
{

staticreadonly Logger logger = Logger.GetLogger();

publicstaticbyte[] ReadAndHash(string url)
{

var hashAlgorithm = HashAlgorithm.Create("SHA256");
hashAlgorithm.Initialize();

var webClient = new WebClient();
var buffer = newbyte[16 * 1024];

logger.Write(LogLevel.Info, "Using a {BufferSize}-byte buffer.", buffer.Length);

using (var stream = webClient.OpenRead(url))
{

int countRead;
while ((countRead = stream.Read(buffer, 0, buffer.Length)) != 0)
{

logger.Write(LogLevel.Info, "Got {CountRead} bytes.", countRead);
hashAlgorithm.ComputeHash(buffer, 0, countRead);

}
}

return hashAlgorithm.Hash;
}

}

Adding Custom Log Records Manually

148

Logging custom activities
More often than not, you will find yourself logging the beginning and the end of an activity, e.g. Starting to read MyFile.
xml and Succeeded to read MyFile.xml or Cannot read MyFile.xml: unexpected element at line 5. With PostSharp, this
concept is represented by the LogActivity class. An activity is anything that starts and stops. When you use the Log-
Attribute aspect to log a method, it also translates into an activity behind the scenes. Activities are hierarchical: they
have a notion of child and parent and form a tree. Activities can be synchronous and asynchronous.

To log a non-async custom activity method:
1. If you haven't already done it, define a static field of type Logger in the class emitting the log records and

initialize it using the LoggerGetLogger(String) method.

2. To start the activity, call the LoggerOpenActivity(String) method if the activity is synchronous, or
LoggerOpenAsyncActivity(String) if it is asynchronous. An asynchronous activity is any activity that contains
the await operator.

3. To write a log record, use the LoggerWrite(LogLevel, String) method on the LogActivity object returned
by the the LoggerOpenActivity(String) or or LoggerOpenAsyncActivity(String) method.

4. To close the activity, call the SetSuccess, SetFailure or SetException(Exception) method. We suggest that
you wrap the activity source code inside a try block and call the SetException(Exception) method from the
catch block.

Example
staticclass Hasher
{

staticreadonly Logger logger = Logger.GetLogger();

privatestaticbyte[] ReadAndHash(string file)
{

var activity = logger.OpenActivity("Processing file {Url}", file);

try
{

var totalSize = 0;

var hashAlgorithm = HashAlgorithm.Create("SHA256");
hashAlgorithm.Initialize();

var buffer = newbyte[128 * 1024];

activity.Write(LogLevel.Info, "Working with a {BufferSize}-byte buffer.", buffer.Length);

using (var stream = File.OpenRead(file))
{

int countRead;
while ((countRead = stream.Read(buffer, 0, buffer.Length)) != 0)
{

activity.Write(LogLevel.Info, "Got {CountRead} bytes.", countRead);

hashAlgorithm.ComputeHash(buffer, 0, countRead);
totalSize += countRead;

}
}

activity.SetSuccess("Success. Read {TotalSize} bytes in total.", totalSize);
return hashAlgorithm.Hash;

}
catch (Exception e)
{

activity.SetException(e);
throw;

}

Reflecting Aspect Instances at Runtime

149

}
}

Changing the severity level of custom activities
By default, entry and success messages of activities are logged with Debug severity and failures and exceptions with
Error severity.

You can change the default severity by setting the properties of the DiagnosticsCustomRecordLoggingOptions class
by using the following code:

LoggingServices.Roles[LoggingRoles.Custom].CustomRecordLoggingOptions.ActivityLevel = LogLevel.Trace;

In the code above, the LoggingRoles.Custom string refers to the role parameter of the GetLogger(String) method,
whose default value equals to LoggingRoles.Custom.

Adding Custom Log Records Manually

150

CHAPTER 16

Enabling and Disabling Logging At Run
Time

Sometimes when an issue happens in production, you will want to enable tracing for a specific type or namespace
dynamically, without rebuilding the application. To prepare for this scenario, you need to add as much logging as
reasonable at build time, but disable it by default at run time, and then enable it selectively.
This topic contains the following sections:

• Enabling/disabling with the PostSharp Logging API on page 151
• Optimizing the execution time when logging is disabled on page 152
• Enabling/disabling with the backend API on page 152

Enabling/disabling with the PostSharp Logging API
To enable or disable logging for a specific type or namespace:

1. Use the LoggingServicesGetSource(String, String) method to retrieve the LoggingNamespaceSource or
LoggingTypeSource for the given namespace or type.

2. Call the LoggingNamespaceSourceSetLevel(LogLevel) method to set the minimal severity for which logging
is enabled. Calling this method will override the Level property for the current type or namespace and all
nested types or namespaces.

NOTE
PostSharp Logging does not implement a mechanism to enable or disable tracing through a configuration file. If you
need to be able to configure logging without editing source code, you will have to implement yourself the code
reading the configuration and calling the LoggingNamespaceSourceSetLevel(LogLevel) method with proper
arguments. Alternatively, you can use backend configuration mechanism (see below).

Example
The following code will cause PostSharp to log only exceptions for the MyCompany namespace, but everything for the
MyCompany.BusinessLayer namespace. The order of the two lines of code is important.

LoggingServices.GetSource(LoggingRoles.Tracing, "MyCompany").SetLevel(LogLevel.Error);
LoggingServices.GetSource(LoggingRoles.Tracing, "MyCompany.BusinessLayer").SetLevel(LogLevel.Debug);

CAUTION NOTE
If you want to change the minimal severity for custom log records, use the role LoggingRoles.Custom additionally to
LoggingRoles.Tracing.

Logging is enabled for all types and any severity by default.

Reflecting Aspect Instances at Runtime

151

Optimizing the execution time when logging is disabled
By default, PostSharp generates code that allows you to dynamically enable or disable logging for a specific type and
severity. However, even if logging is disabled, your CPU still needs to execute the code that evaluates whether logging is
enabled.
By setting the AllowDynamicEnabling property of the logging profile to false, you can ask PostSharp to generate
instructions that will be fully eliminated by the JIT compiler when logging is disabled. Therefore, the cost of inactive
logging will be strictly zero.
When you set the AllowDynamicEnabling property to false, you need to call the LoggingNamespaceSourceSet-
Level(LogLevel) method when the application initializes. Any change done after a logged type is JIT-compiled will be
ignored for this specific type.

Example
The following postsharp.config enables the JIT-compiler for the default profile.

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><Loggingxmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"><Profiles><LoggingProfileName="default"AllowDynamicEnabling="False"/></Profiles></Logging></Project>

Enabling/disabling with the backend API
Several logging frameworks offer a configuration mechanism that allows you to enable or disable logging. For a Post-
Sharp log record to be emitted, two conditions need to be met: logging must be enabled by PostSharp (see above) and
by the backend logging framework.
Logging frameworks generally have a concept of category or source (the terminology can vary), which typically is just
determined by a string (typically a type or namespace). The corresponding concept in PostSharp Logging is the
LoggingTypeSource class, which is determined by two strings: a role (see LoggingRoles) and a type name or
namespace.
By default, a LoggingTypeSource is mapped to a category according to the value of the Role property. If you want to
control logging using the backend framework, you will need to customize this mapping. This can be done by setting a
property of the LoggingBackendOptions class. This property is different for each backend framework.

When the mapping is properly set up, you enable or disable logging using the facilities implemented by the backend
logging framework.

Example
The following code shows how to configure PostSharp Logging with log4net so that type name and namespace is used
instead of the role.

((Log4NetLoggingBackend) LoggingServices.DefaultBackend).Options.GetLogger = ts => LogManager.GetLogger(ts.DisplayFullName);

Enabling and Disabling Logging At Run Time

152

CHAPTER 17

Configuring specific logging frameworks

This chapter explains how to configure PostSharp Logging to specifically work with different logging frameworks.
It contains the following articles:
Logging to NLog on page 155
Logging to log4net on page 155
Logging to Serilog on page 156
Logging to the system console on page 153
Logging to ETW on page 158
Logging to Common.Logging on page 158
Logging to Loupe on page 159

17.1. Logging to the system console
This article shows how to target the output of PostSharp Logging to the console and how to configure it.

Configuring PostSharp Logging to use the console
To use target PostSharp Logging to the console:

1. Add PostSharp logging to your codebase as described in Adding Detailed Logging to your
Solution on page 137.

2. In the application startup file, include the following namespace imports:

using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends.Console;

In the application startup method, include the following code:

LoggingServices.DefaultBackend = new ConsoleLoggingBackend();

Theming the console
Selecting a console theme
Console themes define the colors used when rendering the log messages. The ConsoleThemes class exposes a few
themes. The default theme is ConsoleThemesClassic, which copies the colors used by MSBuild. If you do not want any
color, use ConsoleThemesNone.

A nicer and more sophisticated theme is Dark.

Logging to the system console

153

You can change the current theme by setting the ConsoleLoggingBackendOptionsTheme as demonstrated in the
following example:

var backend = new ConsoleLoggingBackend();
backend.Options.Theme = ConsoleThemes.Dark;
LoggingServices.DefaultBackend = backend;

Customizing a theme
The ConsoleTheme class provides a convenient implementation of the low-level IConsoleTheme interface. The dark
theme is an instance of the ConsoleTheme.

The ConsoleTheme class simplifies the programming of a theme by allowing only two colors for each log level: a normal
color used for the message template, and a highlighted color used for variable parts of the message (typically
parameter values). See the methods and properties of the ConsoleTheme class for details.

The easiest way to customize the dark theme is to take a copy of the theme by calling the Clone method and then
configure the new object.
For instance, the following code changes the colors of critical error messages:

ConsoleTheme myTheme = ConsoleThemes.Dark.Clone();
myTheme.NormalStyles[LogLevel.Critical] = new ConsoleThemeStyle("\x1b[38;5;0199m\x1b[49m", ConsoleColor.Magenta);
myTheme.HightlightedStyles[LogLevel.Critical] = new ConsoleThemeStyle("\x1b[38;5;0201m\x1b[48;5;0236m", ConsoleColor.Magenta);

var backend = new ConsoleLoggingBackend();
backend.Options.Theme = myTheme;
LoggingServices.DefaultBackend = backend;

When the simplifications of the ConsoleTheme class are too restrictive for your needs, you can directly implement the
IConsoleTheme or override the GetStyle(String, LogLevel, LogRecordKind, ConsoleThemeItem) method of the
ConsoleTheme class.

The following code example displays the message time in a special color:

class CustomTheme : ConsoleTheme
{

readonly ConsoleThemeStyle timeStyle = new ConsoleThemeStyle(" \x1b[38;5;0006m", ConsoleColor.Cyan);
readonly ConsoleThemeStyle delimiterStyle = new ConsoleThemeStyle("\x1b[38;5;0255m", ConsoleColor.Gray);

public CustomTheme() : base(ConsoleThemes.Dark)
{

}

publicoverride ConsoleThemeStyle GetStyle(string role, LogLevel level, LogRecordKind kind, ConsoleThemeItem item)
{

if (item == ConsoleThemeItem.Time)
{

return timeStyle;
}
elseif (item == ConsoleThemeItem.Delimiter)
{

return delimiterStyle;
}

returnbase.GetStyle(role, level, kind, item);

}
}

To include the message time, you need the following code:

var backend = new ConsoleLoggingBackend();
backend.Options.Theme = new CustomTheme();
backend.Options.IncludeTimestamp = true;

Configuring specific logging frameworks

154

backend.Options.TimestampFormat = "HH:mm:ss";

LoggingServices.DefaultBackend = backend;

17.2. Logging to log4net
This article shows how to use PostSharp Logging and log4net together.

To use PostSharp Logging with log4net:
1. Add PostSharp logging to your codebase as described in Adding Detailed Logging to your Solution on page 137.
2. Add the PostSharp.Patterns.Diagnostics.Log4Net package to your startup project.
3. Create an XML file named log4net.config. In the file properties, set the Copy to Output Directory property to

Copy always.
Add the following content to this file:

<log4net><appendername="file"type="log4net.Appender.FileAppender"><filevalue="log4net.log"/><layouttype="log4net.Layout.PatternLayout"><conversionPatternvalue="%date [%thread] %-5level %logger %ndc - %message%newline"/></layout></appender><appendername="console"type="log4net.Appender.ColoredConsoleAppender"><layouttype="log4net.Layout.PatternLayout"><conversionPatternvalue="%date [%thread] %-5level %logger [%property{NDC}] - %message%newline"/></layout></appender><root><levelvalue="DEBUG"/><appender-refref="file"/><appender-refref="console"/></root></log4net>

This example configuration file instructs log4net to write all log records to a file named log4net.log and to the
console.
See the log4net documentation28 for details about this configuration file.

4. In the application startup file, include the following namespace imports:

using log4net.Config;
using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends.Log4Net;

In the application startup method, include the following code:

// Configure Log4Net
XmlConfigurator.Configure(new FileInfo("log4net.config"));

// Configure PostSharp Logging to use Log4Net
LoggingServices.DefaultBackend = new Log4NetLoggingBackend();

If you run your application, you should now see a detailed log in a file named log4net.log. If your application is a console
application, you should also see the log in the console.

17.3. Logging to NLog
This article shows how to use PostSharp Logging and nlog together.

To use PostSharp Logging with NLog:
1. Add PostSharp logging to your codebase as described in Adding Detailed Logging to your Solution on page 137.
2. Add the PostSharp.Patterns.Diagnostics.NLog package to your startup project.

28. https://logging.apache.org/log4net/release/manual/configuration.html

Logging to log4net

155

https://logging.apache.org/log4net/release/manual/configuration.html
https://logging.apache.org/log4net/release/manual/configuration.html

3. In the application startup file, include the following namespace imports:

using NLog;
using NLog.Config;
using NLog.Targets;
using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends.NLog;

In the application startup method, include the following code:

// Configure NLog.var nlogConfig = new LoggingConfiguration();

var fileTarget = new FileTarget("file")
{

FileName = "nlog.log",
KeepFileOpen = true,
ConcurrentWrites = false,

};

nlogConfig.AddTarget(fileTarget);
nlogConfig.LoggingRules.Add(new LoggingRule("*", LogLevel.Debug, fileTarget));

var consoleTarget = new ConsoleTarget("console");
nlogConfig.AddTarget(consoleTarget);
nlogConfig.LoggingRules.Add(new LoggingRule("*", LogLevel.Debug, consoleTarget));

LogManager.EnableLogging();

// Configure PostSharp Logging to use NLog.
LoggingServices.DefaultBackend = new NLogLoggingBackend(new LogFactory(nlogConfig));

This example code instructs NLog to write all log records to a file named nlog.log and to the console. If you prefer,
you can configure NLog with a configuration file. See the NLog documentation29 for details.

If you run your application, you should now see a detailed log in a file named nlog.log. If your application is a console
application, you should also see the log in the console.

17.4. Logging to Serilog
This article shows how to use PostSharp Logging and Serilog together.
This topic contains the following sections:

• Getting started with PostSharp Logging and Serilog on page 156
• Using Serilog formatters instead of PostSharp ones on page 157
• Including more semantic parameters on page 157

Getting started with PostSharp Logging and Serilog
To use PostSharp Logging with Serilog:

1. Add PostSharp logging to your codebase as described in Adding Detailed Logging to your
Solution on page 137.

29. https://github.com/NLog/NLog/wiki/Tutorial#configuration

Configuring specific logging frameworks

156

https://github.com/NLog/NLog/wiki/Tutorial#configuration
https://github.com/NLog/NLog/wiki/Tutorial#configuration

2. Add the PostSharp.Patterns.Diagnostics.Serilog package to your startup project, as well as the packages for all
Serilog sinks you will need. For the next code examples, install the packages Serilog.Sinks.ColoredConsole and
Serilog.Sinks.File.

3. In the application startup file, include the following namespace imports:

using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends.Serilog;
using Serilog;

In the application startup method, include the following code:

// The output template must include {Indent} for nice output.conststring template = "{Timestamp:yyyy-MM-dd HH:mm:ss} [{Level}] {Indent:l}{Message}{NewLine}{Exception}";

// Configure a Serilog logger.var logger = new LoggerConfiguration()
.MinimumLevel.Debug()
.WriteTo.File("serilog.log", outputTemplate: template)
.WriteTo.ColoredConsole(outputTemplate: template)
.CreateLogger();

// Configure PostSharp Logging to use Serilog
LoggingServices.DefaultBackend = new SerilogLoggingBackend(logger);

This example code instructs Serilog to write all log records to a file named serilog.log and to the console.
Note that this code snippet supplies a custom output template. By default, Serilog does not indent the logs
generated by PostSharp. PostSharp passes the indentation string to Serilog as a parameter named Indent. In
order to produce indented logs, you need to include the {Indent:l} parameter into your output template.

See the Serilog documentation30 for more details.

If you run your application, you should now see a detailed log in a file named serilog.log. If your application is a console
application, you should also see the log in the console.

Using Serilog formatters instead of PostSharp ones
By default, PostSharp Logging will use its own formatters to format parameter values into a string and will pass the
already-formatted string to Serilog.
If you want the unformatted parameter value to be passed to Serilog instead of the string, set the SerilogLogging-
BackendOptionsUseSerilogFormatters property to true.

Including more semantic parameters
By default, PostSharp Logging passes the following pieces of information to Serilog as semantic parameters: parameter
values, return values, this value, and execution time. Other pieces of information such as for instance the type and
method name are included in the message template.
If you want pass more pieces of information as semantic parameters, set the SerilogLoggingBackend-
OptionsSemanticParametersTreatedSemantically property.

NOTE
Semantic parameters have a relatively high performance cost in Serilog. We suggest you do not use more semantic
parameters than necessary.

30. https://github.com/serilog/serilog/wiki/Configuration-Basics

Logging to Serilog

157

https://github.com/serilog/serilog/wiki/Configuration-Basics
https://github.com/serilog/serilog/wiki/Configuration-Basics

17.5. Logging to ETW
This article shows how to use PostSharp Logging and Event Tracing for Windows (ETW) together.
If you run your application, you should now see a detailed log in a file named nlog.log. If your application is a console
application, you should also see the log in the console.
This topic contains the following sections:

• Targeting ETW on page 158
• Listening to ETW events on page 158

Targeting ETW
To target ETW with PostSharp Logging:

1. Add PostSharp logging to your codebase as described in Adding Detailed Logging to your
Solution on page 137.

2. Add the PostSharp.Patterns.Diagnostics.Tracing package to your startup project.
3. In the application startup file, include the following namespace imports:

using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends.EventSource;

In the application startup method, include the following code:

var eventSourceBackend = new EventSourceLoggingBackend(new PostSharpEventSource());
if (eventSourceBackend.EventSource.ConstructionException != null)

throw eventSourceBackend.EventSource.ConstructionException;

As a result of this procedure, PostSharp Logging will emit records to the ETW event source named PostSharp-
Patterns-Diagnostics. You now need to attach a listener to this event source.

Listening to ETW events
ETW is a very complex system and explaining it is beyong the scope of this documentation. Let's just show how you can
collect and view ETW events on your development machine.
We will use a tool named PerfView developed by Microsoft.

To collect and view PostSharp Logging logs using PerfView:

17.6. Logging to Common.Logging
This article shows how to use PostSharp Logging and Common.Logging together.

To use PostSharp Logging with Common.Logging:
1. Add PostSharp logging to your codebase as described in Adding Detailed Logging to your Solution on page 137.
2. Add the PostSharp.Patterns.Diagnostics.CommonLogging package to your startup project.

Configuring specific logging frameworks

158

3. In the application startup file, include the following namespace imports:

using Common.Logging;
using Common.Logging.Simple;
using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends.CommonLogging;

In the application startup method, include the following code:

// Configure Common.Logging to direct outputs to the system console.
LogManager.Adapter = new ConsoleOutLoggerFactoryAdapter();

// Configure PostSharp Logging to direct outputs to Common.Logging.
LoggingServices.DefaultBackend = new CommonLoggingLoggingBackend();

This example code instructs Common.Logging to write all log records to the system console. See the Common.
Logging documentation31 for details.

If you run your application, you should also see the log in the console.

17.7. Logging to Loupe
This article shows how to use PostSharp Logging and Loupe together.

To use PostSharp Logging with Loupe:
1. Add PostSharp logging to your codebase as described in Adding Detailed Logging to your Solution on page 137.
2. Add the PostSharp.Patterns.Diagnostics.Loupe package to your startup project.
3. Follow the instructions of the first step Loupe configuration tutorial32 to properly initialize Loupe for your

application kind.
In the following examples, we will show instructions for a console or WinForms application.
In the application startup file, include the following namespace imports:

using Gibraltar.Agent;
using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends.Loupe;

In the application startup method, include the following code before any logged code:

// Initialize Loupe.
Log.StartSession();

// Configure PostSharp Logging to use Loupe.
LoggingServices.DefaultBackend = new LoupeLoggingBackend();

If you followed the Loupe configuration tutorial33 for a different type of application, do not forget to set the
DefaultBackend just after the call to Log.StartSession().

31. http://netcommon.sourceforge.net/docs/2.1.0/reference/html/ch01.html#logging-config
32. https://doc.onloupe.com/#GettingStarted_Introduction.html
33. https://doc.onloupe.com/#GettingStarted_Introduction.html

Logging to Loupe

159

http://netcommon.sourceforge.net/docs/2.1.0/reference/html/ch01.html#logging-config
http://netcommon.sourceforge.net/docs/2.1.0/reference/html/ch01.html#logging-config
https://doc.onloupe.com/#GettingStarted_Introduction.html
https://doc.onloupe.com/#GettingStarted_Introduction.html
http://netcommon.sourceforge.net/docs/2.1.0/reference/html/ch01.html#logging-config
https://doc.onloupe.com/#GettingStarted_Introduction.html
https://doc.onloupe.com/#GettingStarted_Introduction.html

4. Before the application exits, include the following code:

// Initialize Loupe.
Log.EndSession();

5. In order to enable source file information, create an XML file named postsharp.config in your project with the
followig content:

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"><Loggingxmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"><Profiles><LoggingProfileName="Default"IncludeSourceLineInfo="True"/><LoggingProfileName="Exceptions"IncludeSourceLineInfo="True"/></Profiles></Logging></Project>

6. At this point, you should be able to use Loupe Viewer to see the live log of your running application. You can
download Loupe Viewer34 and open it in the background. When you start your application, you will see a desktop
notification from Loupe. Click on this notification to open the live log. Note that the live log will disappear as soon
as Log.EndSession has been called.

7. Configure your application to send data to Loupe server as described in the second step of the Loupe configu-
ration tutorial35.
You will need to add some settings in your app.config or web.config. Replace the customerName attribute with the
name of your Loupe subscription. If you don't have a Loupe subscription, you can sign up for a free trial36.

<configuration><configSections><sectionGroupname="gibraltar"><sectionname="publisher"type="Gibraltar.Agent.PublisherElement, Gibraltar.Agent"/><sectionname="server"type="Gibraltar.Agent.ServerElement, Gibraltar.Agent"/></sectionGroup></configSections><gibraltar><publisherproductName="Your Product"applicationName="Your Application"/><serverautoSendSessions="True"sendAllApplications="True"useGibraltarService="True"customerName="Your Loupe Service Name"/></gibraltar></configuration>

34. https://onloupe.com/local-logging/free-net-log-viewer/
35. https://doc.onloupe.com/#GettingStarted_Introduction.html
36. https://onloupe.com/

Configuring specific logging frameworks

160

https://onloupe.com/local-logging/free-net-log-viewer/
https://doc.onloupe.com/#GettingStarted_Introduction.html
https://doc.onloupe.com/#GettingStarted_Introduction.html
https://onloupe.com/
https://onloupe.com/local-logging/free-net-log-viewer/
https://doc.onloupe.com/#GettingStarted_Introduction.html
https://onloupe.com/

CHAPTER 18

Adding Audit to your Solution

Auditing and logging are technically very similar but serve different purposes. Whereas application logs are typically used
by server administrators or technical support engineers to diagnose technical issues, audit trails are primarily used by
security analysts and business users.
A typical business application will need to implement both logging and audit.
This article explains how to add audit into your application and how to customize the default behaviors.
This topic contains the following sections:

• Adding audit to your projects on page 161
• Adding more information to the audit record on page 162

Adding audit to your projects
To audit your code, you have to add the AuditAttribute attribute to all methods to audit, and implement a handler for
the AuditServicesRecordPublished event event. Let's see that in details.

To add audit to your application:
1. Add a reference to the PostSharp.Patterns.Diagnostics package to your project.
2. Decide how you want to tag methods that need to be audited. If you want to select them individually, add the

AuditAttribute attribute to each of them. For instance:

[Audit]
publicvoid AssignTo(Employee employee)
{
}

If you need to audit dozens or hundreds of methods, you can select them using project-wide matching rule.
Create a source code file where you will add all project-wise aspects. We suggest naming this file Global-
Aspects.cs. Then add the following content to this file:

using PostSharp.Patterns.Diagnostics;
using PostSharp.Extensibility;

[assembly: Audit(AttributePriority = 1, AttribueTargetTypes = "Contoso.BusinessObjects.*", AttributeTargetMemberAttributes = MulticastAttributes.Public)]
[assembly: Audit(AttributePriority = 2, AttributeExclude = true, AttributeTargetMembers = "get_*")]

This code adds audit to all public methods except property getters. You can edit this code to target methods
relevant to your scenarios. See Adding Aspects to Code on page 111 for details.

Logging to Loupe

161

3. Implement the code that appends the audit record into your database table. This code needs to react to the
AuditServicesRecordPublished event.

AuditServices.RecordPublished += delegate(object o, AuditRecordEventArgs e)
{

var record = new DbAuditRecord(
WindowsIdentity.GetCurrent().Name,
((BusinessObject)e.Record.Target).Id,
e.Record.MemberName,
e.Record.Text

);

record.AppendToDatabase();
};

Adding more information to the audit record
The AuditRecord class exposed by the AuditServicesRecordPublished event only contain the most common pieces of
information regarding the audited operation. If you want to include more information in the record event, you need to
override the audit back-end.
Since the audit back-end is simply another logging back-end, you can use the same approach as described in
Implementing an Adapter to a Custom Logging Framework on page 165. Here are the specific steps you need to follow
to add more information to the AuditRecord class class.

To extend the audit record object:
1. Create a new class derived from AuditRecord add all necesarry fields or properties.

using System;
using System.Collections.Generic;
using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Audit;

namespace PostSharp.Samples.Audit.Extended
{

publicclass ExtendedAuditRecord : AuditRecord
{

public ExtendedAuditRecord(Type declaringType, string memberName, LogRecordKind recordKind) : base(declaringType,
memberName, recordKind)

{
}

public List<BusinessObject> RelatedBusinessObjects { get; } = new List<BusinessObject>();
}

}

Adding Audit to your Solution

162

2. Create a new class derived from AuditRecordBuilder.

Override the CreateRecord(LoggingContext, LogRecordInfo, LogMemberInfo) method and return a
instance of your new custom AuditRecord class. The instance you return here will be stored in the Audit-
RecordBuilderCurrentRecord property.

Then override other methods such as SetParameterT(Int32, String, ParameterDirection, String, T,
IFormatterT) and assign the custom fields of properties of the CurrentRecord property.

using PostSharp.Patterns.Diagnostics.Audit;
using PostSharp.Patterns.Diagnostics.Backends.Audit;
using PostSharp.Patterns.Diagnostics.Contexts;
using PostSharp.Patterns.Diagnostics.RecordBuilders;
using PostSharp.Patterns.Formatters;

namespace PostSharp.Samples.Audit.Extended
{

publicclass ExtendedAuditRecordBuilder : AuditRecordBuilder
{

public ExtendedAuditRecordBuilder(AuditBackend backend) : base(backend)
{
}

protectedoverride AuditRecord CreateRecord(LoggingContext context, ref LogRecordInfo recordInfo,
ref LogMemberInfo memberInfo)

{
// Return an instance of our own extended class.returnnew ExtendedAuditRecord(context.Source.SourceType, memberInfo.MemberName, recordInfo.RecordKind);

}

publicoverridevoid SetParameter<T>(int index, string parameterName, ParameterDirection direction, string typeName,
T value,
IFormatter<T> formatter)

{
base.SetParameter(index, parameterName, direction, typeName, value, formatter);

// When the parameter is a business object, add it to the list of correlated business objects. var businessObject = valueas BusinessObject;

if (businessObject != null)
((ExtendedAuditRecord) CurrentRecord).RelatedBusinessObjects.Add(businessObject);

}
}

}

3. Create a new class derived from AuditBackend. Override the CreateRecordBuilder method and return a new
instance of your custom AuditRecordBuilder.

using PostSharp.Patterns.Diagnostics.Backends.Audit;
using PostSharp.Patterns.Diagnostics.RecordBuilders;

namespace PostSharp.Samples.Audit.Extended
{

publicclass ExtendedAuditBackend : AuditBackend
{

publicoverride LogRecordBuilder CreateRecordBuilder()
{

returnnew ExtendedAuditRecordBuilder(this);
}

}
}

4. Set an instance of new class as the logging back-end for the Audit role:

LoggingServices.Roles[LoggingRoles.Audit].Backend = new ExtendedAuditBackend();

Logging to Loupe

163

Adding Audit to your Solution

164

CHAPTER 19

Implementing an Adapter to a Custom
Logging Framework

The adapter between PostSharp Logging and the target logging framework is called a back-end in PostSharp terminology.
PostSharp comes with ready-made support for the most popular logging frameworks in .NET. If you need to integrate with
a different logging solution, you can implement a custom logging back-end.
You need to implement at least 4 classes to implement a custom logging back-end.
This topic contains the following sections:

• Override the TextLoggingBackendOptions class on page 165
• Override the LoggingTypeSource class on page 165
• Override the TextLogRecordBuilder class on page 166
• Override the TextLoggingBackend class on page 167
• Overriding context classes on page 168

Override the TextLoggingBackendOptions class
By design, every logging back-end must implement a class exposing all available run-time options. This is a design
decision to expose options on a different class than the back-end class itself. Even if your custom back-end does not
expose new options, we suggest you respect this convention and create a new empty class.

Example
using PostSharp.Patterns.Diagnostics.Backends;

namespace PostSharp.Samples.Logging.CustomBackend.ServiceStack
{

publicclass ServiceStackLoggingBackendOptions : TextLoggingBackendOptions
{
}

}

Override the LoggingTypeSource class
The LoggingTypeSource class corresponds to the ILog or ILogger concept of several logging frameworks. Your
LoggingTypeSource will typically contain one field of this type, which will be initialized in the constructor.
Additionally to exposing the back-end logger, the LoggingTypeSource class exposes the IsBackendEnabled(Log-
Level) method, which determines whether logging is enabled for the specified level and the current type and role.

Your implementation of LoggingTypeSource must be immutable or thread-safe.

Example
using System;
using PostSharp.Patterns.Diagnostics;
using ServiceStack.Logging;

namespace PostSharp.Samples.Logging.CustomBackend.ServiceStack
{

publicclass ServiceStackLoggingTypeSource : LoggingTypeSource

Logging to Loupe

165

{
public ServiceStackLoggingTypeSource(LoggingNamespaceSource parent, Type sourceType) : base(parent, sourceType)
{

Log = LogManager.GetLogger(sourceType);
}

public ILog Log { get; }

protectedoverridebool IsBackendEnabled(LogLevel level)
{

switch (level)
{

case LogLevel.Trace:
case LogLevel.Debug:

return Log.IsDebugEnabled;

default:
returntrue;

}
}

}
}

Override the TextLogRecordBuilder class
The role of the TextLogRecordBuilder is to create a string representing the current log record and finally to emit this
string to the target logging framework.
The TextLogRecordBuilder class already contains the logic that creates the string. If you don't need to alter the string
formatting logic, all you have to do is to implement the Write(UnsafeString) method.

If you need to customize the formatting of the string, or if you need to implement semantic logging, you will need to
override other virtual methods of the TextLogRecordBuilder class. Please refer to the API reference for details.
Your implementation of the TextLogRecordBuilder class does not need to be thread-safe. All threads involved in
logging have their own instance of the TextLogRecordBuilder class.

Example
using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends;
using PostSharp.Patterns.Diagnostics.RecordBuilders;
using PostSharp.Patterns.Formatters;

namespace PostSharp.Samples.Logging.CustomBackend.ServiceStack
{

publicclass ServiceStackLogRecordBuilder : TextLogRecordBuilder
{

public ServiceStackLogRecordBuilder(TextLoggingBackend backend) : base(backend)
{
}

protectedoverridevoid Write(UnsafeString message)
{

var log = ((ServiceStackLoggingTypeSource) TypeSource).Log;
var messageString = message.ToString();

switch (Level)
{

case LogLevel.None:
break;

case LogLevel.Trace:
case LogLevel.Debug:

if (Exception == null)
log.Debug(messageString);

else
log.Debug(messageString, Exception);

break;

Implementing an Adapter to a Custom Logging Framework

166

case LogLevel.Info:
if (Exception == null)

log.Info(messageString);
else

log.Info(messageString, Exception);
break;

case LogLevel.Warning:
if (Exception == null)

log.Warn(messageString);
else

log.Warn(messageString, Exception);
break;

case LogLevel.Error:
if (Exception == null)

log.Error(messageString);
else

log.Error(messageString, Exception);
break;

case LogLevel.Critical:
if (Exception == null)

log.Fatal(messageString);
else

log.Fatal(messageString, Exception);
break;

}
}

}
}

Override the TextLoggingBackend class
The root of a logging back-end is the TextLoggingBackend class. You can consider this class as a factory type that
instantiates other facilities needed to log with your custom logging back-end.
Since the TextLoggingBackend is an abstract class, you will have to implement several factory methods

To implement the back-end class:
1. Create a new class and derive it from the TextLoggingBackend class.

2. Add a get-only Options property and initialize it to a new instance of your LoggingBackendOptions class.

3. Implement the GetTextBackendOptions abstract method so that it returns the value of your Options property.

4. Implement the CreateTypeSource(LoggingNamespaceSource, Type) abstract method so that it returns a new
instance of your LoggingTypeSource class.

5. Implement the CreateRecordBuilder abstract method so that it returns a new instance of your LogRecord-
Builder class.

Example
using System;
using PostSharp.Patterns.Diagnostics;
using PostSharp.Patterns.Diagnostics.Backends;
using PostSharp.Patterns.Diagnostics.RecordBuilders;

namespace PostSharp.Samples.Logging.CustomBackend.ServiceStack
{

publicclass ServiceStackLoggingBackend : TextLoggingBackend
{

publicnew ServiceStackLoggingBackendOptions Options { get; } = new ServiceStackLoggingBackendOptions();

protectedoverride LoggingTypeSource CreateTypeSource(LoggingNamespaceSource parent, Type type)
{

Logging to Loupe

167

returnnew ServiceStackLoggingTypeSource(parent, type);
}

publicoverride LogRecordBuilder CreateRecordBuilder()
{

returnnew ServiceStackLogRecordBuilder(this);
}

protectedoverride TextLoggingBackendOptions GetTextBackendOptions()
{

return Options;
}

}
}

Overriding context classes
Contexts are typically used to represent the execution of a logged method and a custom activity. There are typically two
log records per context: the entry record and the exit record. The role of context classes is to expose or store pieces of
information that are shared by several records of the same context. Unless you need to store more pieces of information
in the context, you do not need to extend the context classes. Most back-end implementations do not extend context
classes.
Context classes all derive from the LoggingContext class. The following table lists all context classes. If you choose to
derive a context class, you will also need to override the corresponding factory method in your LoggingBackend class.

Context class Factory method Description
SyncMethodLoggingContext CreateSyncMethodContext(ThreadLoggingContext) Normal

method
(neither async
neither
iterator).

AsyncMethodLoggingContext CreateAsyncMethodContext async
method.

IteratorLoggingContext CreateIteratorContext Iterator
method.

SyncCustomActivityLoggingContext CreateSyncCustomActivityContext(ThreadLoggingContext) Synchronous
custom
activity.

AsyncCustomActivityLoggingContext CreateAsyncCustomActivityContext Asynchronous
custom
activity.

ThreadLoggingContext CreateThreadContext A special kind
of context
that
represents the
roots of the
context tree
and contains
all thread-
static fields.

Implementing an Adapter to a Custom Logging Framework

168

Context class Factory method Description
EphemeralLoggingContext CreateEphemeralContext(ThreadLoggingContext) A

degenerated
kind of
context used
when a log
record is
emitted out of
a context, for
instance when
an exception
record is
logged
without the
corresponding
entry record.

Logging to Loupe

169

Implementing an Adapter to a Custom Logging Framework

170

CHAPTER 20

Upgrading from PostSharp Diagnostics 4.3

PostSharp Logging has been completely rewritten between PostSharp 4.3 and PostSharp 5.0. There are some significant
breaking changes that you will need to take into account.

To migrate your logging from a previous version of PostSharp:
1. Uninstall all PostSharp.Patterns.Diagnostics.* packages except PostSharp.Patterns.Diagnostics itself
2. Upgrade all PostSharp packages.
3. Add the package for your backend logging framework to the start-up project (instead of adding it to all projects

prior to PostSharp 5.0) and configure it at run-time as described in Adding Detailed Logging to your
Solution on page 137.

4. Migrate the logging profiles to the new format as described in Adding Detailed Logging to your
Solution on page 137. Some options that used to be accessible from logging profiles are now run-time options
and are described in Customizing the Appearance of Log Records on page 141.

Logging to Loupe

171

Upgrading from PostSharp Diagnostics 4.3

172

CHAPTER 21

Licensing of PostSharp Diagnostics

The way PostSharp Diagnostics is licensed differs from the other components of PostSharp. Depending on the license
available during the build of your project, either PostSharp Diagnostics Developer Edition or PostSharp Diagnostics Standard
Edition is selected.
This topic contains the following sections:

• PostSharp Diagnostics Developer Edition on page 173
• PostSharp Diagnostics Standard Edition on page 173

PostSharp Diagnostics Developer Edition
During a software development process, you often need to trace the project behavior in run-time. This is where you
choose the PostSharp Diagnostics Developer Edition. It allows you to use the logging pattern anywhere in your project.
PostSharp Diagnostics Developer Edition is free of charge and included in all PostSharp products, even the free Post-
Sharp Essentials.
The limitation of this edition is that the logging messages will be emitted up to 24 hours after the build of your
assembly. After this period of time, your application will keep working, but the logging messages will no longer be
emitted.
PostSharp Diagnostics will switch itself to Developer Edition in the following situations:

• When using PostSharp Essentials or another PostSharp product that does not include PostSharp Diagnostics.
• When building your code on a build server, unless the license key has been added to postsharp.config.
• When building unmodified code on the machine of an unlicensed developer, using the feature described in

Sharing Source Code With Unlicensed Teams on page 80.

PostSharp Diagnostics Standard Edition
PostSharp Diagnostics Standard Edition does not have the limitations of the Developer Edition.
PostSharp Diagnostics Standard Edition is a commercial product. It can be purchased separately or as a part of Post-
Sharp Ultimate or PostSharp Enterprise. See our web site37 for details regarding the PostSharp commercial offering.

NOTE
If you are using PostSharp Diagnostics Standard Edition, we recommend you add your license key to postsharp.config
as described in Deploying License Keys on page 75. Otherwise, the DIA006 warning will be displayed during the build.
If you don't plan to use a build server, you can turn off the warning as explained in Ignoring and Escalating
Warnings on page 104.

37. https://www.postsharp.net/purchase

Logging to Loupe

173

https://www.postsharp.net/purchase
https://www.postsharp.net/purchase

PART 5

Contracts

CHAPTER 22

Adding Contracts to Code

This section describes how to add a contract to a field, property, or parameter.
This topic contains the following sections:

• Introduction on page 177
• Adding contracts on page 178
• Contract inheritance on page 178

Introduction
Consider the following method which checks if a valid string has been passed in:

publicclass CustomerModel
{

publicvoid SetFullName(string firstName, string lastName)
{

if(firstName == null)
throw NullReferenceException();

if(lastName == null)
throw NullReferenceException();

this.FullName = firstName + " " + lastName;
}

}

In this example, checks have been added to ensure that both parameters contain a valid string. A better solution is to
place the logic which performs this check into its own reusable class, especially such boilerplate logic is involved, and
then reuse/invoke this class whenever the check needs to be performed.
PostSharp’s Contract attributes do just that by moving such checks out of code and into parameter attributes. For
example, PostSharp’s RequiredAttribute contract could be used to simplify the example as follows:

publicclass CustomerModel
{

publicvoid SetFullName([Required] string firstName, [Required] string lastName)
{

this.FullName = firstName + " " + lastName;
}

}

In this example, the RequiredAttribute attribute performs the check for null, thus eliminating the need to write the
boiler plate code for the check in line with other code.
A contract can also be applied to a property or field as shown in the following example:

publicclass CustomerModel
{

[Required]
public FirstName { get; set; }

}

Logging to Loupe

177

Using a contract in a property ensures that the value being passed into set is validated before the logic (if any) for set is
executed.
Similarly, a contract can be used directly on a field which will validate the value being assigned to the field:

publicclass CustomerModel
{

[Required]
privatestring mFirstName = "Not filled in yet";

publicvoid SetFirstName(string firstName)
{

mFirstName = firstName;
}

}

In this example, firstName will be validated by the Required contract before being assigned to mFirstName. Placing a
contract on a field provides the added benefit of validating the field regardless of where it’s set from.
Note that PostSharp also includes a number of built-in contracts which range from checks for null values to testing for
valid phone numbers. You can also develop your own contracts with custom logic for your own types as described
below.
There are two ways to add contracts:

Adding contracts
To add a contract to an element of code:

1. Add the PostSharp.Patterns.Model package to your project.

2. Import the PostSharp.Patterns.Contracts namespace into your file:

import PostSharp.Patterns.Contracts;

3. Add the contract custom attribute to the parameter, field, or property, or return value. See the PostSharp.
Patterns.Contracts namespace for a list of available contract attributes. For example:

publicvoid SetFullName([Required] string firstName, [Required] string lastName)

Contract inheritance
PostSharp ensures that any contracts which have been applied to an abstract, virtual, or interface method are inherited
along with that method in derived classes, all without the need to re-specify the contract in the derived methods. This is
shown in the following example:

publicinterface ICustomerModel
{

void SetFullName([Required] string firstName, [Required] string lastName);
}

publicclass CustomerModel : ICustomerModel
{

publicvoid SetFullName(string firstName, string lastName)
{

this.FullName = firstName + " " + lastName;
}

}

Here ICustomerModel.SetFullName method specifies that the firstName and lastName parameters are required using
the RequiredAttribute attribute. Since the CustomerModel.SetFullName method implements this method, these
attributes will also be applied to its parameters.

Adding Contracts to Code

178

NOTE
If the derived class exists in a separate assembly, that assembly must be processed by PostSharp and must reference
the PostSharp and PostSharp.Patterns.Model package

Logging to Loupe

179

Adding Contracts to Code

180

CHAPTER 23

Creating Custom Contracts

Given the benefits that contracts provide over manually checking values and throwing exceptions in code, you will likely
want to implement your own contracts to perform your own custom checks and handle your own custom types.
The following steps show how to implement a contract which throws an exception if a numeric parameter is zero:

To implement a contract throwing an exception if a numeric parameter is zero:
1. Use the following namespaces: PostSharp.Aspects and PostSharp.Reflection.

2. Derive a class from LocationContractAttribute and override the GetErrorMessage method:

publicclass NonZeroAttribute : LocationContractAttribute
{

publicconststring ErrorMessage = "NonZeroErrorMessage";

public NonZeroAttribute()
: base()

{
}

protectedoverridestring GetErrorMessage()
{

return"Value {2} must have a non-zero value.";
}

}

NOTE
The value returned by GetErrorMessage method can contain formatting placeholders. See the remarks section
for the LocationContractAttribute class for more information.

Logging to Loupe

181

3. Implement the ILocationValidationAspect interface in the new contract class which exposes the Validate-
Value(UTP, String, LocationKind) method. Note that this interface must be implemented for each type that is to
be handled by the contract. In this example, the contract will handle both int and uint, so the interface is
implemented for both integer types. If additional integer types were to be handled by this class (e.g. long), then
additional implementations of ILocationValidationAspect would have to be added:

publicclass NonZeroAttribute : LocationContractAttribute, ILocationValidationAspect<int>, ILocationValidationAspect<uint>
{

publicconststring ErrorMessage = "NonZeroErrorMessage";

public NonZeroAttribute()
: base()

{
}

protectedoverridestring GetErrorMessage()
{

return"Value {2} must have a non-zero value.";
}

public Exception ValidateValue(intvalue, string name, LocationKind locationKind)
{

if (value == 0)
returnthis.CreateArgumentOutOfRangeException(value, name, locationKind);

elsereturnnull;
}

public Exception ValidateValue(uintvalue, string name, LocationKind locationKind)
{

if (value == 0)
returnthis.CreateArgumentOutOfRangeException(value, name, locationKind);

elsereturnnull;
}

}

The ValidateValue(UTP, String, LocationKind) method takes in the value to test, the name of the parameter,
property or field, and the usage (i.e. whether it’s a parameter, property, or field). The method must return an
exception if a check fails, or null or if no exception is to be raised.

With the contract now created it can be used. For example, the following methods, which calculate the modulus between
two numbers, can use the contract defined above to ensure that neither of their input parameters are zero:

bool Mod([NonZero] int number, [NonZero] int dividend)
{

return ((number % dividend) == 0);
}

bool Mod([NonZero] uint number, [NonZero] uint dividend)
{

return ((number % dividend) == 0);
}

Creating Custom Contracts

182

CHAPTER 24

Localizing Contract Errors

You can customize all texts of exceptions raised by built-in contract. This allows you to localize error messages into different
languages.
Contracts use the ContractLocalizedTextProvider class to obtain the text of an error message. This class follows a simple
chain of responsibilities pattern where each provider has a reference to the next provider in the chain. When a message is
queried, the provider either returns a message or passes control to the next provider in the chain.
Each message is identified by a string identifier and can refer to 4 basic arguments and additional arguments specific to a
message type. For general information about message arguments please see remarks section of LocationContract-
Attribute. For identifier of a particular message and its additional arguments, please see remarks section of contract
classes in PostSharp.Patterns.Contracts.

This topic contains the following sections:
• Localizing a built-in error message on page 183
• Localizing custom contracts on page 184

Localizing a built-in error message
Following steps illustrate how to override an error message of a given contract:

To override a contract error message:
1. Declare a class that derives from ContractLocalizedTextProvider and implement the chain constructor.

publicclass CzechContractLocalizedTextProvider : ContractLocalizedTextProvider
{

public CzechContractLocalizedTextProvider(ContractLocalizedTextProvider next)
: base(next)

{
}

}

Logging to Loupe

183

2. Implement the GetMessage(String) method. In the next code snippet, we show how to build a simple and
efficient dictionary-based implementation.

publicclass CzechContractLocalizedTextProvider : ContractLocalizedTextProvider
{

privatereadonly Dictionary<string, string> messages = new Dictionary<string, string>
{

{RegularExpressionErrorMessage, "Hodnota {2} neodpovídá regulárnímu výrazu '{4}'."},
};

public CzechContractLocalizedTextProvider(ContractLocalizedTextProvider next)
: base(next)

{
}

publicoverridestring GetMessage(string messageId)
{

if (string.IsNullOrEmpty(messageId))
thrownew ArgumentNullException("messageId");

string message;
if (this.messages.TryGetValue(messageId, out message))
{

return message;
}
else
{

// Fall back to the default provider.returnbase.GetMessage(messageId);
}

}
}

NOTE
If you need to support several languages, you can make your implementation of the GetMessage(String)
method depend on the value of the CultureInfoCurrentCulture property. You can optionally store your
error messages in a managed resource and use the ResourceManager class to access it and manage
localization issues. The design of PostSharp Code Contracts is agnostic to these decisions.

3. In the beginning of an application, create a new instance of the provider and set the current provider as its
successor.

publicstaticvoid Main()
{

ContractLocalizedTextProvider.Current = new CzechContractLocalizedTextProvider(ContractLocalizedTextProvider.Current);

// ...
}

Localizing custom contracts
Once you have configured a text provider, you can use it to localize error messages of custom contracts. In the following
procedure, we will localize the error message of the example contract described in Creating Custom
Contracts on page 181.

Localizing Contract Errors

184

To localize a custom contract:
1. Edit the code contract class (NonZeroAttribute in our case) and replace the implementation of the GetError-

Message method by a call to the GetMessage(String) method. Pass a unique message identifier to this
method.

protectedoverridestring GetErrorMessage()
{

return ContractLocalizedTextProvider.Current.GetMessage("NonZeroErrorMessage");
}

2. Edit your implementation of the LocalizedTextProvider class and include the message for your custom
contract:

privatereadonly Dictionary<string, string> messages = new Dictionary<string, string>
{

{RegularExpressionErrorMessage, "Hodnota {2} neodpovídá regulárnímu výrazu '{4}'."},
{"NonZeroErrorMessage", "Value {2} must have a non-zero value."}

};

Logging to Loupe

185

PART 6

INotifyPropertyChanged

CHAPTER 25

Implementing INotifyPropertyChanged

This section shows how to make your class automatically implements the INotifyPropertyChanged interface Notify-
PropertyChangedAttribute aspect.

This topic contains the following sections:
• Adding the NotifyPropertyChanged aspect on page 189
• Consuming the INotifyPropertyChanged interface on page 189

Adding the NotifyPropertyChanged aspect
To add INotifyPropertyChanged aspect:

1. Use NuGet Package Manager to add the PostSharp.Patterns.Model package to your project.
2. Import the PostSharp.Patterns.Model namespace into your file.

3. Add the [NotifyPropertyChanged] custom attribute to the class.

By using the Model Pattern Library to add NotifyPropertyChangedAttribute to your Model classes you are able to
eliminate all of the repetitive boilerplate coding tasks and code from the codebase.

NOTE
This procedure has added NotifyPropertyChangedAttribute to one class. If you need to implement Notify-
PropertyChangedAttribute to many different classes in your codebase you will want to read about using aspect
multicasting. See the section Adding Aspects to Multiple Declarations on page 114.

Example
[NotifyPropertyChanged]
publicclass CustomerForEditing
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }

publicstring FullName
{

get { returnstring.Format("{0} {1}", this.FirstName, this.LastName); }
}

}

Consuming the INotifyPropertyChanged interface
Since the INotifyPropertyChanged interface is implemented by PostSharp at build time after the compiler has
completed, the interface will neither be visible to Intellisense or other tools like Resharper, neither to the compiler. The
same is true for the PropertyChanged event.

Logging to Loupe

189

In many cases, this limitation does not matter because the interface is consumed from a framework (like WPF) that is not
coupled with your project. However, in some situations, you may need to access the INotifyPropertyChanged interface.

There are two ways to access the INotifyPropertyChanged interface from your code:

• You can cast your object to INotifyPropertyChanged, for instance:

((INotifyPropertyChanged) obj).PropertyChanged += obj_OnPropertyChanged;

If your tooling complains that the object does not implement the interface, you can first cast to object:

((INotifyPropertyChanged) (object) obj).PropertyChanged += obj_OnPropertyChanged;

• You can use the PostCastSourceType, TargetType(SourceType) method. The benefit of using this method is
that the cast operation is validated by PostSharp, to the build will fail if you try to cast an object that does not
implement the INotifyPropertyChanged interface. For instance:

Post.Cast<Foo,INotifyPropertyChanged>(obj).PropertyChanged += obj_OnPropertyChanged;

Implementing INotifyPropertyChanged

190

CHAPTER 26

Working with Properties that Depend on
Other Objects

It’s very common for the properties of one class to be dependent on the properties of another class. For example, a view-
model layer will often contain a reference to a model object, and public properties which are, in turn, forwarded to the
underlying properties of this referenced object. In this scenario, the view-model component’s properties have a
dependency on the referenced model’s properties. Subsequently, the referenced model may also have properties which
depend on the properties of other objects.
PostSharp easily handles transitive dependencies that follow the this.field.Property.Property form. Simply add the
NotifyPropertyChangedAttribute class attribute to each class in the dependency chain. This will ensure that property
change notifications are propagated up and down the dependency chain. PostSharp takes care of the rest and will even
handle circular dependencies.

NOTE
Read the article Handling Corner Cases on page 195 to learn about referencing more complex properties that do not
follow the this.field.Property.Property form.

Example
In the following example, the CustomerModel class is used as a dependency of a CustomerViewModel class containing
FirstName and LastName properties, both of which directly map to properties of the CustomerModel class, and a public
read only property called FullName, which is calculated based on the value of the underlying customer’s FirstName and
LastName properties.

[NotifyPropertyChanged]
publicclass CustomerModel
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }
publicstring Phone { get; set; }
publicstring Mobile { get; set; }
publicstring Email { get; set; }

}

[NotifyPropertyChanged]
class CustomerViewModel
{

CustomerModel model;

public CustomerViewModel(CustomerModel m)
{

this.model = m;
}

publicstring FirstName { get { returnthis.model.FirstName; } set { this.model.FirstName = value;}}
publicstring LastName { get { returnthis.model.LastName; } set { this.model.LastName = value; }}
publicstring FullName { get { returnstring.Format("{0} {1}", this.model.FirstName, this.model.LastName); } }

Logging to Loupe

191

}

You now have a view-model class which can be used to bridge a view (e.g. an application’s user interface) with the
underlying data, and calls to get/set will be propagated across the chain of dependencies.

Working with Properties that Depend on Other Objects

192

CHAPTER 27

Implementing INotifyPropertyChanging

By convention, the PropertyChanged event must be raised after the property value has changed. However, some
components need to be signaled before the property value will be changed. This is the role of the INotifyProperty-
Changing interface.

Because the INotifyPropertyChanging interface is not portable (in Xamarin, it is even a part of a different namespace),
PostSharp cannot introduce it. However, if you implement the INotifyPropertyChanging interface yourself in your code,
PostSharp will signal the PropertyChanging event. To make that work, you need to create an OnPropertyChanging method
with the right signature.

To add the INotifyPropertyChanging interface to a class:
1. Make your class implement INotifyPropertyChanging and add the PropertyChanging event.

2. Add the OnPropertyChanging method with exactly the following signature, and invoke the PropertyChanging
event.

protectedvoid OnPropertyChanging(string propertyName)
{

if (this.PropertyChanging != null)
{

this.PropertyChanging(this, new PropertyChangingEventArgs (propertyName));
}

}

3. Add the NotifyPropertyChangedAttribute aspect to your class as described in INotifyProperty-
Changed on page 187.

NOTE
The contract between your class and the NotifyPropertyChangedAttribute is only the OnPropertyChanging method. As
long as this method exists in the class, it will be invoked by the aspect before the value of a property changes.

Example
The following example demonstrates how to implement INotifyPropertyChanging.

[NotifyPropertyChanged]
publicclass MyClass : INotifyPropertyChanging
{

publicevent PropertyChangingEventHandler PropertyChanging;

protectedvoid OnPropertyChanging(string propertyName)
{

if (this.PropertyChanging != null)
{

this.PropertyChanging(this, new PropertyChangingEventArgs (propertyName));
}

}

Logging to Loupe

193

publicstring MyProperty { get; set; }
}

Implementing INotifyPropertyChanging

194

CHAPTER 28

Handling Corner Cases

PostSharp includes a number of attributes for customizing the default behavior and for handling special dependencies.
This topic contains the following sections:

• Ignoring changes to properties on page 195
• Handling virtual calls, delegates, external methods, or complex data flows on page 195
• Handling dependencies on pure methods on page 196

Ignoring changes to properties
Use the IgnoreAutoChangeNotificationAttribute class attribute to prevent an OnPropertyChanged event from being
invoked when setting a property.

Example
In this example, the CustomerModel class contains a Country property amongst others. To prevent a property notifi-
cation from being invoked when the value of this property is set, simply place the IgnoreAutoChangeNotification-
Attribute attribute above the property.

[NotifyPropertyChanged]
publicclass CustomerModel
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }
publicstring Phone { get; set; }
publicstring Mobile { get; set; }
publicstring Email { get; set; }

[IgnoreAutoChangeNotification]
publicstring Country { get; set;}

}

Handling virtual calls, delegates, external methods, or complex data flows
If a property getter calls a virtual method from its class or a delegate, or references a property of another object
(without using canonical form this.field.Property), PostSharp will generate an error because it cannot resolve such a
dependency at build time. The same limitations apply when your property getter contains complex data flows, such as
loops, or calls to methods (except property getters) of other classes.
When this happens, you can either refactor your code so that it can be automatically analyzed by PostSharp, or you can
take over the responsibility for analyzing the code.

Taking responsibility for dependency analysis
To suppress the error that PostSharp emits when it is unable to fully analyze your code, add the SafeForDependency-
AnalysisAttribute custom attribute to the property accessor (or in any method used by the property accessor).

Logging to Loupe

195

NOTE
By using SafeForDependencyAnalysisAttribute, you are taking the responsibility that your code only has
dependencies that are given either in the canonical form of this.field.Property either explicitly using the
DependsOn construct (see below). If you are using this custom attribute but have non-canonical dependencies, some
property changes may not be detected in which case no notification will be generated.

Adding dependencies manually
Even when a method has the SafeForDependencyAnalysisAttribute attribute, PostSharp still discovers the
dependencies that are in canonical form this.field.Property. However, PostSharp does not discover dependencies
hidden under delegate or virtual method calls.
To explicitly add a dependency to a property, you can use the DependsOn method. The expression passed to the
DependsOn must be in canonical form this.field.Property, i.e. Depends.On(this.field.Property).

Example
In the following example, the CustomerModel class contains a virtual method called ValidateCountry which is used by
the get accessor of its Country property. The presence of the call to the virtual method prevents PostSharp from fully
understanding the dependencies of the Country property. PostSharp discovers the dependency to the _country field
but cannot analyze the implementations of the ValidateCountry method, and therefore emits an error. By adding the
SafeForDependencyAnalysisAttribute attribute, to the Country property, you remove the error.

Even if you remove the error, PostSharp still analyzes the Country property getter and finds the dependency on the
_country field. However, it does not follow the call to the ValidateCountry method and does not find the dependency
to the Continent property. That is why we have to add this dependency manually by calling the Depends.On method.

[NotifyPropertyChanged]
publicclass Address
{

string _country;
publicstring Continent { get; set; }

publicvirtualbool ValidateCountry(string country)
{

return GeoService.ContinentContains(this.Continent, country);
}

[SafeForDependencyAnalysisAttribute]
publicstring Country
{

get
{

Depends.On(this.Continent);

if(this.ValidateCountry(_country))
return _country;

elsereturn"Lilliput";
}

set;
}

}

Handling dependencies on pure methods
Often times a property will depend on a method which is solely dependent on its input parameters to produce a return
value. These methods are called pure and do not need to be analyzed. To mark a method as pure, use the Pure-
Attribute custom attribute.

Handling Corner Cases

196

Example
Consider the following variation to CustomerModel where the ValidPhoneNumber property logic has been moved into a
static method called GetValidPhoneNumber() which exists in a separate helper class called ContactHelper:

Since GetValidPhoneNumber() is a standalone method of another class, it is not analyzed. Therefore the PureAttribute
attribute needs to be applied to this method to acknowledge this dependency.

publicclass ContactHelper
{

[Pure]
publicstaticstring GetValidPhoneNumber(string firstPhoneNumber, string secondPhoneNumber)
{

return firstPhoneNumber ?? secondPhoneNumber;
}

}

[NotifyPropertyChanged]
publicclass CustomerModel
{

public Contact PrimaryContact {get; set;}
public Contact SecondaryContact {get; set;}

publicstring ValidPhoneNumber
{

get {
return ContactHelper.GetValidPhoneNumber(this.PrimaryContact.Phone, this.SecondaryContact.Phone);

}
}

}

Logging to Loupe

197

Handling Corner Cases

198

CHAPTER 29

Integrating with UI Frameworks

There are frameworks that help you to create XAML applications including binding of objects in a simplified way. But
usually, you still need to include some repetitive code anyway.
PostSharp can eliminate most of that repetition for you. All you have to do is make use of the NotifyPropertyChanged-
Attribute aspect.

In this chapter, you can find examples of using the NotifyPropertyChangedAttribute aspect with some of the popular UI
frameworks.
This list of supported frameworks is not exhaustive. If the framework you are using is not listed here, it does not necessarily
mean that PostSharp will not work with the framework.

In this chapter
Topic Description
Caliburn.Micro on page 199 This section shows how to use the NotifyPropertyChangedAttribute aspect with the

Caliburn.Micro framework.
MVVM Light on page 201 This section shows how to use the NotifyPropertyChangedAttribute aspect with the

MVVM Light Toolkit.

29.1. Caliburn.Micro
Caliburn.Micro is a popular framework designed for building applications across all XAML platforms. Caliburn.Micro
includes several features, and one of those is to simplify the implementation of the INotifyPropertyChanged interface.
However, Caliburn.Micro still requires you to write a lot of boilerplate code. This article shows how to use PostSharp
together with Caliburn.Micro, whether because you are upgrading an existing project that already uses this framework or
because you want to use the other features of Caliburn.Micro.

Without PostSharp
The example below shows a View-Model implemented according to the Caliburn.Micro specification. The class Shell-
ViewModel inherits from the class PropertyChangedBase, which implements the INotifyPropertyChanged interface and
thus is already helping you to use the Notify Property Changed pattern.
On the other hand, there is still part of the boilerplate usually appearing within the NotifyPropertyChanged pattern. For
each property, you must have an explicit field, and you must manually notify all dependencies and the property itself.
The result is not only more code written, but also a big space for bugs because you must discover and maintain the
chain of dependent properties yourself.

using Caliburn.Micro;
using System.Windows;

namespace CaliburnMicroWithPostSharp

Caliburn.Micro

199

{
publicclass ShellViewModel : PropertyChangedBase
{

string name;

publicstring Name
{

get { returnthis.name; }
set
{

this.name = value;
this.NotifyOfPropertyChange(() => this.Name);
this.NotifyOfPropertyChange(() => this.CanSayHello);

}
}

publicbool CanSayHello => !string.IsNullOrWhiteSpace(this.Name);

publicvoid SayHello()
{

MessageBox.Show($"Hello {this.Name}!");
}

}
}

With PostSharp
With PostSharp, you don’t need to do any of that. You just indicate which classes should have the NotifyProperty-
Changed pattern implemented using the NotifyPropertyChangedAttribute attribute and PostSharp does the hard
work for you. You can see the difference in the second example, where the previous code got refactored keeping the
same functionality.

using System.Windows;
using PostSharp.Patterns.Model;

namespace CaliburnMicroWithPostSharp
{

[NotifyPropertyChanged]
publicclass ShellViewModel : PropertyChangedBase
{

publicstring Name { get; set; }

publicbool CanSayHello => !string.IsNullOrWhiteSpace(this.Name);

publicvoid SayHello()
{

MessageBox.Show($"Hello {this.Name}!");
}

}
}

Note that it is no longer necessary to derive your class from the PropertyChangedBase class. Even if you suppress the
inheritance from PropertyChangedBase class, you can still use other Caliburn.Micro features in your code such as
commands. However, if you do keep the inheritance from PropertyChangedBase, the NotifyPropertyChanged-
Attribute aspect will invoke the NotifyOfPropertyChange method of the PropertyChangedBase class, consistently
with the coding practices of Caliburn.Micro.

Integrating with UI Frameworks

200

29.2. MVVM Light
MVVM Light is a framework that helps you build XAML applications according to the Model-View-View-Model architectural
pattern. MVVM Light includes several features, and one of those is to simplify the implementation of the INotifyProperty-
Changed interface. However, MVVM Light still requires you to write a lot of boilerplate code. This article shows how to use
PostSharp together with MVVM Light, whether because you are upgrading an existing project that already uses this
framework or because you want to use the other features of MVVM Light.

Without PostSharp
In the example below, there is a View-Model implemented according to the MVVM Light Toolkit specification. The class
MainViewModel inherits from the class ViewModelBase, which implements the INotifyPropertyChanged interface and
thus is already helping you to use the Notify Property Changed pattern.
On the other hand, there is still part of the boilerplate usually appearing within the NotifyPropertyChanged pattern. For
each property, you must have an explicit field, and you must manually notify all dependencies and the property itself.
The result is not only more code written, but also a big space for bugs because you must discover and maintain the
chain of dependent properties yourself.

using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Command;
using System.Windows.Input;
using System.Windows;

namespace MvvmLightTest.ViewModel
{

publicclass MainViewModel : ViewModelBase
{

int _exampleValue;

publicint ExampleValue
{

get
{

return _exampleValue;
}
set
{

if (_exampleValue == value)
return;

_exampleValue = value;
RaisePropertyChanged("ExampleValue");

}
}

}
}

With PostSharp
With PostSharp, you don’t need to do any of that. You just indicate which classes should have the NotifyProperty-
Changed pattern implemented using the NotifyPropertyChangedAttribute attribute and PostSharp does the hard
work for you. You can see the difference in the second example, where the previous code got refactored keeping the
same functionality.

using GalaSoft.MvvmLight.Command;
using System.Windows.Input;
using System.Windows;
using PostSharp.Patterns.Model;

namespace MvvmLightTest.ViewModel
{

[NotifyPropertyChanged]

MVVM Light

201

publicclass MainViewModel : ViewModelBase
{

publicint ExampleValue { get; set; }
}

}

Note that it is no longer necessary to derive your class from the ViewModelBase class. Even if you suppress the
inheritance from ViewModelBase class, you can still use other MVVM Light features in your code such as commands.
However, if you do keep the inheritance from ViewModelBase, the NotifyPropertyChangedAttribute aspect will invoke
the RaisePropertyChanged method of the ViewModelBase class, consistently with the coding practices of MVVM Light.

Integrating with UI Frameworks

202

CHAPTER 30

Understanding the NotifyPropertyChanged
Aspect

This section describes the principles and algorithm on which the NotifyPropertyChangedAttribute aspect is based. It
helps developers and architects to understand the behavior and limitation of the aspect.
This topic contains the following sections:

• Implementation of the INotifyPropertyChanged interface on page 203
• Instrumentation of fields on page 203
• Analysis of field-property dependencies on page 203
• Limitations on page 205
• Raising notifications on page 205
• Remarks on page 206

Implementation of the INotifyPropertyChanged interface
The NotifyPropertyChangedAttribute aspect introduces the INotifyPropertyChanged interface to the target class
unless the target class already implements the interface. Additionally, the aspect also introduces the OnProperty-
Changed(String) method. The aspect always introduces this method as protected and virtual, so it can be overridden in
derived classes.
If the target class already implements the INotifyPropertyChanged interface, the aspect requires the class to expose
the OnPropertyChanged(String) method.
The aspect uses the OnPropertyChanged(String) to raise the PropertyChanged event. Thanks to this method, the
aspect is able to raise the event even when the INotifyPropertyChanged is not implemented by the aspect. This
mechanism also allows user code to raise notifications that are not automatically handled by the NotifyProperty-
ChangedAttribute aspect.

Instrumentation of fields
Although most implementations the INotifyPropertyChanged interface rely on instrumenting the property setter, this
strategy has severe limitations: it is unable to handle composite properties, which return a value based on several other
fields or properties. Composite properties have no setter, rendering this strategy unusable.
Instead, the NotifyPropertyChangedAttribute aspect instruments all write operations to fields (for instance a Full-
Name property appending FirstName and LastName). It analyzes dependencies between fields and properties and raises
a change notification for any property affected by a change in this specific field.
All methods, and not just property setters, can make a change to a field and therefore cause the PropertyChanged event
to be raised. Property setters do not have any specific status in the NotifyPropertyChangedAttribute implementation.

Analysis of field-property dependencies
In order to adequately raise the PropertyChanged event, the NotifyPropertyChangedAttribute aspect needs to know
which properties are affected by a change of a class field. The field-property dependency map is created at build time

MVVM Light

203

by analyzing the source code: the analyzer reads the getter of all properties and check for field references. The map is
then serialized inside the assembly and used at run time to raise relevant events when a field has changed.

Dependencies on fields of the current object
Consider the following code snippet:

[NotifyPropertyChanged]
class Invoice
{

privatedecimal _amount;
privatedecimal _tax;

publicdecimal Amount { get { returnthis._amount; } set { this._amount = value; } }
publicdecimal Tax { get { returnthis._tax; } set { this._tax = value; } }

publicvoid Set(decimal amount, decimal tax)
{

this._amount = amount;
this._tax = tax;

}

publicdecimal Total { get { returnthis._amount + this._tax; } }
}

The result of the analysis for the code snippet above would be the map { _amount => (Amount, Total), _tax => (
Tax, Total) }. Whenever the _amount field is changed, the PropertyChanged event will be raised for properties
Amount and Total.

Automatic properties are processed as handwritten properties; in this case, the implicit backing field is taken into
account for the dependency analysis.

Recursive analysis of the call graph
Field references are not only looked for in the getter, but in any method invoked from the getter, and recursively.
Consider the following code snippet:

[NotifyPropertyChanged]
class Invoice
{

privatedecimal _amount;
privatedecimal _exchangeRate;

publicdecimal Amount { get { returnthis._amount; } set { this._amount = value; } }
publicdecimal ExchangeRate { get { returnthis._exchangeRate; } set { this._exchangeRate = value; } }

privatedecimal Convert(decimal amount)
{

return amount * this.ExchangeRate;
}

publicint AmountBase { get { returnthis.Convert(this.Amount); } }

}

In the code snippet above, the analyzer starts from the getter of the AmountBase property, follows the call to the Amount
property getter, then call to the AmountBase method and recursively follows the ExchangeRate property getter.
Therefore, the resulting property map remains { _amount => (Amount, AmountBase), _exchangeRate => (
ExchangeRate, AmountBase) }.

Dependencies on properties of external objects
The NotifyPropertyChangedAttribute aspect does not just handle dependencies between a property and a field of
the same class. It also handles dependencies on properties of properties or properties of fields, and recursively. That is,
it supports expressions of the form _f.P1.P2.P3 where _f is a field or property and P1, P2 and P3 are properties.

Understanding the NotifyPropertyChanged Aspect

204

Consider the following code snippet:

[NotifyPropertyChanged]
class InvoiceModel
{

privatedecimal _amount;
privatedecimal _tax;

publicdecimal Amount { get { returnthis._amount; } set { this._amount = value; } }
publicdecimal Tax { get { returnthis._tax; } set { this._tax = value; } }

}

[NotifyPropertyChanged]
class InvoiceViewModel
{

InvoiceModel _model;

public InvoiceModel Model { get { returnthis._model; } }

publicdecimal Total { get { returnthis._model.Amount + this.Model.Tax; } }

}

In the example above, the InvoiceViewModel.Total property is dependent on properties Amount and Tax of the _model
field. Therefore, changes in the InvoiceModel._amount field will trigger a change notification for the InvoiceModel.
Amount and InvoiceViewModel.Total properties.

The NotifyPropertyChangedAttribute aspect automatically subscribes to the PropertyChanged event of the child
object, and unsubscribes whenever the value of the field in the parent object (_model in our example) is modified.
However, the parent object does not unsubscribe upon disposal because the NotifyPropertyChangedAttribute makes
no assumption that the IDisposable interface has been implemented. Therefore, the implementation of the INotify-
PropertyChanged of the external object must hold weak references to clients of the PropertyChanged event.

Recursive dependencies to external objects are handled thanks to an auxiliary interface named INotifyChildProperty-
Changed. This interface is implemented by the NotifyPropertyChangedAttribute aspect. It is considered an implemen-
tation detail and cannot be implemented manually. Classes that do not implement the INotifyChildPropertyChanged
interface can only participate as terminal dependencies, i.e. they can be leaves but not intermediate nodes.

Limitations
The design goal of the NotifyPropertyChangedAttribute aspect is to be able to handle the majority of use cases in
real-world source code while requiring only an acceptable amount of compilation time. The dependency analysis
algorithm imposes several limitations:

• Calls to virtual methods (other than through the base keyword), abstract methods, interface methods or
delegates are not supported.

• Calls to static methods or methods of external classes are not supported unless they are decorated with the
PureAttribute custom attribute, or unless the method is a property getter in a supported dependency chain.

• Valuations of properties method return values are not supported. Only properties of fields or properties are
supported.

• Dependencies on properties of variables are not supported if the variable is assigned in a loop (while, for, ...)
or in an exception handling block.

See Handling Corner Cases on page 195 to learn how to cope with these limitations.

Raising notifications
Simplistic implementations of the INotifyPropertyChanged interface signal a change notification immediately after a
property has been changed. However, this strategy may cause subtle errors in client code.

MVVM Light

205

Consider the following code:

[NotifyPropertyChanged]
class Invoice
{

publicdecimal Amount { get; privateset; }
publicdecimal Tax { get; privateset; }
publicdecimal Total { get; privateset; }

publicvoid Set(decimal amount, decimal tax)
{

/* 1 */this.Amount = amount;
/* 2 */this.Tax = tax;
/* 3 */this.Total = amount + tax;

}

}

As a class invariant, the assumption Total == Amount + Tax should always be true.

However, suppose that the PropertyChanged event is raised immediately after the Amount property is set at line 1 of the
Set method. Clearly, for a client subscribing to this event, the class invariant would be broken at this specific moment.

Therefore, it is not safe to raise change notifications immediately after a change has been achieved. It is necessary to
wait until the object can be safely observed by external code, when all class invariants are valid again (i.e. when the
object state is consistent). A common best practice in object-oriented programming is to ensure that class invariants are
valid before the control flow goes back from the current object to the caller. Typically, it means that a private or
protected method can exit with an inconsistent object state, but public and internal methods must guarantee that the
object state is consistent upon exit.
The NotifyPropertyChangedAttribute aspect relies on this best practice and raises the property change notifications
just before the control flow exits the current object, that is, just before the last public or internal method in the call stack
for the current object exits.
Besides avoiding to expose invalid object state, this strategy also avoids the same property to be notified for change
several times during the execution of a single public method, which a potentially great positive performance impact.
To solve this problem, NotifyPropertyChangedAttribute aspect uses the following strategy:

1. Instead of causing immediate change notifications, field changes are buffered into a thread-local storage
named the accumulator.

2. Calls to public and methods are instrumented so the aspect can detect when the control flow exits the object.
At this moment, the accumulator is flushed and all change notifications are triggered.

It is possible to flush the accumulator at any time by invoking the NotifyPropertyChangedServicesRaiseEvents-
Immediate(Object) method.

You can suspend and resume notifications using the NotifyPropertyChangedServicesSuspendEvents and Notify-
PropertyChangedServicesResumeEvents methods.

Remarks
The NotifyPropertyChangedAttribute aspect never evaluates property getters at run time. This decision is deliberate
and aims at avoiding possible side-effects (lazy-initialization, logging, etc.). Therefore, it is possible that the algorithms
emit false positives, i.e. change notifications for properties whose values did not actually change.
The algorithm heuristically detects dependency cycles. If a cycle is detected, an exception is thrown instead of allowing
for an infinite update cycle.
All notifications are invoked on the thread on which the change is being made. The accumulator that buffers the
changes is a thread-local storage.

Understanding the NotifyPropertyChanged Aspect

206

CHAPTER 31

Suppressing False Positives

The NotifyPropertyChangedAttribute aspect, when applied to a class, raises the PropertyChanged event every time it
detects a possible change of a property, even when the actual value of the property doesn't change. By default, the aspect
doesn’t keep track of the property values because that would require the aspect to invoke property getters arbitrarily
outside of the developer’s control. And when property getters have any side effects (lazy-initialization, logging, etc.),
invoking them randomly is not a safe behavior.
In certain scenarios, such as rich client applications with many UI controls, redundant event notifications are not desired
because they cause excessive UI updates and can degrade the application responsiveness. You can avoid these redundant
event notifications by suppressing false positives in the NotifyPropertyChangedAttribute aspect.

This topic contains the following sections:
• Example of a false positive on page 207
• How to suppress false positives on page 208

Example of a false positive
The following Calc class has two integer fields a and b, and a property Sum that returns the sum of these two numbers.
The Main method creates an instance of the Calc class and changes the fields from (a=1, b=2) to (a=2, b=1). There
are two PropertyChanged event notifications shown in the output, even though the actual Sum value doesn’t change in
the second case.

[NotifyPropertyChanged]
class Calc
{

privateint a, b;

publicint Sum
{

get { returnthis.a + this.b; }
}

publicvoid Update(int a1, int b1)
{

this.a = a1;
this.b = b1;

}
}

staticvoid Main()
{

Calc calc = new Calc();
((INotifyChildPropertyChanged) calc).PropertyChanged +=

(sender, eventArgs) =>
{

Console.WriteLine("Property {0} changed. New value = {1}.",
eventArgs.PropertyName,
sender.GetType().GetProperty(eventArgs.PropertyName).GetValue(sender));

};

calc.Update(1, 2);
calc.Update(2, 1);

}

MVVM Light

207

Output:

Property Sum changed. Value = 3.
Property Sum changed. Value = 3.

How to suppress false positives
To suppress false positive event notifications, set the PreventFalsePositives property to true when you apply the aspect
to the target element.

[NotifyPropertyChanged(PreventFalsePositives = true)]
class Calc
{

// ...
}

If you run the test code snippet again after this change, you can see that there’s only one change notification now.

Property Sum changed. Value = 3.

CAUTION NOTE
Do not suppress false positive notifications in your class when the property getters in the class have side effects. In this
case, reset the PreventFalsePositives property to its default value of false.

By enabling the PreventFalsePositives option of the NotifyPropertyChangedAttribute aspect you can reduce the
number of events raised in your application and improve your UI responsiveness.

Suppressing False Positives

208

PART 7

Weak Event

PART 8

XAML

CHAPTER 32

Command

In the GUI applications built using MVVM pattern, it's common for the view model class to define commands that can be
performed by the user in the associated XAML view. These commands are implemented as nested classes of the view model
classes, and require a lot of boilerplate code.
The CommandAttribute aspect allows you to implement commands in your view model classes without adding nested
classes, with greatly reduces boilerplate code. The aspect also integrates with the NotifyPropertyChangedAttribute
aspect, which makes it much easier to implement the CanExecute logic.

This topic contains the following sections:
• Creating a simple command on page 213
• Determining whether your command can be executed on page 213
• Overriding naming conventions on page 214

Creating a simple command
To add a command named LoadContactsList to your view model class

1. Implement the command logic in the ExecuteLoadContactsList method in your view model class. This
method will be the equivalent to the ICommandExecute(Object) method.

Optionally, the Execute method can have one parameter of any type, which becomes the command
parameter.

2. Add a LoadContactsListCommand property to your view model class and mark it with the CommandAttribute
attribute. The property must be of type ICommand and have both a getter and a setter.

Example
The following code snippet defines a dependency property named LoadContactsList.

[Command]
public ICommand LoadContactsListCommand { get; privateset; }

publicvoid ExecuteLoadContactsList()
{

// ...
}

After adding a new command to your view model class you can bind it to a UI control in your XAML code.

<Buttonx:Name="LoadButton"Content="Load contacts"Command="{Binding LoadContactsListCommand}"HorizontalAlignment="Left"Margin="361,10,0,0"VerticalAlignment="Top"Width="85"Height="20"/>

Determining whether your command can be executed
The UI controls in the GUI application can be enabled or disabled based on what actions are available to the user in the
current state of the application. This feature is usually implemented by the ICommandCanExecute(Object) method.

MVVM Light

213

The CommandAttribute aspect provides a clean way to determine the availability of the actions. For each command in
your view model class, you can implement a CanExecute property or method that validates whether this command can
be currently executed.

Adding a CanExecute property
To allow the view to determine the availability of the CreateContact command, simply add a public bool property
named CanExecuteCreateContact to the same class.

[Command]
public ICommand CreateContactCommand { get; privateset; }

publicbool CanExecuteCreateContact
{

get
{

bool canCreateContact = true;
// ...return canCreateContact;

}
}

publicvoid ExecuteCreateContact()
{

// ...
}

The CanExecute properties associated with the commands support the NotifyPropertyChangedAttribute aspect.
Therefore, if you add the NotifyPropertyChangedAttribute aspect to the view model class, the UI will be notified of
changes in the CanExecute properties.

Adding a CanExecute method
A limitation of the CanExecute is that they cannot depend on the input argument of the command. For example, with
the DeleteContact command, you may want to validate whether the current user has the permission to delete the
currently selected contact. If your availability logic depends on the input argument, you must use a CanExecute method
instead of a property.
To allow the UI to determine the availability of the DeleteContact command, add a CanExecuteDeleteContact method
to the view model class. The method must have one parameter and return a bool value. The parameter type must be
assignable from the type of the command's input argument.

[Command]
public ICommand DeleteContactCommand { get; privateset; }

publicbool CanExecuteDeleteContact(int contactId)
{

bool canDeleteContact = true;
// ...return canDeleteContact;

}

publicvoid ExecuteDeleteContact(int contactId)
{

// ...
}

Overriding naming conventions
The CommandAttribute aspect follows a predefined naming convention when looking for methods and properties
associated with the command in your view model class. You can override the naming convention and choose your own
member names by setting properties on the CommandAttribute. The following table shows the default naming
convention and the properties used to override member names.

Command

214

Member kind Default name Example Override property
Command
property

CommandName -or-
CommandNameCommand

UpdateContact -or-
UpdateContactCommand

N/A

Execute method ExecuteCommandName ExecuteUpdateContact ExecuteMethod

CanExecute
method

CanExecuteCommandName CanExecuteUpdateContact CanExecuteMethod

CanExecute
property

CanExecuteCommandName CanExecuteUpdateContact CanExecuteProperty

The following examples shows a command that does not respect naming conventions.

[Command(ExecuteMethod = nameof(UpdateContact), CanExecuteMethod = nameof(CanUpdate))]
public ICommand UpdateContactCommand { get; privateset; }

publicbool CanUpdate(object newData)
{

bool canUpdate = true;
// ...return canUpdate;

}

publicvoid UpdateContact(object newData)
{

// ...
}

MVVM Light

215

Command

216

CHAPTER 33

Dependency Property

XAML dependency properties38 extend the functionality of the CLR properties with features such as data binding, styling,
animation, etc. Whenever you need to define a dependency property in your XAML application, you typically have to follow
a strict implementation pattern and write a fair amount of boilerplate code. The DependencyPropertyAttribute aspect
allows you to create custom dependency properties much faster, without writing repetitive code.
This topic contains the following sections:

• Creating a simple dependency property on page 217
• Exposing the DependencyProperty object on page 217
• Validating the value of the dependency property with contracts on page 218
• Validating the value of the dependency property with a validation method on page 218
• Reacting to the changes of the dependency property value on page 219
• Implementing INotifyPropertyChanged on page 219
• Overriding the naming conventions on page 219

Creating a simple dependency property
To add a new dependency property to your class

1. Add a new property to your class with a chosen name, type and a public getter and setter.
2. Mark your new property with the DependencyPropertyAttribute attribute.

After you have marked your property with the DependencyPropertyAttribute attribute, you can immediately start
using advanced features in your XAML code.

Example
The following code snippet comes from a custom control named ContactCard. The snippet defines a dependency
property named Phone. The custom control defines other dependency properties not listed here.

[DependencyProperty]
publicstring Phone { get; set; }

The dependency properties can be used in XAML for advanced features. In the following code snippet, we're using data
binding with the dependency properties of the ContactCard custom control.

<local:ContactCardFullName="{Binding ContactName}"Phone="{Binding ContactPhone}"Email="{Binding ContactEmail}"Notes="{Binding ContactNotes}"x:Name="CurrentContactCard"HorizontalAlignment="Left"Margin="478,270,0,0"VerticalAlignment="Top"Background="Bisque"/>

Exposing the DependencyProperty object
If you want to manipulate the dependency property using the XAML API in C# or VB, then you need to get the
DependencyProperty for this specific property. One solution is to use the GetDependencyProperty(Type, String)
method, but this is long and error-prone.

38. https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/dependency-properties-overview

MVVM Light

217

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/dependency-properties-overview
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/dependency-properties-overview

A better solution is to add a public static property of type DependencyProperty with the same name as your
dependency property, but the Property suffix. This property will be picked by the DependencyPropertyAttribute
aspect and set to the proper DependencyProperty value.

Example
The following example shows how to expose the DependencyProperty for the Phone property.

[DependencyProperty]
publicstring Phone { get; set; }

publicstatic DependencyProperty PhoneProperty { get; privateset; }

this.CurrentContactCard.SetBinding(ContactCard.PhoneProperty, new Binding("ContactPhone"));

Validating the value of the dependency property with contracts
PostSharp Code Contracts (see Contracts on page 175) provide a convenient way to validate the values of the
dependency properties. To add the validation to your dependency property, you just need to apply a contract attribute
to that property.

Example
The following code snippet shows how to validate a dependency property using a code contract.

[DependencyProperty]
[NotEmpty]
publicstring FullName { get; set; }

Validating the value of the dependency property with a validation method
If you need more complex validation for your dependency property, you can implement it in a dedicated validation
method. To define a validation method for the Email dependency property, add a new method named ValidateEmail
to the same class where the property is declared. The method must accept one argument with the type assignable from
the property type and return a bool value.

The following list shows the method signatures you can use when implementing the validation method where
TPropertyType is the type of the dependency property and TDeclaringType is the class where your property is
declared.

• static bool ValidatePropertyName(TPropertyType value)

• static bool ValidatePropertyName(DependencyProperty property, TPropertyType value)

• static bool ValidatePropertyName(TDeclaringType instance, TPropertyType value)

• static bool ValidatePropertyName(DependencyProperty property, TDeclaringType instance,
TPropertyType value)

• bool ValidatePropertyName(TPropertyType value)

• bool ValidatePropertyName(DependencyProperty property, TPropertyType value)

Example
The following code snippet shows how to validate a dependency property using a validation method.

[DependencyProperty]
publicstring Email { get; set; }

privatebool ValidateEmail(stringvalue)
{

return EmailRegex.IsMatch(value);
}

Dependency Property

218

Reacting to the changes of the dependency property value
The WPF property system can automatically notify you about the dependency property value changes via callback
methods. This can be useful when, for example, you need to update the visual presentation of your custom UI control in
response to a change of its property. This section shows how you can define a property change callback method with
the PostSharp's dependency property pattern.
To define a property change callback method for the PictureUrl dependency property, add a new method named On-
PictureUrlChanged to the same class where the property is declared. The method doesn't have to accept any
arguments and must have a void return type. Implement your property change handling logic inside this new method.

The following list shows the method signatures you can use when implementing the property change callback method.
TDeclaringType is the class where your property is declared.

• static void OnPropertyNameChanged()

• static void OnPropertyNameChanged(DependencyProperty property)

• static void OnPropertyNameChanged(TDeclaringType instance)

• static void OnPropertyNameChanged(DependencyProperty property, TDeclaringType instance)

• void OnPropertyNameChanged()

• void OnPropertyNameChanged(DependencyProperty property)

Example
[DependencyProperty]
publicstring PictureUrl { get; set; }

privatevoid OnPictureUrlChanged()
{

this.ProfileImage.Source = this.LoadImageFromUrl(this.PictureUrl);
}

Implementing INotifyPropertyChanged
You may also want to notify the users of your class when a dependency property value changes. In this case, you would
normally need to implement the INotifyPropertyChanged interface in your class and raise the PropertyChanged event.
PostSharp helps you to automate this task using INotifyPropertyChanged on page 187 pattern. To raise the Property-
Changed event every time any of the dependency properties in your class changes its value, mark your class with the
NotifyPropertyChangedAttribute attribute.

[NotifyPropertyChanged]
publicpartialclass ContactCard : UserControl
{

// ...

Overriding the naming conventions
The DependencyPropertyAttribute aspect follows a predefined naming convention when looking for methods and
properties associated with the dependency property in your class. You can override the naming convention and choose
your own member names by setting properties on the DependencyPropertyAttribute. The following table shows the
default naming convention and the properties used to override member names.

Member kind Default name Example Override property
Value validation method ValidatePropertyName ValidatePhoneNumber ValidateValueMethod

Property changed callback method OnPropertyNameChanged OnPhoneNumberChanged PropertyChangedMethod

MVVM Light

219

Member kind Default name Example Override property
Registration property PropertyNameProperty PhoneNumberProperty RegistrationProperty

Example
[DependencyProperty(ValidateValueMethod = "ValidateStringMaxLength")]
publicstring Notes { get; set; }

privatebool ValidateStringMaxLength(stringvalue)
{

if (string.IsNullOrEmpty(value))
returntrue;

returnvalue.Length <= MAX_LENGTH;
}

Dependency Property

220

CHAPTER 34

Attached Property

In XAML, Attached properties39 are a special kind of properties that are settable on a different object than the one that
exposes it. An example of attached property is DockPanel.Dock. Attached properties are a special kind of dependency
properties and thus require the same amount of boilerplate code to be written.
The AttachedPropertyAttribute aspect allows you to automate the implementation of attached properties in your classes
and eliminates the boilerplate.
This topic contains the following sections:

• Creating a simple attached property on page 221
• Using the dependency property on page 221

The AttachedPropertyAttribute aspect is a special case of the DependencyPropertyAttribute aspect. Therefore you can
refer to the Dependency Property on page 217 article for additional documentation on topics such as validation, property
change callbacks, and naming conventions.

Creating a simple attached property
To add a new attached property to your class

1. Add a new static property to your class with a chosen name, a public getter and private setter. Declare the
property type as Attached<T> where T is the desired type of your attached property (see AttachedT).

2. Mark your new property with the AttachedPropertyAttribute attribute.

[AttachedProperty]
publicstatic Attached<Dock> Dock { get; set; }

Using the dependency property
After you have marked your property with the AttachedPropertyAttribute attribute, you can directly start to use it in
XAML. For example, you can set the value of the property on any object using the attached property syntax in XAML.

<MyDockPanel><CheckBoxMyDockPanel.Dock="Top">Hello</CheckBox></MyDockPanel>

You can also read and write the property value on any object in C# by using the Attached.GetValue(Dependency-
Object) and Attached.SetValue(DependencyObject, UTP) methods.

MyDockPanel.Dock.SetValue(this.HelloCheckBox, Dock.Top);

To get a DependencyProperty instance that is backing your attached property, read the value of the
AttachedTRuntimeProperty property.

MyDockPanel.Dock.RuntimeProperty.OverrideMetadata(typeof(MyPropertiesListView), new PropertyMetadata(Dock.Right)));

39. https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/attached-properties-overview

MVVM Light

221

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/attached-properties-overview
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/attached-properties-overview

PART 9

Parent/Child, Visitor and
Disposable

CHAPTER 35

Annotating an Object Model for Parent/
Child Relationships (Aggregatable)

PostSharp provides several custom attributes that you can apply to your object model to describe the parent-child
relationships in a natural and concise way. The AggregatableAttribute aspect is applied to the object model classes, and
the properties are marked with ChildAttribute, ReferenceAttribute and ParentAttribute custom attributes. You can
also use AdvisableCollectionT and AdvisableDictionaryTKey, TValue classes to make your collection properties aware
of the Aggregatable pattern.
Below you can find a detailed walkthrough on how to add parent-child relationships implementation into existing object
models.

To apply the Aggregatable to an object model:
1. Add the PostSharp.Patterns.Model package to your project.

2. Add the AggregatableAttribute aspect to all base classes. Note that the aspect is inherited, so it is not necessary
to explicitly add the aspect to classes that derive from a class that already has the aspect. Note also that
AggregatableAttribute aspect is implicitly added by other aspects, including all threading models (Thread-
AwareAttribute), DisposableAttribute and RecordableAttribute.

NOTE
It is not strictly necessary to add the AggregatableAttribute aspect to a class whose instances will be children
but not parents unless you want to track the relationship to the parent using the IAggregatableParent property
or the ParentAttribute custom attribute in this class (see below).

3. Annotate fields and automatic properties of all aggregatable classes with the ChildAttribute or Reference-
Attribute custom attribute. Fields or properties of a value type must not be annotated.

4. Collections require special attention:
◦ Modify the code to use AdvisableCollectionT, AdvisableDictionaryTKey, TValue or Advisable-

KeyedCollectionTKey, TItem instead of standard .NET collections for children fields. This change is
necessary because all objects assigned to children fields/properties must be aware of the Aggregatable
pattern.

◦ By default, PostSharp considers that items of child collections will be child objects of the collection. If the
collection itself is a child but its items should be considered as references, set the Child-
AttributeItemsRelationship property to RelationshipKind.Reference.

See Working With Child Collections on page 233 for details.

MVVM Light

225

5. Optionally, add a field or property to link back from the child object to the parent, and add the ParentAttribute
to this field/property. PostSharp will automatically update this field or property to make sure it refers to the parent
object.

TIP
For better encapsulation, setters of parent properties should have private visibility. In case of parent fields, the
private visibility is preferred. User code should not manually set a parent field or property.

Example
In the following examples, an Invoice object owns several instances of the InvoiceLine class, therefore both classes
must be annotated with AggregatableAttribute. However, the Invoice does not own the Customer to which it is
associated, so the Customer class does not need the custom attribute.

Note that in the constructor of the Invoice class, we assign an AdvisableCollectionT to the Lines field instead of a
List.

[Aggregatable]
publicclass Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

[Reference]
public Customer Customer { get; set; }

[Child]
public IList<InvoiceLine> Lines { get; privateset; }

[Child]
public Address DeliveryAddress { get; set; }

}

[Aggregatable]
publicclass InvoiceLine
{

[Reference]
private Product product;

publicdecimal Amount { get; set; }

[Parent]
public Invoice ParentInvoice { get; privateset; }

}

[Aggregatable]
publicclass Address
{
}

publicclass Customer
{
}

Annotating an Object Model for Parent/Child Relationships (Aggregatable)

226

35.1. Rule-Based Annotation
There are times where you cannot or don't want to add custom attributes manually.
For instance, you cannot add any custom attribute to an auto-generated field backing a XAML element. The WPF designer
generates C# code from your XAML files and stores them in i.g.cs files hidden in the obj folder. You cannot modify these
files directly.
Another scenario is when you have a large amount of fields and don't want to annotate each of them individually.
Field rules allow you to annotate a field as a child or a reference programmatically, without adding a custom attribute to
each field manually.
In the following example, let's consider a class where PostSharp shows an error message COM002: “Field/property Invoice-
Line.product must be annotated with a custom attribute [Child], [Reference] or [Parent].”

[Aggregatable]
publicclass InvoiceLine
{

private Product product;

publicdecimal Amount { get; set; }
}

To automatically mark all fields as references by default:
1. Create a class inherited from the FieldRule class.

publicclass RefererenceFieldRule : FieldRule

2. Override the GetRelationshipInfo(FieldInfo) method. PostSharp calls the GetRelationshipInfo(FieldInfo)
method for each field that is not annotated with the ChildAttribute, ReferenceAttribute or ParentAttribute
custom attribute. The GetRelationshipInfo(FieldInfo) method allows you to specify the field relationship by
returning a RelationshipInfo instance.

publicoverride RelationshipInfo? GetRelationshipInfo(FieldInfo field)
{

returnnew RelationshipInfo(RelationshipKind.None, RelationshipKind.Reference);
}

3. Decorate your project’s assembly with a RegisterFieldRuleAttribute custom attribute to activate your field
rule.

[assembly: RegisterFieldRule(typeof(RefererenceFieldRule))]

CAUTION NOTE
You have to mark each project assembly to make your FieldRule active in the whole solution.

Now PostSharp considers all fields without any Parent-Child annotation as a reference and doesn’t show any error for the
product field.

Rule-Based Annotation

227

NOTE
PostSharp has two built-in rules: one rule for auto-generated WinForms fields and one rule for auto-generated XAML fields.

<Windowx:Class="WpfApp.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"><Grid><Buttonx:Name="myButton"/></Grid>f
</Window>

In this example, the WPF designer generates a myButton field to a MainWindow class. Both the myButton field and the MainWindow class are indirectly inherited from System.Windows.Controls.
Control40. The built-in rule annotates the myButton field as a reference automatically.

40. https://msdn.microsoft.com/en-us/library/system.windows.controls.control.aspx

Annotating an Object Model for Parent/Child Relationships (Aggregatable)

228

https://msdn.microsoft.com/en-us/library/system.windows.controls.control.aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.control.aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.control.aspx

CHAPTER 36

Enumerating Child Objects (Visitor)

After you have declared the structure of your object graph on page 225, you will want to make use of it.
Both the ChildAttribute and ParentAttribute can be used to declare parent-child relationships for other patterns such
as Undo/Redo (RecordableAttribute) or threading models (ImmutableAttribute, FreezableAttribute, ...).

You can also use the Aggregatable pattern from your own code. The functionalities of this pattern are exposed by the
IAggregatable interface, which all aggregatable object automatically implement. This interface allows you to execute a
Visitor method against all child objects of a parent.
In the following example, we see how to implement recursive validation for an object model. We will assume that the
InvoiceLine and Address line implement an IValidatable interface.

To enumerate all child objects of a parent:
1. Cast the parent object to the IAggregatable interface.

var invoice = new Invoice();
IAggregatable aggregatable = (IAggregatable) invoice;

NOTE
The IAggregatable interface will be injected into the Invoice class after compilation. Tools that are not aware of
PostSharp may incorrectly report that the Invoice class does not implement the IAggregatable interface.
Instead of using the cast operator, you can also use the CastSourceType, TargetType(SourceType) method.
This method is faster and safer than the cast operator because it is verified and compiled by PostSharp at build
time.

NOTE
If you are attempting to access IAggregatable members on either AdvisableCollectionT or Advisable-
DictionaryTKey, TValue you will not be able to use the cast operator or the CastSourceType, Target-
Type(SourceType) method. Instead, you will have to use the QueryInterfaceT(Object, Boolean) extension
method.

Rule-Based Annotation

229

2. Invoke the VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method and pass a delegate to the
method to be executed.

var invoice = new Invoice();
IAggregatable aggregatable = invoice.QueryInterface<IAggregatable>();
int errors = 0;
bool isValid = aggregatable.VisitChildren((child, childInfo) =>

{
var validatable = child as IValidatable;
if (validatable != null)
{

if (!validatable.Validate())
errors++;

}
returntrue;

});

NOTE
The visitor must return a true to continue the enumeration and false to stop the enumeration.

Enumerating Child Objects (Visitor)

230

CHAPTER 37

Automatically Disposing Children Objects
(Disposable)

When you are working with hierarchies of objects, you sometimes run into situations where you need to properly dispose of
an object. Not only will you need to dispose of that object, but you likely will need to walk the object tree and recursively
dispose of children of that object. To do this, we typically implement the IDisposable pattern and manually code the steps
required to shut down the desired objects, and call the Dispose method on other children objects. This cascading of
disposals takes a lot of effort and it is prone to mistakes and omissions.
The DisposableAttribute aspect relies on the AggregatableAttribute aspect and, as a result, is able to make use of the
VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method to cascade disposals through child objects.

This topic contains the following sections:
• Disposing of object trees on page 231
• Customizing the Dispose logic on page 232

Disposing of object trees
To automatically implement the IDisposable interface:

1. Add a reference to the PostSharp.Patterns.Model package.

2. On the top level object add the DisposableAttribute.

3. Annotate the object model as described in Parent/Child, Visitor and Disposable on page 223.

NOTE
Fields that are marked as children but are assigned to an object that does not implement IDisposable (either
manually or through DisposableAttribute) will simply be ignored during disposal.

NOTE
Items of child collections will be automatically disposed of as well unless items of child collections are considered as
references. See Working With Child Collections on page 233 for details.

Example
In this example, the HomeMadeLogger class has two fields, _stream and _textWriter, which should also be disposed of
when the HomeMadeLogger is disposed of.

[Disposable]
publicclass HomeMadeLogger
{

[Child]
private TextWriter _textWriter;
[Child]

Rule-Based Annotation

231

private Stream _stream;
[Reference]
private MessageFormatter _formatter;

public HomeMadeLogger(MessageFormatter formatter)
{

_formatter = formatter;
_stream = new FileStream("our.log", FileMode.Append);
_textWriter = new StreamWriter(_stream);

}

publicvoid Debug(string message)
{

_textWriter.WriteLine(_formatter.Format(message));
}

}

The _stream and _textWriter child objects will now have their Dispose() method called automatically when the Home-
MadeLogger is disposed of. Since both the _stream and _textWriter objects are framework types that already
implement IDisposable, adding the DisposableAttribute aspect to those object types is not necessary.

Customizing the Dispose logic
There will be times when you have objects that need custom disposal logic. At the same time, you may want to
implement a parent child relationship and make use of the DisposableAttribute. PostSharp allows you to combine
custom and automatic logic.
To add your own logic to the Dispose method, create a method with exactly the following signature:

protectedvirtualvoid Dispose(bool disposing)
{
}

CAUTION NOTE
The DisposableAttribute aspect does not automatically dispose of the object when it is garbage collected. That is,
the aspect does not implement a destructor. If you need a destructor, you have to do it manually and invoke the
Dispose.

Example
In the following example, we are customizing the Dispose pattern to expose the IsDispose property:

[Disposable]
publicclass HomeMadeLogger
{

publicbool IsDisposed { get; privateset; }

protectedvirtualvoid Dispose(bool disposing)
{

this.IsDisposed = true;
}

}

Once you have done this, PostSharp will properly run your custom Dispose logic as well as running any of the parent
and child implementations of the DisposableAttribute that exist for the object.

Automatically Disposing Children Objects (Disposable)

232

CHAPTER 38

Working With Child Collections

It would not be possible to implement the Aggregatable pattern without support for collection classes. However, collections
of the .NET base class libraries cannot be reliably extended to support the Aggregatable pattern. Therefore, code that
implements the Aggregatable pattern must rely on collection classes defined by PostSharp, namely AdvisableCollectionT,
AdvisableDictionaryTKey, TValue, AdvisableKeyedCollectionTKey, TItem and AdvisableHashSetT.

This topic contains the following sections:
• Why yet other collection types? on page 233
• Replacing standard collections with advisable collections on page 234
• Casting advisable collections on page 234
• Parent surrogates on page 235
• Enumerating children and parent surrogates on page 236
• Collections of references on page 236
• Using immutable collections on page 236

Why yet other collection types?
In the following example, an Invoice entity is composed of one instance of the Invoice class and several instances of
the InvoiceLine class. The relationship between the Invoice and InvoiceLine classes is implemented using a
collection.

[Aggregatable]
publicclass Invoice
{

public Invoice()
{

this.Lines = new List<InvoiceLine>();
}

[Child]
public IList<InvoiceLine> Lines { get; privateset; }

}

[Aggregatable]
publicclass InvoiceLine
{
}

When we add a new element to the Lines collection, we also need to update the parent-child relationship between the
corresponding invoice and invoice line. It is not possible to do this with the standard ListT class, so we need to build a
specialized aggregatable collection class instead. However, we may later decide to apply another pattern to our object
model, such as a threading model or undo/redo. This new pattern would, in turn, require support from the collection
class. Creating new collection classes for each pattern (and potentially for each pattern combination) is clearly
unmanageable.
Instead of providing a new collection class for each specific behavior we need to inject, PostSharp introduces the
concept of advisable collections. Advisable collections are collection classes into which PostSharp can inject behavior
dynamically, at run time, according to the field to which they are assigned. Advisable collections are a way to make the
collection "inherit" the pattern of the parent class

Rule-Based Annotation

233

Let's modify our previous example to work correctly with the Aggregatable aspect.

[Aggregatable]
publicclass Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

[Child]
public IList<InvoiceLine> Lines { get; privateset; }

}

[Aggregatable]
publicclass InvoiceLine
{
}

As you can see, the only change we made is using AdvisableCollectionT class instead of ListT. The Aggregatable
aspect applied to the Invoice class detects that the child property is an advisable collection and applies dynamic
Aggregatable advice to the collection instance at run time. This turns our collection of invoice lines into an aggregatable
collection. If we apply another aspect to the Invoice class later, it can add new behaviors to this collection in the same
way.

Replacing standard collections with advisable collections
The PostSharp.Patterns.Collections namespace defines advisable collection classes that are highly compatible with
the collection types of the .NET base class libraries.
The following table shows how advisable collections map to standard collections.

Advisable collection Replacement for
AdvisableCollectionT Array, ListT, CollectionT, ObservableCollectionT

AdvisableDictionaryTKey, TValue DictionaryTKey, TValue

AdvisableKeyedCollectionTKey, TItem KeyedCollectionTKey, TItem

CAUTION NOTE
Interfaces IReadOnlyListT and IReadOnlyCollectionT are not implemented.

Casting advisable collections
Patterns such as Aggregatable, Recordable or Threading Models dynamically inject advices into advisable collections.
These advices typically expose an interface, respectively IAggregatable, IRecordable and IThreadAware. Because
interfaces are introduced at run-time and not at build-time, you cannot use the normal type casting constructs to access
the interface members.
Instead of a normal cast, you can use the QueryInterfaceT(Object, Boolean) extension method to access interfaces
implemented by the given instance. This method will return the proper interface implementation irrespective how the
interface is implemented: directly in the source code, introduced by PostSharp aspect at build time, or added
dynamically at run time.
The following code snippet gets the IAggregatable interface of the Lines collection in the example above:

IAggregatable aggregatable = invoice.Lines.QueryInterface<IAggregatable>();

Working With Child Collections

234

By default, the QueryInterfaceT(Object, Boolean) method throws InvalidCastException if the given instance
doesn't implement the queried interface. You can also safely check whether the interface is implemented by passing
false as a method argument.

if (collection.QueryInterface<IAggregatable>(false) != null)
{
}

Parent surrogates
Collections play a special role in implementing the parent-child relationships between classes. Collections are often
instruments instead of first-class entities of the object model. When enumerating children of a class, one generally
wants to avoid the collections themselves to be returned, but only items of these collections. Additionally, the Parent
property of a child object should typically refer to the parent entity and not to the collection that contains the child.
Consider the following example:

[Aggregatable]
publicclass Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

[Child]
public IList<InvoiceLine> Lines { get; privateset; }

}

[Aggregatable]
publicclass InvoiceLine
{

[Parent]
public Invoice Invoice { get; privateset; }

}

The Invoice class contains a collection of InvoiceLine instances. We want each item of the Lines collection to be a
child of the Invoice instance. However, the collection itself should not be considered a child of the Invoice.
Additionally, we want the InvoiceLine.Invoice property to be set to the Invoice, not to the collection.

To implement this behavior, PostSharp needs to give a different status to collections than to other entities. This concept
is named a parent surrogate, because the collection acts as a surrogate (or proxy) between the parent and its children.
Any aggregatable object can act as a parent surrogate, but only collections act as parent surrogates by default. You can
override the default behavior by setting the ChildAttributeIsParentSurrogate property.

In the next example, the Lines collection will be treated as a first-class entity.

[Aggregatable]
publicclass Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

[Child(IsParentSurrogate = false)]
public IList<InvoiceLine> Lines { get; privateset; }

}

[Aggregatable]
publicclass InvoiceLine
{

[Parent]

Rule-Based Annotation

235

public IList<InvoiceLine> Parent { get; privateset; }
}

To cause a custom class to behave like a parent surrogate by default, set the IsParentSurrogate property of the
AggregatableAttribute applied to your class to true. In this case, it's not allowed to override the value in the [Child]
attributes applied to individual properties.

[AggregatableAttribute(IsParentSurrogate = false)]

Enumerating children and parent surrogates
The default behavior of the VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method is to skip the
surrogate collection itself and invoke the ChildVisitor delegate on each item of the collection. In our first example,
calling the VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method on the Invoice instance will
invoke the visitor on the items of the Lines collection, but not on the collection instance itself.

You can customize this behavior by providing one or more flags for the ChildVisitorOptions parameter of the
method. The ChildVisitorOptions.IncludeParentSurrogates flag will cause the visitor to be additionally invoked on
the instances of the surrogate collections, while the ChildVisitorOptions.ExcludeIndirectChildren flag will exclude
the items of such collection from being visited.

Collections of references
As we showed earlier, when you annotate the collection property with the [Child] attribute, collection items become
children of the class instance.
In certain situations, you may want to have a collection of references. The collection itself is still marked with the
[Child] custom attribute because it would make sense from the point of view of other patterns (for instance, changes
in the collection must be recorded by the Recordable pattern). However, the collection items themselves must not be
considered children of the entity.
To implement this requirement, you can set the ChildAttributeItemsRelationship property to RelationshipKind.
Reference.

In the example below, the RelatedOrders collection is a child and therefore its changes are being recorded by the
Recordable aspect. However, collection items are not children of the parent entity, because related orders do not
belong to the invoice.

[Recordable]
publicclass Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
this.RelatedOrders = new AdvisableCollection<Order>();

}

[Child]
public IList<InvoiceLine> Lines { get; privateset; }

[Child(ItemsRelationship = RelationshipKind.Reference)]
public IList<Order> RelatedOrders { get; privateset; }

}

Using immutable collections
In section Working With Child Collections on page 233, we explained the need to replace standard .NET collections by
special advisable collections of the PostSharp.Patterns.Collections namespace. These collections come with a
significant inconvenient: they have a significant performance and memory overhead. In many situations, collections can
be replaced by immutable collections. Immutable collections are collections whose content never changes after instan-

Working With Child Collections

236

tiation. Adequate use of immutable collections can significantly improve application performance and simplify API
design compared to mutable collections, whether standard or advisable.
Immutable collections are implemented in the System.Collections.Immutable namespace, contained in the System.
Collections.Immutable NuGet package.

The Aggregatable pattern and threading models support immutable collections. When you assign an immutable
collection to a child field of a parent object, items of the collection become children of the parent object. Immutable
collections behave similarly than other types, so you still have to use the ChildAttribute and ReferenceAttribute
custom attributes as usual.

Rule-Based Annotation

237

PART 10

Undo/Redo

CHAPTER 39

Making Your Model Recordable

To make an object usable for undo/redo operations, you will need to add the RecordableAttribute aspect to the class.
This aspect instruments changes to fields and records them into a Recorder. The aspect also instruments public methods to
group field changes into logical operations.

To make the class recordable:
1. Add the PostSharp.Patterns.Model package to the project.
2. Add the RecordableAttribute to the class.

3. Annotate your object model for parent/child relationships as explained in Parent/Child, Visitor and
Disposable on page 223.

Example
The following example shows an object model that has been prepared for undo/redo.

[Recordable]
publicclass Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

[Reference]
public Customer Customer { get; set; }

[Child]
public IList<InvoiceLine> Lines { get; privateset; }

[Child]
public Address DeliveryAddress { get; set; }

}

[Recordable]
publicclass InvoiceLine
{

[Reference]
private Product product;

publicdecimal Amount { get; set; }

[Parent]
public Invoice ParentInvoice { get; privateset; }

}

[Recordable]
publicclass Address
{
}

[Recordable]
publicclass Customer

Rule-Based Annotation

241

{
}

By adding the RecordableAttribute aspect to the classes, all modifications to properties of these classes (including
modifications to child collections) will be recorded.

Making Your Model Recordable

242

CHAPTER 40

Adding Undo/Redo to the User Interface

The Undo/Redo functionality that you added to your codebase needs to be made available to the users. Users will want to
have the ability to move forward and backward through the operations that they too and have been recorded.
This topic contains the following sections:

• Using the ready-made WPF controls on page 243
• Clearing the initial history on page 244
• Creating custom undo/redo controls on page 244

Using the ready-made WPF controls
PostSharp includes two button controls UndoButton and RedoButton that you can add to your application.

To add Undo/Redo to a WPF window:
1. Install the PostSharp.Patterns.Xaml package using NuGet.
2. Add the following namespace declaration to the root element of your XAML file:

xmlns:model="clr-namespace:PostSharp.Patterns.Xaml;assembly=PostSharp.Patterns.Xaml"

3. To add Undo and Redo buttons to the user interface, including the following two lines of XAML.

<model:UndoButton HorizontalAlignment="Left" Margin="22,24,0,0" VerticalAlignment="Top" />
<model:RedoButton HorizontalAlignment="Left" Margin="64,24,0,0" VerticalAlignment="Top"/>

Your users are now able to make a changes in the user interface and Undo and/or Redo those changes at any
point that they want.

Rule-Based Annotation

243

Clearing the initial history
If we were to open the Customer management screen you would notice that the Undo button has a number of actions
listed under it.

Those actions are listing the changes that were taken when the different Person instances were loaded and their
properties were set. Most users will only want to see actions that they have manually taken in the screen. As such, you
will need to manually interact with the Recorder to ensure that the Undo button list is empty when the window opens.

To provide an empty list of recorded actions when the window is initially opened, open the ViewModelMain class and
find the constructor. Add the following as the last line in the constructor:

RecordingServices.DefaultRecorder.Clear();

The Recorder class is accessed through the RecordingServicesDefaultRecorder property. This property contains the
current Recorder instance that is being used by the RecordableAttribute aspect. The Recorder class has two
collections, UndoOperations and RedoOperations, which contain all of the past operations that can be undone and
redone. The Clear method removes all operations from both of those collections.

Now when you open the Customer management screen both the Undo and Redo buttons will show no history. This is
the simplest type of Undo/Redo implementation that you can do. It will record each property change operation
separately in the Undo and Redo UI buttons which probably isn’t what you, or your users, will want to see. Read
Customizing Undo/Redo Operation Names on page 245 to learn how to record groupings of operations that make
sense to your business users.

Creating custom undo/redo controls
If the buttons provided by PostSharp don't meet your requirements, you can create your own controls for WPF,
Windows Phone or WinRT.
Custom controls will typically provide a front-end to the global Recorder exposed on the RecordingServicesDefault-
Recorder property, and we provide a view for the UndoOperations and RedoOperations collections. Controls typically
use the RecorderUndo and RecorderRedo methods.

Adding Undo/Redo to the User Interface

244

CHAPTER 41

Customizing Undo/Redo Operation Names

The example of previous sections displays the list of operations appearing in the two UI buttons. That list of operations
references the setters on the different individual properties in a very technical manner, for instance the operation of setting
the first name is named set_FirstName, according to the name of the property in source code.

End users will want to see the operations described in meaningful business terms, not technical ones. This article will show
you how to explicitly name the recording operations that will take place in your code.
This topic contains the following sections:

• Default operation naming algorithm on page 245
• Setting the operation name declaratively on page 246
• Setting the operation scope and name dynamically on page 246
• Using the OperationFormatter class on page 247

Default operation naming algorithm
From the end user's perspective, the undo/redo feature exposes a flat list of operations that can be undone or redone.
From a system perspective, an operation is composed of changes to individual fields and collections. For instance,
moving a picture on a design surface is seen as a single operation Move by the user, but it is composed of two changes
in fields x and y.

Let's see this in a code example:

[Recordable]
publicclass Picture
{

privatedouble x, y;

publicdouble X
{

get { return x; }
set { x = value; }

}

publicdouble Y
{

get { return y; }
set { y = value; }

}

publicvoid Move(double x, double y)
{

this.X = x;
this.Y = y;

}

}

publicstaticclass Program
{

publicstaticvoid Main()
{

var picture = new Picture();

Rule-Based Annotation

245

picture.Move(10, 10);

// 1 undo operation at this point: Move.

picture.X = 20;

// 2 undo operations at this point: set_X, Move.

picture.Y = 20;

// 3 undo operations at this point: set_Y, set_X, Move.
}

}

By default, the RecordableAttribute aspect will automatically open a new operation for any public method unless the
current Recorder already has an open operation. Therefore, invoking the Move method results in a single operation,
even if it modifies two fields. Note that the Move method invokes the setters of public properties X and Y, which are
themselves public methods, but they do not open new operations since they run from within the Move method.
However, when properties X and Y are accessed from outside of the Picture class, new operations are created for the
set_X and set_Y methods.

Setting the operation name declaratively
By default, the name of an operation is set to the name of the method. There are various ways to customize this name,
and the easiest is to add a RecordingScopeAttribute custom attribute to the public method.

In the following example, we're declaring a different name for the Move method:

[Recordable]
publicclass Picture
{

privatedouble x, y;

[RecordingScope("Moving the picture")]
publicvoid Move(double x, double y)
{

this.x = x;
this.y = y;

}

}

With that RecordingScopeAttribute added, the recorded operation will now have a name of Moving the picture
instead of just Move.

Setting the operation scope and name dynamically
Setting the operation name declaratively is convenient but relatively rigid. When more flexibility is needed, you can use
the RecorderOpenScope(String, RecordingScopeOption) method to control the creation and naming of scopes.

In the following example, we will modify the Move method to include the target position in the operation description.

Customizing Undo/Redo Operation Names

246

To dynamically name an operation:
1. Add the [RecordingScope(RecordingScopeOption.Skip)] custom attribute to the method, so that the

method does not automatically define a new operation.

NOTE
This step is not required if you are starting the operation from a non-recordable object.
However, if you do not to add this custom attribute to a method of a recordable object, the Recordable-
Attribute aspect will automatically create a new scope to execute the method, and your call of the Open-
Scope(String, RecordingScopeOption) method will be ignored.

2. Invoke the OpenScope(String, RecordingScopeOption) method and wrap the code you want to record in a
using block.

Example
[Recordable]
publicclass Picture
{

privatedouble x, y;

[RecordingScope(RecordingScopeOption.Skip)]
publicvoid Move(double x, double y)
{

string scopeName = string.Format("Moving to ({0}, {1})", x, y);

using (RecordingScope scope = RecordingServices.DefaultRecorder.OpenScope(scopeName))
{

this.x = x;
this.y = y;

}
}

}

Using the OperationFormatter class
Explicitly declaring the name for every operation would be a large and tedious task. It is possible to write your own
naming engine and apply that set of naming rules across the entire application. To achieve this, derive your own
implementation from the OperationFormatter class. to the

In the following example, we will create a custom formatter that reads the operation name from the DisplayName-
Attribute custom attribute and display the value to which a property has been set.

To create and register a custom OperationFormatter:
1. Create a new class and inherit from the OperationFormatter class.

2. Create a constructor for the new formatter class.

Rule-Based Annotation

247

3. Override the FormatOperationDescriptor(IOperationDescriptor) method and write your custom logic for
generating a custom operation name.

NOTE
Formatters create a chain of responsibility. If one formatter is unable to provide a name it will ask the next
formatter in the chain to attempt to provide a name. To make the hand-off occur the FormatOperation-
Descriptor(IOperationDescriptor) method needs to return null. If it returns anything else the chain is
broken and the returned value is used as a name.

4. Finally, you need to add your custom name formatter into the chain of responsibility.

RecordingServices.OperationFormatter = new MyOperationFormatter(RecordingServices.OperationFormatter);

Because the RecordingServices is making use of a chain of responsibility, you are able to insert as many
custom name formatters as you want. You are also able to determine their order of execution based on the
order that you insert them into the chain of responsibility.

Example
class MyOperationFormatter : OperationFormatter
{

public MyOperationFormatter(OperationFormatter next) : base(next)
{
}

protectedoverridestring FormatOperationDescriptor(IOperationDescriptor operation)
{

if (operation.OperationKind != OperationKind.Method)
returnnull;

var descriptor = (MethodExecutionOperationDescriptor) operation;

if (descriptor.Method.IsSpecialName && descriptor.Method.Name.StartsWith("set_"))
{

// We have a property setter.var property = descriptor.Method.DeclaringType.GetProperty(
descriptor.Method.Name.Substring(4),
BindingFlags.Instance|BindingFlags.Public|BindingFlags.NonPublic);

var attributes =
(DisplayNameAttribute[]) property.GetCustomAttributes(typeof(DisplayNameAttribute), false);

if (attributes.Length > 0)
returnstring.Format("Set {0} to {1}", attributes[0].DisplayName, descriptor.Arguments[0] ?? "null");

}
else
{

// We have another method.var attributes = (DisplayNameAttribute[])
descriptor.Method.GetCustomAttributes(typeof(DisplayNameAttribute), false);

if (attributes.Length > 0)
return attributes[0].DisplayName;

}

returnnull;
}

}

Customizing Undo/Redo Operation Names

248

CHAPTER 42

Assigning Recorders Manually

By default, all recordable objects are attached to the global Recorder exposed on the RecordingServicesDefaultRecorder
property. There is nothing you have to do to make this happen. There may be circumstances where you want to create and
assign your own recorder to the undo/redo process. There are two different ways that you can accomplish this.
This topic contains the following sections:

• Overriding the default RecorderProvider on page 249
• Attaching a recorder manually on page 250

Overriding the default RecorderProvider
By default, the RecordableAttribute aspect attaches an object to a Recorder as soon as its constructor exits. To
determine which Recorder should be used, the aspect uses the RecordingServicesRecorderProvider service. By
default, this service always serves the global instance that is also exposed on the RecordingServicesDefaultRecorder
property.
You can override this automatic assignment to inject your own RecorderProvider to into the process.

To use a custom RecorderProvider:
1. Create a class inherited from the RecorderProvider class.

2. Implement the chaining constructor. The RecorderProvider that you inherited from requires a Recorder-
Provider as a constructor parameter. This constructor parameter facilitates the chain of responsibility for
providers that can be run when a Recorder is requested. To keep the chain of responsibility intact your custom
RecorderProvider will need to accept a RecorderProvider in its constructor and pass that to the base
constructor.

3. Override the GetRecorderCore(Object) method.

4. Insert an instance of your custom RecorderProvider class into the chain of responsibility by assigning it to the
RecordingServicesRecorderProvider.

RecordingServices.RecorderProvider = new MyProvider(RecordingServices.RecorderProvider);

NOTE
RecorderProvider is a chain of responsibility. As such, if a GetRecorderCore(Object) method returns null then the
chain will move on to the next RecorderProvider and attempt to get a Recorder to use.

By overriding the default RecorderProvider you are able to assign a custom Recorder across the entire application.

Example
publicclass ThreadStaticRecorderProvider : RecorderProvider
{

privatestatic Recorder _recorder;

Rule-Based Annotation

249

public ThreadStaticRecorderProvider(RecorderProvider next) : base(next)
{
}

public Recorder GetRecorderImpl(object obj)
{

if (_recorder == null)
{

_recorder = new Recorder();
}

return _recorder;
}

}

Attaching a recorder manually
The second way that you can add a Recorder to objects is to manually assign them when, and where, they are needed.

To manually assign a Recorder to an object:
1. Set the RecordableAttributeAutoRecord property to false for that class.

[Recordable(AutoRecord = false)]
publicclass Invoice
{
}

NOTE
By disabling AutoRecord you are telling the RecordingServices that this object should not be included in
recordings unless the recording is explicitly declared in your code.

2. Create a new instance of a Recorder and attach the object to it using the Attach(Object) method.

var invoice = new Invoice();

var recorder = new Recorder();
recorder.Attach(invoice);

You can then use the Detach(Object) method to remove the Recorder from the object in question.

NOTE
An object must always have the same Recorder as its parent has unless the parent has no Recorder assigned. Because
of this, whenever a Recorder is assigned to an object, all of the child objects will have that same Recorder assigned to
them. However, if you detach a child object from its parent the child object's assigned Recorder will not be detached.
For more information about parent-child relationships, see Parent/Child, Visitor and Disposable on page 223.

Assigning Recorders Manually

250

CHAPTER 43

Adding Callbacks on Undo and Redo

You may run into situations where you will want to execute some code before or after an object is being modified by an
Undo or Redo operation. This capability is provided through the IRecordableCallback interface.

In the following example, we will show how to integrate the RecordableAttribute aspect with a custom implementation of
INotifyPropertyChanged (the standard NotifyPropertyChangedAttribute aspect is already integrated with the
RecordableAttribute aspect so you don't need to worry).

[Recordable]
publicclass Invoice : INotifyPropertyChanged, IRecordableCallback
{

publicvoid OnReplaying(ReplayKind kind, ReplayContext context)
{
}

publicvoid OnReplayed(ReplayKind kind, ReplayContext context)
{

OnPropertyChanged("ShippingDate");
}

private DateTime _shippingDate;
public DateTime ShippingDate
{

get { return _shippingDate; }
set
{

_shippingDate = value;
OnPropertyChanged("ShippingDate");

}
}

publicevent PropertyChangedEventHandler PropertyChanged;

protectedvirtualvoid OnPropertyChanged(string propertyName = null)
{

var handler = PropertyChanged;
if (handler != null) handler(this, new PropertyChangedEventArgs(propertyName));

}
}

For more information, see the reference documentation for the IRecordableCallback interface.

Rule-Based Annotation

251

Adding Callbacks on Undo and Redo

252

CHAPTER 44

Understanding the Recordable Aspect

This section describes how the RecordableAttribute aspect is implemented. It helps developers and architects to
understand the behavior and limitations of the aspect.
This topic contains the following sections:

• Overview on page 253
• Scopes and Logical Operations on page 253
• Atomic Operations on page 254
• Primitive Operations on page 254
• Restore Points on page 255
• Implementing IEditableObject on page 0
• Callback Methods on page 255
• Memory Consumption on page 255

Overview
When the RecordableAttribute aspect is applied to a class, the aspect records changes performed on instances of this
class. Changes are represented as instances of the Operation class. For instance, the FieldOperationT class represents
the operation of changing the value to a field. All operations implement the Undo(ReplayContext) and Redo(Replay-
Context) methods. For instance, the FieldOperationT class stores both the new and old value so that the operation
can be undone and redone.
The changes are recorded into the Recorder object. The Recorder maintains two collections of operations: Undo-
Operations and RedoOperations. The RecorderUndo method takes the last operation from the UndoOperations
collection, invokes OperationUndo(ReplayContext) for this operation, and moves the operation to the RedoOperations
collection. The RecorderUndo method works symmetrically.

It would not be safe, however, to allow users to undo changes in the object model back to any arbitrary point in history.
Users don't want to undo primitive changes to an object model, but to undo whole operations understood from a user's
perspective. This is why the UndoOperations and RedoOperations collections don't expose primitive changes on the
object model but logical operations.
By default, logical operations are automatically opened when calling a public or internal method of a recordable object,
and closed when the same method exits. The principal use case of scopes is to define user-friendly operation names.
There is typically a single instance of this class per application, but there could be many if needed (for instance in a
multi-document application). The default single instance is accessible from the RecordingServicesDefaultRecorder
property. By default, recordable objects are attached to the default recorder immediately after completion of the
constructor. See Assigning Recorders Manually on page 249 to learn how to customize this behavior.

Scopes and Logical Operations
Scopes are a mechanism to aggregate several primitive operations into logical operations that make sense for the end-
user. Logical operations are represented by the CompositeOperation class.

In general, logical operations form a flat structure: the UndoOperations and RedoOperations collections are flat double
linked lists, and each CompositeOperation typically contains primitive operations such as a field value change.

Rule-Based Annotation

253

Scopes define boundaries of logical operations. Scopes can be opened using the RecorderOpenScope(RecordingScope-
Option) method, which returns an object of type RecordingScope. This class implements the IDisposable interface,
making it convenient to define scopes with the using statement.

By default, the RecordableAttribute aspect encloses all instance public and internal methods with an implicit scope.
That is, by default, public and internal methods define boundaries of logical operations.
Unlike logical operations, scopes are generally nested. Scope nesting typically happens when a public method directly
or indirectly invokes another public method. In general, only the outermost scope results in creating a logical operation.
This is why, in general, logical operations form a flat structure.
Because they are visible to users, logical operations must be given a user-friendly name. PostSharp defines default
names that are not user-friendly. The responsibility of generating operation names is implemented by the Operation-
Formatter class. You can provide your own OperationFormatter to generate operations names on demand, or you can
set the name explicitly in source code for each operation.
Scope names can be declaratively defined using the RecordingScopeAttribute custom attribute, or programmatically
using the RecorderOpenScope(String, RecordingScopeOption) method. To learn more about operation names, see
Customizing Undo/Redo Operation Names on page 245.

Atomic Operations
Atomic scopes are scopes whose changes are automatically rolled back when it does not complete successfully, typically
when an exception occurs. The rollback is implemented using the undo mechanism. Atomic scopes are a similar concept
than transactions, but multithreading is not taken into account. Therefore, other threads may see changes that have not
been "committed", because the Recordable\ pattern does not have a notion of transaction isolation.
Atomic scopes cause composite operations to have a tree structure. However, the concept of atomic structure does not
surface to the users. Therefore, from a user's perspective, the UndoOperations and RedoOperations collections still
present linear lists of logical operations.
Scope defined declaratively using the RecordingScopeAttribute custom attribute, or programmatically using the
RecorderOpenScope(RecordingScopeOption) method.

Primitive Operations
The following table lists the primitive operations that are automatically appended to the Recorder object by the
RecordableAttribute aspect.

Class Description
FieldOperationT Represents the operation of setting a field to a different value.

CollectionOperationT Represents operations on collections.

DictionaryOperationTKey,
TValue

Represents operations on dictionaries.

RecorderOperation Represents the operation of attaching or detaching an object to or from a
Recorder.

Additionally to these system-defined operations, it is possible to implement custom operations by deriving from the
Operation abstract class. You can then use the RecorderAddOperation(Operation) method to append the custom
operation to the Recorder.

Logical operations, which are presented to the end user, are typically represented as instances of the Composite-
Operation class.

Understanding the Recordable Aspect

254

Restore Points
Restore points act like bookmarks in the list of operations. They allow to undo or redo operations up to a specific point.
You can use the RecorderAddRestorePoint(String) method to create a restore point. The method returns an instance
of the RestorePoint class, which derives from the Operation class. Unlike other operations, you can safely remove a
restore point from the history thanks to the Remove method.

Implementing IEditableObject
You can use the EditableObjectAttribute custom attribute to automatically implement the IEditableObject
interface. The implementation is based on the RecordableAttribute aspect. It creates a RestorePoint when the
BeginEdit method is invoked, removes the restore point upon EndEdit, and undoes changes up to the restore point
when CancelEdit is called.

Because of this implementation strategy, it is possible that CancelEdit actually cancels changes done to other objects
that share the same Recorder.

Callback Methods
The Recorder will invoke the OnReplaying(ReplayKind, ReplayContext) and OnReplayed(ReplayKind, Replay-
Context) methods of any recordable object implementing the IRecordableCallback interface, whenever the object is
affected by an undo or redo operation.
The order in which these methods are ordered on several objects is nondeterministic; in particular, the aggregation
structure is not respected.
It is not allowed, from a callback methods:

• to perform a change that would be recorded, e.g. to set a field that has not been waived from recording with
the NotRecordedAttribute custom attributes.

• to invoke methods Undo, Redo or AddRestorePoint of the Recorder class.

Memory Consumption
The UndoOperations and RedoOperations collections hold strong references to all objects that have changes that can
be undone or redone. This means that these objects cannot be garbage-collected and will remain in memory.
You can define the maximal number of operations available for undo thanks to the RecorderMaximumOperationsCount
property.

Rule-Based Annotation

255

PART 11

Caching

CHAPTER 45

Caching Method Return Values

Suppose you have a time-consuming method that always returns the same return value when called with the same
arguments. You decided to cache it. This topic describes how to proceed.
This topic contains the following sections:

• Caching the return value of a method on page 259
• Configuring the cache behavior on page 260
• Configuring caching with custom attributes on page 260
• Configuring caching with caching profiles on page 261
• Disabling caching at run time on page 262

Caching the return value of a method
To make a return value of a method being cached:

1. Add a reference to the PostSharp.Patterns.Caching package.
2. Add the CacheAttribute custom attribute on the method which should be cached. Such method is called the

cached method.
3. Now you need to specify which caching framework or caching server is to be used by the CacheAttribute

aspect. We call this the caching backend. You must specify the caching backend by setting the Caching-
ServicesDefaultBackend property. See Caching Back-Ends on page 275 for a list of caching backends.

IMPORTANT NOTE
The caching backend has to be set before any cached method is called for the first time.

4. Unless all method parameters are intrinsic types such as int or string, you need to ensure that the parameter
types generate a meaningful cache key. See Customizing Cache Keys on page 271 for details.

Example
In this example, the GetNumber method's return value is cached.

using System;
using System.Threading;
using PostSharp.Patterns.Caching;
using PostSharp.Patterns.Caching.Backends;

namespace PostSharp.Samples.Caching.MethodResults
{

class Program
{

staticvoid Main(string[] args)
{

CachingServices.DefaultBackend = new MemoryCachingBackend();

Console.WriteLine("Retrieving value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + GetNumber(1));

Rule-Based Annotation

259

https://www.nuget.org/packages/PostSharp.Patterns.Caching/

Console.WriteLine("Retrieving value of 1 for the 2nd time should NOT hit the database.");
Console.WriteLine("Retrieved: " + GetNumber(1));

Console.WriteLine("Retrieving value of 2 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + GetNumber(2));

Console.WriteLine("Retrieving value of 2 for the 2nd time should NOT hit the database.");
Console.WriteLine("Retrieved: " + GetNumber(2));

}

[Cache]
staticint GetNumber(int id)
{

Console.WriteLine($">> Retrieving {id} from the database...");
Thread.Sleep(1000);
return id;

}
}

}

The output of this sample is:

Retrieving value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: 1
Retrieving value of 1for the 2nd time should NOT hit the database.
Retrieved: 1
Retrieving value of 2for the 1st time should hit the database.
>> Retrieving 2from the database...
Retrieved: 2
Retrieving value of 2for the 2nd time should NOT hit the database.
Retrieved: 2

Configuring the cache behavior
The following elements of the CacheAttribute aspect behavior can be configured:

• expiration (absolute and sliding),
• priority,
• auto-reload, and
• enabled/disabled.

Configuring caching with custom attributes
You can configure the CacheAttribute aspect by setting the properties of the CacheAttribute custom attribute. The
inconvenience of this approach is that you have to repeat the configuration for each cached method. To configure
several methods in a single line of code, you can add the CacheConfigurationAttribute custom attribute to the
declaring type, a parent of the declaring type, or the declaring assembly.
When PostSharp processes the CacheAttribute aspect on a given method, it looks for configuration in the following
order.

1. the CacheAttribute itself,

2. a CacheConfigurationAttribute attribute on the declaring class of the cached method,

3. a CacheConfigurationAttribute attribute any parent class of the cached method (starting from the declaring
class to the parent class),

4. a CacheConfigurationAttribute added to the assembly declaring the cached method. Note that all Cache-
ConfigurationAttribute assembly-level attributes defined in a different assembly than the current one are
ignored.

Caching Method Return Values

260

5. the caching profile (see below).

Configuration is defined on a per-property basis. The value set of a property set by the highest item in the following list
wins.

Example
In the following account, the absolute expiration of cache items is set to 60 seconds for methods of the Account-
Services class, but to 20 seconds for the GetAccountsOfCustomer method.

using System;
using System.Collections.Generic;
using PostSharp.Patterns.Caching;

namespace PostSharp.Samples.Caching
{

[CacheConfiguration(AbsoluteExpiration = 60)]
class AccountServices
{

[Cache]
publicstatic Account GetAccount(int id)
{

// Detailed skipped.
}

[Cache(AbsoluteExpiration = 20)]
publicstatic IEnumerable<Account> GetAccountsOfCustomer(int customerId)
{

// Detailed skipped.
}

publicstaticvoid UpdateAccount(Account account)
{

// Detailed skipped.
}

}
}

Configuring caching with caching profiles
Using custom attributes to configure caching has two major inconveniences: it is hard to share caching configuration
between several classes that don't derive from the same parent, and the configuration cannot be modified at run time.
To work around these limitations, you can use caching profiles.
Caching profiles are useful in the following scenarios:

• to centralize the configuration of several cached methods (which may belong to different type hierarchies) into
a single location;

• to modify the configuration of cached methods (such as expiration settings) at run-time; and
• to completely disable or re-enable caching at run-time.

Caching profiles are represented by the CachingProfile class. They are exposed on the CachingServicesProfiles
property, which is a collection indexed by the profile name. The default caching profile is accessible via the Caching-
Services.Profiles.Default property.

NOTE
Configuration specified thanks to the CacheAttribute aspect and the CacheConfigurationAttribute custom
attribute have priority over the configuration of the CachingProfile.

Rule-Based Annotation

261

To use a caching profile:
1. Set the ProfileName property of the CacheAttribute aspect or the CacheConfigurationAttribute custom

attribute.
2. Configure the CachingProfile object exposed on the CachingServicesProfiles collection.

Example
The following code snippet sets the profile name to Account for all methods of the AccountServices class.

using System;
using System.Collections.Generic;
using System.Threading;
using PostSharp.Patterns.Caching;

namespace PostSharp.Samples.Caching
{

[CacheConfiguration(ProfileName = "Account")]
class AccountServices
{

[Cache]
publicstatic Account GetAccount(int id)
{

// Details skipped.
}

[Cache]
publicstatic IEnumerable<Account> GetAccountsOfCustomer(int customerId)
{

// Details skipped.
}

publicstaticvoid UpdateAccount(Account account)
{

// Details skipped.
}

}
}

The following code snippet sets the absolute expiration to 60 seconds for all methods using the Account profile.

CachingServices.Profiles["Account"].AbsoluteExpiration = TimeSpan.FromSeconds(60);

Disabling caching at run time
You can disable caching at run time by setting the IsEnabled property of a caching profile to false, for instance:

CachingServices.Profiles.Default.IsEnabled = false;
CachingServices.Profiles["Account"].IsEnabled = false;

Caching Method Return Values

262

CHAPTER 46

Removing Items From the Cache

When a method updates an entity, it must also remove any cache item that depends on this entity. One way to achieve this
goal is to require the update methods to know precisely which cached methods are dependent on the entity that has been
modified, and to remove these methods (with proper arguments) from the cache. We call this scenario direct cache invali-
dation.
The benefit of direct invalidation is that it does not require a lot of resources on the caching backend. However, this
approach has a big disadvantage: it exhibits an imperfect separation of concerns. Update methods need to have a precise
knowledge of cached methods (typically read methods), therefore update methods need to be modified whenever a read
method is added. For an approach with better abstraction, see Working with Cache Dependencies on page 267.
This topic contains the following sections:

• Invalidating cache items using the [InvalidateCache] aspect on page 263
• Invalidating cache items imperatively on page 264

Invalidating cache items using the [InvalidateCache] aspect
You can add the InvalidateCacheAttribute aspect to a method (called the invalidating method) to cause any call to
this method to remove from the cache the value of one or more other methods. Parameters of both methods are
matched by name and type. If any parameter of the cached method cannot be matched with a parameter of the invali-
dating method, you will get a build error (unless the parameter has the NotCacheKeyAttribute custom attribute). The
order of parameters is not considered.

NOTE
By default, the InvalidateCacheAttribute aspect will look for the cached method in the current type. You can specify
a different type using the alternative constructor of the custom attribute. When you invalidate a non-static method
(unless instance has been excluded from the cache key by setting the IgnoreThisParameter to true), you can do it
only from a non-static method of a derived type.
If there are more invalidated methods of the same name for one invalidating method, a build error is emitted. To
enable invalidation of all the matching overloads by the one invalidating methods, set the property AllowMultiple-
Overloads to .

Example
In this example, the Update method invalidates the cached return value of the GetValue method.

using System;
using System.Collections.Generic;
using System.Threading;
using PostSharp.Patterns.Caching;
using PostSharp.Patterns.Caching.Backends;

namespace PostSharp.Samples.Caching.Invalidation
{

class Database
{

private Dictionary<int, string> data = new Dictionary<int, string>();

Rule-Based Annotation

263

[Cache]
publicstring GetValue(int id)
{

Console.WriteLine($">> Retrieving {id} from the database...");
Thread.Sleep(1000);
returnthis.data[id];

}

[InvalidateCache(nameof(GetValue))]
publicvoid Update(int id, stringvalue)
{

this.data[id] = value;
}

}

class Program
{

staticvoid Main(string[] args)
{

CachingServices.DefaultBackend = new MemoryCachingBackend();

Database db = new Database();

db.Update(1, "first");

Console.WriteLine("Retrieving value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

Console.WriteLine("Retrieving value of 1 for the 2nd time should NOT hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

db.Update(1, "second");

Console.WriteLine("Retrieving updated value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

}
}

}

The output of this sample is:

Retrieving value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: first
Retrieving value of 1for the 2nd time should NOT hit the database.
Retrieved: first
Retrieving updated value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: second

Invalidating cache items imperatively
Instead of annotating invalidating methods with a custom attribute, you can call to one of the overloads of the
CachingServices.Invalidation.Invalidate method.

Example
In this example, the cached return value of the GetValue method is invalidated by calling one of the overloads of the
CachingServices.Invalidation.Invalidate method.

using System;
using System.Collections.Generic;
using System.Threading;
using PostSharp.Patterns.Caching;
using PostSharp.Patterns.Caching.Backends;

namespace PostSharp.Samples.Caching.ImperativeInvalidation
{

Removing Items From the Cache

264

class Database
{

private Dictionary<int, string> data = new Dictionary<int, string>();

[Cache]
publicstring GetValue(int id)
{

Console.WriteLine($">> Retrieving {id} from the database...");
Thread.Sleep(1000);
returnthis.data[id];

}

publicvoid Update(int id, stringvalue)
{

this.data[id] = value;
}

}

class Program
{

staticvoid Main(string[] args)
{

CachingServices.DefaultBackend = new MemoryCachingBackend();

Database db = new Database();

db.Update(1, "first");

Console.WriteLine("Retrieving value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

Console.WriteLine("Retrieving value of 1 for the 2nd time should NOT hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

db.Update(1, "second");
CachingServices.Invalidation.Invalidate(db.GetValue, 1);

Console.WriteLine("Retrieving updated value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

}
}

}

The output of this sample is:

Retrieving value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: first
Retrieving value of 1for the 2nd time should NOT hit the database.
Retrieved: first
Retrieving updated value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: second

Rule-Based Annotation

265

Removing Items From the Cache

266

CHAPTER 47

Working with Cache Dependencies

Cache dependencies have two major use cases. First, dependencies can act as a middle layer between the cached methods
(typically the read methods) and the invalidating methods (typically the update methods) and therefore reduce the
coupling between the read and update methods. Second, cache dependencies can be used to represent external
dependencies, such as file system dependencies or SQL dependencies.
Compared to direct invalidation, using dependencies exhibits lower performance and higher resource consumption in the
caching backend because of the need to store and synchronize the graph of dependencies. For details about direct invali-
dation, see Removing Items From the Cache on page 263.
This topic contains the following sections:

• Working with string dependencies on page 267
• Working with object-oriented dependencies through the ICacheDependency interface on page 268
• Working with object-oriented dependencies through a formatter on page 270

Working with string dependencies
Eventually, all dependencies are represented as strings. Although we recommend using one of the strongly-typed
approaches described below, it is good to understand how string dependencies work.

To assign a string dependency to a cached return value of a method and to invalidate it:
1. Add a call to the CachingServices.CurrentContext.AddDependency method to the cached method.

2. Add a call to the CachingServices.Invalidation.Invalidate method to the invalidating method.

NOTE
Dependencies properly work with recursive method calls. If a cached method A calls another cached method B, all
dependencies of B are automatically dependencies of A, even if A was cached when A was being evaluated.

Example
In this example, the GetValue method assigns a string dependency to its cached return value. The Update method
invalidates the dependency. This causes the related cached return value to be invalidated as well.

using System;
using System.Collections.Generic;
using System.Threading;
using PostSharp.Patterns.Caching;
using PostSharp.Patterns.Caching.Backends;

namespace PostSharp.Samples.Caching.StringDependencies
{

class Database
{

private Dictionary<int, string> data = new Dictionary<int, string>();

privatestaticstring GetValueDependencyString(int id) => $"value:{id}";

Rule-Based Annotation

267

[Cache]
publicstring GetValue(int id)
{

Console.WriteLine($">> Retrieving {id} from the database...");
Thread.Sleep(1000);
CachingServices.CurrentContext.AddDependency(GetValueDependencyString(id));
returnthis.data[id];

}

publicvoid Update(int id, stringvalue)
{

this.data[id] = value;
CachingServices.Invalidation.Invalidate(GetValueDependencyString(id));

}
}

class Program
{

staticvoid Main(string[] args)
{

CachingServices.DefaultBackend = new MemoryCachingBackend();

Database db = new Database();

db.Update(1, "first");

Console.WriteLine("Retrieving value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

Console.WriteLine("Retrieving value of 1 for the 2nd time should NOT hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

db.Update(1, "second");

Console.WriteLine("Retrieving updated value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetValue(1));

}
}

}

The output of this sample is:

Retrieving value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: first
Retrieving value of 1for the 2nd time should NOT hit the database.
Retrieved: first
Retrieving updated value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: second

Working with object-oriented dependencies through the ICacheDependency interface
Working with string dependencies can be error-prone because the code generating the string is duplicated in the
invalidated and the invalidating method. A better approach is to encapsulate the cache key generation logic, i.e. to
represent the cache dependency as an object, and add some key-generation logic to this object.
If you own the source code of the class you want to use as a cache dependency, the easiest approach is to implement
the ICacheDependency interface.

NOTE
This approach can be used to implement support for other kinds of dependencies, like file system dependencies or
SQL dependencies.

Working with Cache Dependencies

268

Example
In the following example, the Customer class represents a business entity. Instances of this class are being cached. At the
same time, they serve as object dependencies, therefore the Customer class implements the ICacheDependency
interface. The GetValue method assigns an object dependency of type Customer to its cached return value. The Update
method invalidates the dependency. This causes the related cached return value to be invalidated as well.

using System;
using System.Collections.Generic;
using System.Threading;
using PostSharp.Patterns.Caching;
using PostSharp.Patterns.Caching.Backends;
using PostSharp.Patterns.Caching.Dependencies;

namespace PostSharp.Samples.Caching.ICacheDependencies
{

class Customer : ICacheDependency
{

publicint Id { get; set; }

publicstring Name { get; set; }

publicbool Equals(ICacheDependency other)
{

Customer otherCustomer = other as Customer;
return otherCustomer != null && this.Id == otherCustomer.Id;

}

publicstring GetCacheKey() => $"{nameof(Customer)}:{this.Id}";
}

class Database
{

private Dictionary<int, Customer> customers = new Dictionary<int, Customer>();

[Cache]
public Customer GetCustomer(int id)
{

Console.WriteLine($">> Retrieving {id} from the database...");
Thread.Sleep(1000);
Customer customer = this.customers[id];
CachingServices.CurrentContext.AddDependency(customer);
return customer;

}

publicvoid Update(Customer customer)
{

this.customers[customer.Id] = customer;
CachingServices.Invalidation.Invalidate(customer);

}
}

class Program
{

staticvoid Main(string[] args)
{

CachingServices.DefaultBackend = new MemoryCachingBackend();

Database db = new Database();

db.Update(new Customer() {Id = 1, Name = "Alice"});

Console.WriteLine("Retrieving value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetCustomer(1).Name);

Console.WriteLine("Retrieving value of 1 for the 2nd time should NOT hit the database.");
Console.WriteLine("Retrieved: " + db.GetCustomer(1).Name);

db.Update(new Customer() {Id = 1, Name = "Bob"});

Rule-Based Annotation

269

Console.WriteLine("Retrieving updated value of 1 for the 1st time should hit the database.");
Console.WriteLine("Retrieved: " + db.GetCustomer(1).Name);

}
}

}

The output of this sample is:

Retrieving value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: Alice
Retrieving value of 1for the 2nd time should NOT hit the database.
Retrieved: Alice
Retrieving updated value of 1for the 1st time should hit the database.
>> Retrieving 1from the database...
Retrieved: Bob

Working with object-oriented dependencies through a formatter
The previous approach requires implementing an interface in the source code of the business entity. If you cannot
modify the source code of a dependency class, the best approach is to implement a formatter for this class and to
register it.
See Customizing Cache Keys on page 271 for details.

Working with Cache Dependencies

270

CHAPTER 48

Customizing Cache Keys

Each value returned by a cached method is indexed by a cache key. By default, the cache key is composed of the full
method name, the parameter types, and the parameter values. By default, parameters are formatted using the ToString
method. PostSharp allows you to completely customize how the cache key is generated.
This topic contains the following sections:

• Default cache key generation logic on page 271
• Overriding the ToString method on page 271
• Implementing a custom cache key formatter on page 271
• Excluding parameters from a cache key on page 272
• Changing the maximal length of a cache key on page 273
• Implementing a custom cache key builder on page 273

Default cache key generation logic
By default, the key is composed of the following elements of the method call:

• the full name of the declaring type (including generic parameters, if any),
• the method name,
• the method generic parameters, if any,
• the formatted caller object (unless the method is static),
• a comma-separated list of all method arguments including the full type of the parameter and the formatted

parameter value,
• in case that the backend supports it, a global prefix that allows using the same caching server with several

applications (see e.g. KeyPrefix).

CAUTION NOTE
By default, the cache key of a value is built using ToString method, but the default implementation of the ToString
method does not return a unique string for custom types. You must override the ToString method or implement a
formatter for all types of parameters used in a cached method.

Overriding the ToString method
By default, the cache key of a value is built using the ToString method. You can override the ToString method so that
it returns a distinct value for each distinct instance of the type.

Implementing a custom cache key formatter
Since the ToString method is used in different contexts than just caching, using it as the cache key might be inappro-
priate in your case. In this situation, you can implement the IFormattable interface or the FormatterT class.

See Implementing a Custom Formatter on page 145 for details.

Rule-Based Annotation

271

Excluding parameters from a cache key
Using [NotCacheKey]
To exclude a method parameter from being a part of a cache key, add the NotCacheKeyAttribute custom attribute on
the parameter to be excluded.

Using [IgnoreThisParameter]
To exclude the value of the this parameter of an instance method from being a part of a cache key, set the Ignore-
ThisParameter parameter of the aspect to true.

Example
In this example, the this and callId parameters of the GetNumber method are not part of the cache key.

using System;
using System.Threading;
using PostSharp.Patterns.Caching;
using PostSharp.Patterns.Caching.Backends;

namespace PostSharp.Samples.Caching.ExcludingParameters
{

class Database
{

[Cache(IgnoreThisParameter = true)]
publicint GetNumber(int id, [NotCacheKey] int callId)
{

Console.WriteLine($">> Retrieving {id} from the database, call ID {callId}...");
Thread.Sleep(1000);
return id;

}
}

class Program
{

staticvoid Main(string[] args)
{

CachingServices.DefaultBackend = new MemoryCachingBackend();

int callId = 0;

Database db1 = new Database();
Database db2 = new Database();

Console.WriteLine("Retrieving value of 1 for the 1st time from DB 1 should hit the database.");
Console.WriteLine("Retrieved: " + db1.GetNumber(1, callId++));

Console.WriteLine("Retrieving value of 1 for the 2nd time from DB 1 passing different call ID should NOT hit the database.");
Console.WriteLine("Retrieved: " + db1.GetNumber(1, callId++));

Console.WriteLine("Retrieving value of 1 for the 1st time from DB 2 should NOT hit the database.");
Console.WriteLine("Retrieved: " + db2.GetNumber(1, callId++));

}
}

}

The output of this sample is:

Retrieving value of 1for the 1st time from DB 1 should hit the database.
>> Retrieving 1from the database, call ID 0...
Retrieved: 1
Retrieving value of 1for the 2nd time from DB 1 passing different call ID should NOT hit the database.
Retrieved: 1
Retrieving value of 1for the 1st time from DB 2 should NOT hit the database.
Retrieved: 1

Customizing Cache Keys

272

Changing the maximal length of a cache key
The maximal length of a cache key is 2048 characters by default.
To change the maximal length of a cache key, create a new instance of the CacheKeyBuilder class passing the new
value of the maximal length to the constructor and assign the new instance to the CachingServicesDefaultKeyBuilder
property.

CAUTION NOTE
If you need large cache keys, we suggest you also hash the cache key before submitting to the caching backend. To
hash the cache key, implement a custom cache key builder (see below). The MD5 algorithm is generally a good choice
given its speed, its collision probability, and the fact that it cryptographic strength is irrelevant in this case.

The following example sets the maximal length of a cache key to 4096 characters:

CachingServices.DefaultKeyBuilder = new CacheKeyBuilder(4096);

Implementing a custom cache key builder
All the options described above modify the behavior of formatting of a parameter value. To customize the other parts of
the cache key, you can override the methods of the CacheKeyBuilder class.

To override the cache building logic
1. Create a new class and derive it from the CacheKeyBuilder class.

2. Override the virtual methods as needed.
To completely override the key building process, override the BuildMethodKey(MethodInfo, IListObject,
Object) and/or BuildDependencyKey(Object) methods. The default implementation of these two methods
uses AppendType(UnsafeStringBuilder, Type), AppendMethod(UnsafeStringBuilder, MethodInfo),
AppendArgument(UnsafeStringBuilder, Type, Object) and AppendObject(UnsafeStringBuilder,
Object) helper methods. If you need to override how a type, a method, an argument or an object is
formatted, you can override just some of these methods.

3. Assign an instance of you new cache key builder to the CachingServicesDefaultKeyBuilder property.

Rule-Based Annotation

273

Customizing Cache Keys

274

CHAPTER 49

Caching Back-Ends

The CacheAttribute can be used with different caching frameworks or caching servers. This concept is called a caching
backend. Caching backends are represented by the CachingBackend abstract class. You can use an existing implementation
or implement your own caching backend.

In this chapter
Section Description
Using In-Memory
Cache on page 275

This article shows how to store cached values using MemoryCache class.

Using Redis
Cache on page 275

This article shows how to store cached values using Redis and using a combination of
Redis and MemoryCache class.

49.1. Using In-Memory Cache
For local, in-memory caching, PostSharp relies on the MemoryCache class of the .NET Framework.

To use the MemoryCache class to store cached values in memory, assign an instance of a MemoryCachingBackend class to
CachingServicesDefaultBackend property.

CachingServices.DefaultBackend = new MemoryCachingBackend();

By default, the MemoryCacheDefault is used. To use other instance of the MemoryCache than the default one, an instance of
the MemoryCache class can be passed to the constructor of the MemoryCachingBackend class.

MemoryCache cache = new MemoryCache("myCache");
CachingServices.DefaultBackend = new MemoryCachingBackend(cache);

See MSDN41 for details on the MemoryCache class.

49.2. Using Redis Cache
Redis42 is a popular choice for distributed, in-memory caching.

41. https://msdn.microsoft.com/en-us/library/system.runtime.caching.memorycache(v=vs.110).aspx
42. https://redis.io/

Using In-Memory Cache

275

https://msdn.microsoft.com/en-us/library/system.runtime.caching.memorycache(v=vs.110).aspx
https://redis.io/
https://msdn.microsoft.com/en-us/library/system.runtime.caching.memorycache(v=vs.110).aspx
https://redis.io/

Our implementation uses StackExchange.Redis library43 internally and is compatible with on-premises instances of Redis
Cache as well as with the Azure Redis Cache44 cloud service.
This topic contains the following sections:

• Configuring the Redis server on page 276
• Configuring the caching backend in PostSharp on page 276
• Adding a local in-memory cache to a remote Redis server on page 276
• Using dependencies with the Redis caching backend on page 277

Configuring the Redis server
To prepare your Redis server for use with PostSharp caching:

1. Set up the eviction policy to volatile-lru or volatile-random. See https://redis.io/topics/lru-
cache#eviction-policies for details.

CAUTION NOTE
Other eviction policies than volatile-lru or volatile-random are not supported.

2. Set up the key-space notification to include the AKE events. See https://redis.io/topics/notifi-
cations#configuration for details.

Configuring the caching backend in PostSharp
To set up PostSharp to use Redis for caching:

1. Add a reference to the PostSharp.Patterns.Caching.Redis package.
2. Create an instance of StackExchange.Redis.ConnectionMultiplexer45 .
3. Create an instance of the RedisCachingBackend class using the RedisCachingBackendCreate(IConnection-

Multiplexer, RedisCachingBackendConfiguration) factory method and assign the instance to Caching-
ServicesDefaultBackend.

IMPORTANT NOTE
The caching backend has to be set before any cached method is called for the first time.

Example
string connectionConfiguration = "localhost";
ConnectionMultiplexer connection = ConnectionMultiplexer.Connect(connectionConfiguration);
RedisCachingBackendConfiguration redisCachingConfiguration = new RedisCachingBackendConfiguration();
CachingServices.DefaultBackend = RedisCachingBackend.Create(connection, redisCachingConfiguration);

Adding a local in-memory cache to a remote Redis server
For higher performance, you can add an additional, in-process layer of caching between your application and the
remote Redis server. To enable the local cache, set the RedisCachingBackendConfigurationIsLocallyCached property
to true.

43. https://stackexchange.github.io/StackExchange.Redis/
44. https://azure.microsoft.com/en-us/services/cache/
45. https://stackexchange.github.io/StackExchange.Redis/Configuration

Caching Back-Ends

276

https://stackexchange.github.io/StackExchange.Redis/
https://azure.microsoft.com/en-us/services/cache/
https://redis.io/topics/lru-cache#eviction-policies
https://redis.io/topics/lru-cache#eviction-policies
https://redis.io/topics/notifications#configuration
https://redis.io/topics/notifications#configuration
https://www.nuget.org/packages/PostSharp.Patterns.Caching.Redis/
https://stackexchange.github.io/StackExchange.Redis/Configuration
https://stackexchange.github.io/StackExchange.Redis/
https://azure.microsoft.com/en-us/services/cache/
https://stackexchange.github.io/StackExchange.Redis/Configuration

The benefit of using local caching is to decrease latency between the application and the Redis server, and to decrease
CPU load due to the deserialization of objects. The inconvenience is that there is that distributed local caches are
synchronized asynchronously, therefore different application instances may see different values of cache items during a
few milliseconds. However, the application instance initiating the change will have a consistent view of the cache.

Using dependencies with the Redis caching backend
Support for dependencies is disabled by default with the Redis caching backend because it has an important
performance and deployment impact. From a performance point of view, the cache dependencies need to be stored in
Redis (therefore consuming memory) and handled in a transactional way (therefore consuming processing power). As
for deployment, the problem is that the cache GC process, which cleans up dependencies when cache items are expired
from the cache, needs to run continuously, even when the application is not running.
If you choose to enable dependencies with Redis, you need to make sure that there is at least one instance of the cache
GC process is running. It is legal to have several instances of this process running, but since all instances will compete to
process the same messages, it is better to ensure that only a small number of instances (ideally one) is running.

To use dependencies with the Redis caching backend:
• Make sure that at least one instance of the RedisCacheDependencyGarbageCollector class is alive at any

moment (whenever the application is running or not). If several instances of your application use the same
Redis server, a single instance of the RedisCacheDependencyGarbageCollector class is required. You may
package the RedisCacheDependencyGarbageCollector into a separate application of cloud service.

• In case of an outage of the service running the GC process, execute the PerformFullCollectionAsync(Redis-
CachingBackend, CancellationToken) method.

• Set the RedisCachingBackendConfigurationSupportsDependencies property to true.

Using Redis Cache

277

Caching Back-Ends

278

CHAPTER 50

Synchronizing Local In-Memory Caches for
Multiple Servers

Caching in distributed applications can be a tricky problem. When there are several instances of an application running
simultaneously (typically web sites or web services deployed into the cloud or web farms), you have to make sure that the
cache is properly invalidated for all instances of the application.
A typical answer to this issue is to use a centralized cache server (or a cluster of cache servers) that solves this problem for
you. For instance, you can use a Redis server or a Redis cluster. However, running a cache server, even more a cache cluster,
comes with a cost, and it does not always pay off for medium applications such as the website of a small business.
An alternative solution to the problem of distributed caching is to have a local in-memory cache in each instance in the
application. Instead of using a shared distributed cache, each application instance caches its own data into its own local
cache. However, when one instance of the application modifies a piece of data, it needs to make sure that all instances
remove the relevant items from their local cache. This is called distributed cache invalidation. It can be achieved easily and
cheaply with a publish/subscribe (Pub/Sub) message bus such as Azure Service Bus, much less expensive than a cache
cluster.
PostSharp allows you to easily add sub/sub cache invalidation to your existing PostSharp caching.
The principal inconvenience of pub/sub invalidation is that there is some latency in the invalidation mechanism, i.e. different
instances of the application can see different data during a few dozens of milliseconds.
This topic contains the following sections:

• Using Azure Service Bus pub/sub for distributed invalidation on page 279
• Using Redis pub/sub for distributed invalidation on page 280

Using Azure Service Bus pub/sub for distributed invalidation
To use Azure Service Bus pub/sub for distributed invalidation:

1. Add in-memory local caching to your application as described in Using In-Memory Cache on page 275.
2. Go to a Microsoft Azure portal, open the Service Bus panel and create a new Topic. Choose a small value for

the time-to-live setting, for instance 30 seconds. See Microsoft Azure website46 for details.
3. In the Microsoft Azure portal, create a Shared access policy and include the Manage right. This policy will be

used by your application.
4. Go to the properties of the newly created policy and copy the primary or secondary connection string to the

clipboard.
5. Go back to your source code and find the place where the MemoryCachingBackend is initialized.

6. Create an instance of AzureCacheInvalidatorOptions class and specify the connection string to the shared
access policy you just created.

46. https://azure.microsoft.com/en-us/services/service-bus/

Using Redis Cache

279

https://azure.microsoft.com/en-us/services/service-bus/
https://azure.microsoft.com/en-us/services/service-bus/

7. Create an instance of the AzureCacheInvalidator class using the AzureCacheInvalidatorCreate(Caching-
Backend, AzureCacheInvalidatorOptions) factory method passing the existing instance of theMemory-
CachingBackend and AzureCacheInvalidatorOptions. Assign the new AzureCacheInvalidator the to
CachingServicesDefaultBackend property.

Example
This example shows how to initialize an in-memory caching backend to let it invalidate and be invalidated using Azure
Service Bus Pub/Sub.

var localCache = new MemoryCachingBackend();

string connectionString = "Endpoint=sb://yourServiceNamespace.servicebus.windows.net/;EntityPath=yourTopic;SharedAccessKeyName=RootManageSharedAccessKey;SharedAccessKey=yourKey";

var azureCacheInvalidatorOptions = new AzureCacheInvalidatorOptions
{

ConnectionString = connectionString
};

CachingServices.DefaultBackend = AzureCacheInvalidator.Create(localCache, azureCacheInvalidatorOptions);

Using Redis pub/sub for distributed invalidation
If you are already using Redis for PostSharp caching, it is useless to add another layer of invalidation because this is
already taken care of by the RedisCachingBackend class. However, if you already have a Redis cluster but you don't
want to use it for caching, you can still use it for cache invalidation. An example situation is when the latency of your
Redis server is too high for caching but sufficient for cache invalidation.

To use Redis Pub/Sub for distributed invalidation:
1. Add in-memory local caching to your application as described in Using In-Memory Cache on page 275.
2. Create an instance of StackExchange.Redis.ConnectionMultiplexer47. See Redis Pub/Sub documentation48 for

details.
3. Create and configure an instance of RedisCacheInvalidatorOptions class.

4. Create an instance of the RedisCacheInvalidator class using the RedisCacheInvalidatorCreate(Caching-
Backend, IConnectionMultiplexer, RedisCacheInvalidatorOptions) factory method passing your
instance of MemoryCachingBackend and RedisCacheInvalidatorOptions. Assign the instance to the Caching-
ServicesDefaultBackend property.

Example
This example shows how to initialize an in-memory caching backend to let it invalidate and be invalidated using Redis
Pub/Sub.

var localCache = new MemoryCachingBackend();

string connectionConfiguration = "localhost";
string channelName = "myCahnnel";

ConnectionMultiplexer connection = ConnectionMultiplexer.Connect(connectionConfiguration);

var redisCacheInvalidatorOptions = new RedisCacheInvalidatorOptions
{

ChannelName = channelName
};

CachingServices.DefaultBackend = RedisCacheInvalidator.Create(localCache, connection, redisCacheInvalidatorOptions);

47. https://stackexchange.github.io/StackExchange.Redis/Configuration
48. https://redis.io/topics/pubsub/

Synchronizing Local In-Memory Caches for Multiple Servers

280

https://stackexchange.github.io/StackExchange.Redis/Configuration
https://redis.io/topics/pubsub/
https://stackexchange.github.io/StackExchange.Redis/Configuration
https://redis.io/topics/pubsub/

CHAPTER 51

Caching Special Types with Value Adapters

Some types, for instance the IEnumeratorT interface or the Stream class cannot be directly cached because the position of
the enumerator or stream can be changed by the caller. Some other interfaces like IEnumerableT cannot be cached
because the real value may be a LINQ expression, and it is not useful to cache the LINQ expression itself. However, you may
still want to cache methods returning these types. If you wrote the code manually, you would simply cache a different type,
for instance a list or an array of bytes.
PostSharp addresses this problem by the concept of a value adapter. A value adapter allows you to store another type than
the one than the return type of the cached method. The method return value is called the exposed value because this is the
value exposed by your API. The exposed value must be type-compatible with the method return type. The value that is
actually stored in cache is called the stored value. For instance, for a method returning a Stream, the stored value is an array
of bytes and the exposed value is a MemoryStream.

This topic contains the following sections:
• Standard value adapters on page 281
• Implementing a custom value adapter on page 281

Standard value adapters
The following value adapters are used automatically by default:

Return type Stored
type

Exposed type Comments

IEnumerableT ListT ListT

IEnumeratorT ListT System.Collections.GenericListTEnumerator The IEnumerator.Reset method is not
supported by the exposed value.

Stream Byte[] MemoryStream

Implementing a custom value adapter
To implement a custom value adapter:

1. Add a reference to the PostSharp.Patterns.Caching package.
2. Create a class implementing the IValueAdapterT interface or the IValueAdapter interface.

3. Register the class from the previous step using one of the overloads of the ValueAdapterFactoryRegister
method.
Each caching backend has its own instance of the PostSharp.Patterns.Caching.ValueAdaptersValue-
AdapterFactory class available via the ValueAdapters property.

NOTE
Null values are handled automatically outside of the value adapters.

Using Redis Cache

281

https://www.nuget.org/packages/PostSharp.Patterns.Caching/

Example
In this example, we create the EnumerableValueAdapter`1 class, which transforms instances of the IEnumerableT
interface into an array.

using System;
using System.Collections.Generic;
using System.Linq;
using PostSharp.Patterns.Caching;
using PostSharp.Patterns.Caching.Backends;
using PostSharp.Patterns.Caching.ValueAdapters;

namespace PostSharp.Samples.Caching.ValueAdapters
{

class EnumerableValueAdapter<T> : ValueAdapter<IEnumerable<T>>
{

publicoverride IEnumerable<T> GetExposedValue(object storedValue)
{

return (IEnumerable<T>)storedValue;
}

publicoverrideobject GetStoredValue(IEnumerable<T> value)
{

Console.WriteLine("Caching enumerable.");
returnvalue.ToArray();

}
}

class Program
{

staticvoid Main(string[] args)
{

MemoryCachingBackend memoryCachingBackend = new MemoryCachingBackend();
memoryCachingBackend.ValueAdapters.Register(typeof(IEnumerable<>), typeof(EnumerableValueAdapter<>));
CachingServices.DefaultBackend = memoryCachingBackend;

Console.WriteLine("Cache miss:");
foreach (intvaluein GetValues())
{

Console.WriteLine("Value {0} obtained.", value);
}

Console.WriteLine("Cache hit:");
foreach (intvaluein GetValues())
{

Console.WriteLine("Value {0} obtained.", value);
}

Console.WriteLine("Cache miss for null:");
Console.WriteLine(GetNull() == null);

Console.WriteLine("Cache hit for null:");
Console.WriteLine(GetNull() == null);

}

[Cache]
static IEnumerable<int> GetValues()
{

for (intvalue = 0; value < 3; value++)
{

Console.WriteLine("Returning value {0}.", value);
yieldreturnvalue;

}
}

[Cache]
static IEnumerable<int> GetNull()
{

returnnull;
}

Caching Special Types with Value Adapters

282

}
}

The output of this sample is:

Cache miss:
Caching enumerable.
Returning value0.
Returning value1.
Returning value2.
Value 0 obtained.
Value 1 obtained.
Value 2 obtained.
Cache hit:
Value 0 obtained.
Value 1 obtained.
Value 2 obtained.
Cache miss fornull:
True
Cache hit fornull:
True

Using Redis Cache

283

PART 12

Multithreading

CHAPTER 52

Writing Thread-Safe Code with Threading
Models

A threading model is a design pattern that gives guarantees that your code executes safely on a multithreaded computer.
Threading models both define coding rules (for instance: all fields must be private) and add new behaviors to existing code
(for instance: acquiring a lock before method execution). Coding rules are typically enforced at build time or at run time;
violations result in build-time errors or run-time exceptions. Threading models may also require the use of custom
attributes in source code, for instance to indicate that a method requires read access to the object.

TIP
We recommend assigning a threading model to every class whose instances can be shared between different threads.

Threading models raise the level of abstraction at which multi threading is addressed. Compared to working directly with
locks and other low-level threading primitives, using threading models has the following benefits:

• Threading models are named solutions to a recurring problem. Threading models are specific types of design
patterns, and have the same benefits. When team members discuss the multithreaded behavior of a class, they
just need to know which threading model this class uses. They don't need to know the very details of its
implementation. Since the human short-term memory seems to be limited to 5-9 elements, it is important to think
in terms of larger conceptual blocks whenever we can.

• Much of the code required to implement the threading model can be automatically generated, which decreases
the number of lines of code, and therefore the number of defects. It also reduces development and maintenance
costs.

• Your source code can be automatically verified against the selected threading model, both at build time and at
run time. This makes the discovery of defect much more deterministic. Without verifications, threading defects
usually show up randomly and provoke data structure corruption instead of immediate exceptions. Run-time
verification would be too labor-intensive to implement without compiler support, so would be most likely
omitted.

Available threading models
PostSharp Threading Library provides an implementation for the following threading models:

Threading Model Aspect Type Description
Thread-Unsafe
Threading
Model on page 306

ThreadUnsafeAttribute These objects may never be accessed concurrently by
several threads.

Thread Affine
Threading
Model on page 294

ThreadAffineAttribute These objects must be accessed from the thread that
instantiated them.

Using Redis Cache

287

Threading Model Aspect Type Description
Synchronized
Threading
Model on page 295

SynchronizedAttribute Synchronized objects can be accessed by a single thread
at a time. Other threads will wait until the object is
available.

Reader/Writer
Synchronized
Threading
Model on page 297

ReaderWriterSynchronizedAttribute These objects that can be read concurrently by several
threads, but write access requires exclusivity. Public
methods of this object must specify which kind of access
they require (read or write, typically).

Actor Threading
Model on page 303

ActorAttribute These objects communicate with their clients using an
asynchronous communication pattern. All accesses to the
object are queued and then processed in a single thread.
However, queuing is transparent to clients, which just call
standard void or methods.

Freezable
Threading
Model on page 292

FreezableAttribute These objects can be set to a state where their property
values can no longer be changed. Unlike immutable
objects, the developer dictates the time and place in
their code where changes to the object's state will no
longer be accepted.

Immutable
Threading
Model on page 288

ImmutableAttribute These objects cannot have their state changed after their
constructor has finished executing.

Other topics
Article Description
Making a Whole Project or Solution
Thread Safe on page 307

This article describes how to get compiler warnings when you forget to assign
a threading model to a type.

Opting In and Out From Thread
Safety on page 309

This article shows how to disable the enforcement of the threading model for
specific fields or methods.

Compatibility of Threading
Models on page 310

This article lists compatibility of threading models when they are applied to
objects that are in a parent-child relationship.

Enabling and Disabling Runtime Verifi-
cation on page 311

This article explains when runtime verification is enabled or disabled and how
to customize the default behavior.

Conceptual documentation
Please read this technical white paper49 for details about the concepts and architecture of PostSharp Threading Models.

52.1. Immutable Threading Model
There are times when you want certain objects in your codebase to retain their post creation state without the possibility of
it ever changing. These objects are said to be immutable. Immutable objects are useful in multithreaded applications

49. http://www.postsharp.net/links/threading-model-white-paper

Writing Thread-Safe Code with Threading Models

288

http://www.postsharp.net/links/threading-model-white-paper
http://www.postsharp.net/links/threading-model-white-paper

because they can be safely accessed by several threads concurrently, without the need for locking or other synchronization.
PostSharp offers the ImmutableAttribute aspect that allows you enforce this pattern on your objects.

Changes in an object with the ImmutableAttribute aspect will be forbidden as soon as the object constructor exits. Any
further attempt to modify the object will result in an ObjectReadOnlyException.

NOTE
The Immutable pattern can be too strong for some common object-oriented scenarios, for instance with serializable
classes. In some cases, the Freezable object is a better choice. For details, see Freezable Threading Model on page 292.

This topic contains the following sections:
• Making a class immutable on page 289
• Rules enforced by the Immutable aspect on page 289
• Immutable object trees on page 289
• Immutable vs readonly on page 290
• Constructor execution on page 291
• Immutable collections on page 291

Making a class immutable
To add the Immutable pattern manually:

1. Add a reference to the PostSharp.Patterns.Threading package to your project.

2. Add the ImmutableAttribute custom attribute to your class.

3. Annotate your object model for parent/child relationships as described in Annotating an Object Model for
Parent/Child Relationships (Aggregatable) on page 225.

Rules enforced by the Immutable aspect
An immutable object will throw the following exceptions at run-time:

• ThreadMismatchException if both following conditions are simultaneously true:

◦ you access the object from a different thread than the one that created it, and
◦ the constructor has not completed yet.

• ObjectReadOnlyException if a field or property is being modified after the constructor has completed.

Immutable object trees
Because the Immutable pattern is an implementation of the Aggregatable pattern, all of the same behaviors of the
AggregatableAttribute are available. As a result, you can create both immutable classes and immutable object trees.
For more information regarding object trees, read Parent/Child, Visitor and Disposable on page 223.

NOTE
Children of immutable objects must be marked as Immutable or Freezable themselves. Adding ImmutableAttribute
or FreezableAttribute to the child classes will accomplish this. Freezable children will be automatically frozen when
the constructor of the parent completes.

Immutable Threading Model

289

Immutable vs readonly
Many C# developers make use of the readonly keyword in an attempt to make their objects immutable. The readonly
keyword doesn't guarantee immutability though. Using readonly only ensures that no method other than the object's
constructor can alter the variable's value. It doesn't, however, prevent you from altering values on complex objects
outside of the constructor.

The readonly keyword may be too strict
In the following code sample, the _id variable is a primitive type and can't be altered outside the constructor. This is
enforced at compile time and an error would be displayed where the SetIdentifier method attempts to change the
_id field value. The compiler does not see that the SetIdentifier method is called only from the constructor. In this
example, the readonly keyword is too strong even if the class is legitimately immutable.

publicclass Invoice
{

publicreadonlylong _id;

public Invoice(long id)
{

SetIdentifier(id);
}

privatevoid SetIdentifier(long id)
{

// Will cause compilation error.
_id = id;

}
}

The readonly keyword may also be too loose
When you have complex entities composed of several objects, immutability is a characteristic of the whole entity, not of
a single object. However, this does not fit with the readonly keyword.

In the following example, the Invoice is not immutable even if the _invoiceHeader field is readonly.

publicclass Invoice
{

publicreadonly InvoiceHeader _invoiceHeader;

public Invoice()
{

_invoiceHeader = new InvoiceHeader();
}

publicvoid Refresh()
{

// Valid but not immutable.
_invoiceHeader.CustomerName = "Jim";
_invoiceHeader.CustomerPhone = "555-123-9876";

}
}

The same type of change to object state can happen with collections. You can not reinitialize a readonly collection, but
you can freely Add, Remove, Clear and do other operations that the collection itself exposes. Additionally, if the
collection contains complex types you are able to change values on each instance that the collection contains.

publicclass Invoice
{

publicreadonly IList<Item> _items;
public Invoice()
{

_items = new List<Item>();
}

Writing Thread-Safe Code with Threading Models

290

publicvoid Refresh()
{

//will cause a compilation error
_items = new List<Item>();

//valid but not immutable
_items.Add(new Item());
_items[0].Price = 3.50;
_items.RemoveAt(0);

}
}

As you can see there is no way to use the readonly keyword to make complex object graphs immutable. Combining the
ImmutableAttribute, ChildAttribute, AdvisableCollectionT and the AdvisableDictionaryTKey, TValue types
allows you to make immutable objects that guarantee no changes to primitive or complex objects after constructor
execution has completed.

Constructor execution
Objects are not frozen until the last constructor has finished executing. Because of this, you can use the constructor to
set up the state of the parent instance through its own constructor as well as chained, or inherited object, constructors.
You're also able to make changes to child object instances through their constructors at this time.

[Immutable]
publicclass Invoice : Document
{

public Invoice(long id) : base(id)
{

Items = new AdvisableCollection<Item>();
Items.Add(new Item("widget"));

}

[Child]
public AdvisableCollection<Item> Items { get; set; }

}

[Immutable]
publicclass Document
{

privatelong _id;
public Document (long id)
{

_id = id;
}

}

[Immutable]
publicclass Item
{

public Item (string name)
{

Name = name;
}
publicstring Name { get; set; }

}

In this example, the constructors finish executing in the order of Document, Item and finally Invoice. It is not until after
the Invoice constructor finishes executing that the object graph is made immutable.

Immutable collections
When authoring immutable object models, immutable collections are a good replacement for advisable collections. For
details, see [immutable-collections].

Immutable Threading Model

291

52.2. Freezable Threading Model
When you need to prevent changes to an instance of an object most of the time, but not all of the time, the Immutable
pattern (implemented by the ImmutableAttribute aspect) will be too aggressive for you. In these situations, you need a
pattern that allows you to define the point in time where immutability begins. To accomplish this you can make use of the
FreezableAttribute aspect.

Changes in an object with the ImmutableAttribute aspect will be forbidden as soon as you call the Freeze method. Any
further attempt to modify the object will result in an ObjectReadOnlyException. Any attempt to share the object before
you call the Freeze method. will result in a ThreadMismatchException.

This topic contains the following sections:
• Making an object freezable on page 292
• Freezing an object on page 292
• Rules enforced by the Freezable aspect on page 293
• Determining whether an object is in frozen state on page 293
• Freezable object trees on page 293

Making an object freezable
To make an object freezable:

1. Add the PostSharp.Patterns.Threading package to your project using NuGet.
2. Add the FreezableAttribute custom attribute to your class.

using PostSharp.Patterns.Threading;

[Freezable]
publicclass Invoice
{

publiclong Id { get; set; }
}

3. Annotate your object model for parent/child relationships as described in Annotating an Object Model for
Parent/Child Relationships (Aggregatable) on page 225.

Freezing an object
To freeze an object, use will first have to case the object to the IFreezable interface. After that, you are able to call the
Freeze method.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

NOTE
The IFreezable interface will be injected into the Invoice class after compilation. Tools that are not aware of Post-
Sharp may incorrectly report that the Invoice class does not implement the IFreezable interface.

Instead of using the cast operator, you can also use the CastSourceType, TargetType(SourceType) method. This
method is faster and safer than the cast operator because it is verified and compiled by PostSharp at build time.

Writing Thread-Safe Code with Threading Models

292

NOTE
If you are attempting to freeze either AdvisableCollectionT or AdvisableDictionaryTKey, TValue you will not be
able to use the cast operator or the CastSourceType, TargetType(SourceType) method. Instead, you will have to use
the QueryInterfaceT(Object, Boolean) extension method.

Once you’ve called the Freeze method on an object instance the code will no longer be able to change the property
values on that instance. If a value change is attempted the code will throw an ObjectReadOnlyException.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

// This will throw an exception.
invoice.Id = 345678;

Rules enforced by the Freezable aspect
A freezable object will throw the following exceptions at run-time:

• ThreadMismatchException if both following conditions are simultaneously true:

◦ you access the object from a different thread than the one that created it, and
◦ the Freeze method has not yet been called.

• ObjectReadOnlyException if a field or property is being modified after the Freeze method has been called.

Determining whether an object is in frozen state
To determine whether an object has been frozen, cast it to IThreadAware and get the readonly value from IsReadOnly
via the ConcurrencyController property.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

// The 'frozen' property will be set to 'true'.bool frozen = ((IThreadAware)invoice).ConcurrencyController.IsReadOnly;

Freezable object trees
The Freezable pattern relies on the Aggregatable pattern. The AggregatableAttribute aspect will be implicitly added
to the target class. Therefore, you can not only create freezable classes, but also freezable object trees. Read the Parent/
Child, Visitor and Disposable on page 223 for more information on how to establish object trees.

IMPORTANT NOTE
Children of freezable objects must be either freezable either immutable. Therefore, children classes must be annotated
with the FreezableAttribute or ImmutableAttribute custom attribute. Collection types must be derived from
AdvisableCollectionT or AdvisableDictionaryTKey, TValue.

Freezable Threading Model

293

52.3. Thread Affine Threading Model
One of the simplest ways to consider threading is to limit object instance access to the thread that created the instance.
This is how the Thread Affine threading model works.
This topic contains the following sections:

• Adding the Thread Affine model to a class on page 294
• Rules enforced by the Actor aspect on page 294
• Working with object trees on page 295

Adding the Thread Affine model to a class
To apply the Thread-Affine threading model to a class:

1. Add the PostSharp.Patterns.Threading package to your project.
2. Add using PostSharp.Patterns.Threading namespace to your file.

3. Add the ThreadAffineAttribute to the class.

4. Annotate your object model for parent/child relationships as described in Annotating an Object Model for
Parent/Child Relationships (Aggregatable) on page 225.

Example
In the example below the ThreadAffineAttribute has been added to the class.

[ThreadAffine]
publicclass OrderService
{

publicvoid Process(int sequence)
{

Console.WriteLine("sequence {0}", sequence);
Console.WriteLine("sleeping for 10s");

Thread.Sleep(new TimeSpan(0,0,10));
}

}

Rules enforced by the Actor aspect

The ThreadAffineAttribute aspect does not verify your code at build-time. Instead, it injects code that enforces the
model at run time. If it detects that the object is being accessed from a different thread than the one that created it, the
aspect will throw a ThreadMismatchException exception.

To test this the thread-affine OrderService class, we can run the following code:

publicvoid Main()
{

var orderService = new OrderService();

orderService.Process(1);

var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += (sender, args) =>
{

try
{

orderService.Process(2);
}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());

Writing Thread-Safe Code with Threading Models

294

}
};
backgroundWorker.RunWorkerAsync();

}

The above code will execute the orderService.Process(1) method and output the following to the console.

That code successfully executed because the orderService instance was both created (via the new keyword) and
executed on the same thread.
After the 10 second sleep period, a BackgroundWorker thread is opened and it is set to execute the orderService.
Process(2) method. If an exception is thrown that will be output to the console. When this piece of code executes you
will see the following console output.

As you can see that a ThreadMismatchException exception was thrown. This happened because the orderService
instance was created on the main thread and the BackgroundWorker thread attempted to execute it. Because the
OrderService class has been marked with the ThreadAffineAttribute attribute only the thread that creates an
instance of it can access that instance.

Working with object trees
Because the Thread-Affine model is an implementation of the Aggregatable pattern, all of the same behaviors of the
AggregatableAttribute are available. For more information regarding object trees, read Parent/Child, Visitor and
Disposable on page 223.

NOTE
Once you have established your parent-child relationships you will need to apply compatible threading models to the
child classes. You will want to refer to the Compatibility of Threading Models on page 310 article to determine which
threading model will work for the children of the Thread-Affine object.

52.4. Synchronized Threading Model
A common way to avoid data races is to enclose all public instance methods of a class with a lock(this) statement. This is
basically what the Synchronized model does
This article describes how to use the Synchronized model and how it differs from the use of lock(this) statement.

This topic contains the following sections:
• Comparing with lock(this) on page 296
• Applying the Synchronized model to a class on page 296

Synchronized Threading Model

295

• Rules enforced by the Synchronized aspect on page 297
• Working with object trees on page 297

Comparing with lock(this)
Traditionally, the C# keyword lock(this) statement has been used to synchronize access of several threads to a single
object. When an object is locked by one thread, any other object that attempts to access that object will have its
execution blocked.

privateobject myLockingObject = new Object();

publicvoid DoSomething()
{

lock(myLockingObject)
{

//some code that does something in one thread at a time
}

}

In this example, the myLockingObject member variable is used as a locking object. Once a thread runs the lock(my-
LockingObject) line, all other threads that enter the DoSomething method will stop executing, or be blocked, until the
original thread has exited the lock(myLockingObject) code block.

The Synchronized model is similar to using the lock statement around every single public method, but it has the
following differences:

• It is not technically equivalent to locking the current instance (this). Another object is actually being locked.

• Locking is automatic for all public and internal instance methods. You cannot forget it.
• If a thread attempts to access a field without having first acquired access to the object (by invoking a public or

internal method), an exception will be thrown.
• The pattern also works with entities composed of several objects organized in a tree.

Applying the Synchronized model to a class
To apply the Synchronized threading model to a class:

1. Add the PostSharp.Patterns.Threading package to your project.

2. Add using PostSharp.Patterns.Threading namespace to your file.

3. Add the SynchronizedAttribute to the class.

4. Annotate your object model for parent/child relationships as described in Annotating an Object Model for
Parent/Child Relationships (Aggregatable) on page 225.

Example
In the example below the SynchronizedAttribute has been added to the class.

[Synchronized]
publicclass OrderService
{

publicvoid Process(int sequence)
{

Console.WriteLine("sequence {0}", sequence);
Console.WriteLine("sleeping for 10s");

Thread.Sleep(new TimeSpan(0,0,10));
}

}

Writing Thread-Safe Code with Threading Models

296

To test this we can run the following code.

publicvoid Main()
{

var orderService = new OrderService();

var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += (sender, args) => orderService.Process(1);
backgroundWorker.RunWorkerAsync();

orderService.Process(2);
}

The code above will attempt to execute the Process method on two different threads; the main thread and a
background worker thread. Because these two threads are trying to access the same instance of the OrderService the
first thread to access it will block the second. As a result, when you run the program you will first see the following.

Because the OrderService.Process method has a Thread.Sleep call, the first thread accessing that method will block
the second for 10 seconds. After those 10 seconds have passed the second thread will no longer be blocked and it will
be able to continue its execution.

Rules enforced by the Synchronized aspect
The SynchronizedAttribute aspect emits build-time errors in the following situations:

• The class contains a public or internal field.

A synchronized object will throw a ThreadAccessException whenever some code tries to access a field from a thread
that does not own the correct lock, i.e. the call stack does not contain a public or internal method of this method (e.g. a
private delegate call).

Working with object trees
Because the Synchronized model is an implementation of the Aggregatable pattern, all of the same behaviors of the
AggregatableAttribute are available. For more information regarding object trees, read Parent/Child, Visitor and
Disposable on page 223.

NOTE
Once you have established your parent-child relationships you will need to apply compatible threading models to the
child classes. You will want to refer to the Compatibility of Threading Models on page 310 article to determine which
threading model will work for the children of the Synchronized object.

52.5. Reader/Writer Synchronized Threading Model
When a class instance is concurrently used by multiple threads, accesses must be synchronized to prevent data races, which
typically result in data inconsistencies and corruption of data structures. The Reader/Writer Synchronized Threading Model

Reader/Writer Synchronized Threading Model

297

uses locks to allow several read-only methods to execute simultaneously on one instance, but guarantee that writer
methods have exclusive access.
The Reader/Writer Synchronized Threading Model is implemented by the ReaderWriterSynchronizedAttribute aspect. It
requires you to annotate all public methods of your synchronized classes with the ReaderAttribute and WriterAttribute
custom attributes.
This topic contains the following sections:

• Why use the reader-writer synchronized pattern? on page 298
• Making a class reader-writer synchronized on page 299
• Rules enforced by the ReaderWriterSynchronized aspect on page 300
• Raising synchronous events on page 300
• Executing long-running write methods on page 301
• Working with object trees on page 302

Why use the reader-writer synchronized pattern?
Problems without locks
Consider the following example of an Order class which stores an amount and a discount:

class Order
{

int Amount { get; privateset; }
int Discount { get; privateset; }

publicint AmountAfterDiscount
{

get { returnthis.Amount - this.Discount; }
}

publicvoid Set(int amount, int discount)
{

if (amount < discount)
thrownew InvalidOperationException();

this.Amount = amount;
this.Discount = discount;

}
}

In this example, the Set method writes to the Amount and Discount members, while the AmountAfterDiscount property
reads these members. In a single-threaded program, the AmountAfterDiscount property is guaranteed to be positive or
zero. However, in a multithreaded program, the AmountAfterDiscount property could be evaluated in the middle of the
Set operation, and return an inconsistent result.

Problems of the lock keyword
The easiest way to synchronize accesses to a class in C# is to use the lock keyword. However, this practice cannot be
generalized for two reasons:

• The use of exclusive locks often results in high contention and therefore low performance because many
threads queue to access the same resource;

• Applications relying on exclusive locks are prone to deadlocks because of cyclic waiting dependencies.

Problems of reader-writer locks
Reader-writer locks take advantage of the fact that most applications involve much fewer writes than reads, and that
concurrent reads are always safe. Reader-writer locks ensure that no other thread is accessing the object when it is
being written. Reader-writer locks are normally implemented by the .NET classes ReaderWriterLock or ReaderWriter-
LockSlim. The following example shows how ReaderWriterLockSlim would be used to control reads and writes in the
Order class:

Writing Thread-Safe Code with Threading Models

298

class Order
{

private ReaderWriterLockSlim orderLock = new ReaderWriterLockSlim();

publicdecimal Amount { get; privateset; }
publicdecimal Discount { get; privateset; }

publicdecimal AmountAfterDiscount
{

get
{

orderLock.EnterReadLock();
decimal result = this.Amount - this.Discount;
orderLock.ExitReadLock();
return result;

}
}

publicvoid Set(decimal amount, decimal discount)
{

if (amount < discount)
{

thrownew InvalidOperationException();
}

orderLock.EnterWriteLock();
this.Amount = amount;
this.Discount = discount;
orderLock.ExitWriteLock();

}
}

However, working directly with the ReaderWriterLock and ReaderWriterLockSlim classes has disadvantages:

• It is cumbersome because a lot of code is required.
• It is unreliable because it is too easy to forget to acquire the right type of lock, and these errors are not

detectable by the compiler or by unit tests.

So, not only the direct use of locks results in more lines of code, but it won’t reliably prevent nondeterministic data
structure corruptions.

Making a class reader-writer synchronized
PostSharp Threading Pattern Library has been designed to eliminate nondeterministic data corruptions while reducing
the size of thread synchronization code to the absolute minimum (but not less).
The ReaderWriterSynchronizedAttribute aspect implements the threading model (or threading pattern) based on the
reader-writer lock, with the following principles:

• At any time, the object can be open for reading or closed for reading.
• Methods define their required access level using ReaderAttribute and WriterAttribute custom attributes

(other access levels exist for advanced scenarios)
• An error will be emitted at build-time or runtime, but deterministically, whenever an object field is being

accessed by a method that does not have the required access level on the object.

To apply the ReaderWriterSynchronized threading model to a class:
1. Add the PostSharp.Patterns.Threading package your project.

2. Add using PostSharp.Patterns.Threading namespace to your file.

3. Add the custom attribute [ReaderWriterSynchronizedAttribute] to the class.

Reader/Writer Synchronized Threading Model

299

4. Annotate your object model for parent/child relationships as described in Annotating an Object Model for
Parent/Child Relationships (Aggregatable) on page 225.

5. Add the custom attribute [ReaderAttribute] or [WriterAttribute] to the public and internal methods. Note
that it is not necessary to put these attributes on property getters and setters or on events.

The ReaderAttribute attribute causes PostSharp to acquire a lock on the instance whenever the method is invoked.
While this lock is held, other threads can also read properties or invoke read-only methods of that instance, but calls to
properties or methods marked with WriterAttribute will be blocked until all reads are complete.

Likewise, invoking methods marked with WriterAttribute will lock the instance causing all reads and writes to block
until the write has completed and the write lock has been released.

Example
The following code shows the Order class, synchronized with the reader-writer threading pattern:

[ReaderWriterSynchronized]
class Order
{

decimal Amount { get; privateset; }
decimal Discount { get; privateset; }

publicdecimal AmountAfterDiscount
{

get { returnthis.Amount - this.Discount; }
}

[Writer]
publicvoid Set(decimal amount, decimal discount)
{

if (amount < discount)
thrownew InvalidOperationException();

this.Amount = amount;
this.Discount = discount;

}
}

Rules enforced by the ReaderWriterSynchronized aspect
The ReaderWriterSynchronizedAttribute aspect emits build-time errors in the following situations:

• The class contains a public or internal field.
• The class contains a public method is missing a ReaderAttribute or WriterAttribute custom attribute, or

another attribute derived from AccessLevelAttribute. Note that property getters and setters and event
accessors do not need to be annotated.

The reader/writer synchronized object will throw a ThreadAccessException whenever some code tries to access a field
from a thread that does not own the correct lock, i.e. when a reader method tries to write a field, or when a non-
annotated method (e.g. a delegate call) tries to read or write a field.

Raising synchronous events
In some situations, a method with write access needs to allow other threads to read the object before another write is
performed on the object. The implementation of INotifyCollectionChanged gives a typical example of this situation.
The INotifyCollectionChanged event defined by this interface is typically raised from a write method but is consumed
from the user interface thread. The object cannot have changed between the moment the event is raised and it is
processed by the UI thread, because the event arguments contain data that relates to the current state of the object.
Using only WriterAttribute and ReaderAttribute would either result in deadlocks or in inconsistencies, respectively.

Writing Thread-Safe Code with Threading Models

300

The solution to this problem is to use the YielderAttribute custom attribute, which allows read access from other
threads but prevents any other thread from acquiring a writer lock.

Example
In the following example, OrderCollection is a collection of Order objects. In this example, the Add() and Remove()
methods are marked with the WriterAttribute attributes. Listeners can be notified about these changes by subscribing
to the CollectionChanged event which is exposed through the implementation of INotifyCollectionChanged

Since listeners can be on other threads (e.g. a UI thread), this event is invoked by the Add() and Remove() methods via a
method called OnCollectionChanged() which has been marked with the YielderAttribute attribute. This lock ensures
that the listener (which may be in another thread space) can read the current state of the collection without the
collection being modified by another invocation of the Add() or Remove() operations from another thread.

[ReaderWriterSynchronized]
class OrderCollection : ICollection, INotifyCollectionChanged
{

ArrayList list = new ArrayList();

// Details skipped.

[Reader]
publicint Count
{

get
{

return list.Count;
}

}

[Writer]
publicvoid Add(Order o)
{

list.Add(o);
NotifyCollectionChangedEventArgs changedArgs = new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Add, o);
OnCollectionChanged(changedArgs);

}

[Writer]
publicvoid Remove(int index)
{

NotifyCollectionChangedEventArgs changedArgs = new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Remove, list[index]);
list.RemoveAt(index);
OnCollectionChanged(changedArgs);

}

[Yielder]
privatevoid OnCollectionChanged(NotifyCollectionChangedEventArgs changedArgs)
{

CollectionChanged(this, changedArgs);
}

[Reader]
public Order Get(int index)
{

return (Order)list[index];
}

publicevent NotifyCollectionChangedEventHandler CollectionChanged;
}

Executing long-running write methods
Since write methods require exclusive access to the object, they should complete as quickly as possible. However, this is
not always possible. Some long-running write methods really do a lot of write operations (or rely on slow external
services) which make them inappropriate for the reader-writer-synchronized model. However, many write methods are

Reader/Writer Synchronized Threading Model

301

actually composed of a lot of read operations but just a few write operations at the end. In this case, it is possible to use
a combination of the UpgradeableReaderAttribute and WriterAttribute attributes. The UpgradeableReader-
Attribute attribute ensures that no other thread than the current one will be able to acquire a writer lock on the object,
so it gives the guarantee that the object is not going to be modified during the method’s execution. A method that
holds an upgradeable reader lock can then invoke a method with the WriterAttribute attributes custom attribute.
Note that it is important that the writer methods leave the object in a consistent state before exiting, because other
threads will be allowed to read the object.
The following example builds on that in the section where the Order class contains a collection of Line objects which
make up the order. In the example below, a new method called Recalculate() has been added to Order which iterates
through each Line in the collection, tallies up the amount from each, and then stores the total in Amount.

Since the Recalculate method performs a series of reads followed by a write operation (to store the total in Amount), it
is marked with the UpgradeableReaderAttribute attribute which ensures that all of the orders that it reads remain
locked so that it calculates and writes out the correct total. In addition to this, the set accessor of the Order’s Amount
property has been marked with WriterAttribute:

[ReaderWriterSynchronized]
class Order
{

// Other details skipped for brevity.publicdecimal Amount
{

// The [Reader] attribute optional here is optional because the method is a public getter.get;

// The [Writer] attribute is required because, although the method is a setter, this setter is private, // therefore is does not acquire write access by default.
[Writer] privateset;

}

[UpgradeableReader]
publicvoid Recalculate()
{

decimal total = 0;

for (int i = 0; i < lines.Count; ++i)
{

total += lines[i].Amount;
}

this.Amount = total;
}

}

Working with object trees
Because the Reader/Writer Synchronized model is an implementation of the Aggregatable pattern, all of the same
behaviors of the AggregatableAttribute are available. For more information regarding object trees, read Parent/Child,
Visitor and Disposable on page 223.

NOTE
Once you have established your parent-child relationships you will need to apply compatible threading models to the
child classes. You will want to refer to the Compatibility of Threading Models on page 310 article to determine which
threading model will work for the children of the Read/Writer Synchronized object.

Writing Thread-Safe Code with Threading Models

302

52.6. Actor Threading Model
Given the complexity of trying to coordinate accesses to an object from several threads, sometimes it makes more sense to
avoid multi threading altogether. The Actor model avoids the need for thread safety on class instances by routing method
calls from each instance to a single message queue which is processed, in order, by a single thread.
Since the processing for each instance takes place in a single thread, multithreading is avoided altogether and the object is
guaranteed to be free of data races. Calls are processed asynchronously in the order in which they were added to the
message queue. Because all calls to an actor are asynchronous, it is recommended that the async/await feature of C# 5.0 be
used.
Additionally to providing a race-free programming model, the Actor pattern has the benefit of transparently distributing
the computing load to all available CPUs without additional logic. Note that PostSharp’s implementation does not assign a
new thread to each actor instance but uses a thread pool instead, so it is possible to have a very large number of actors
with relatively low overhead.
This topic contains the following sections:

• Applying the Actor pattern on page 303
• Rules enforced by the Actor aspect on page 305
• Working with a complex state on page 305
• Dealing with constraints of the Actor model on page 305

Applying the Actor pattern
To apply the Actor threading model:

1. Add the PostSharp.Patterns.Threading package to your project.

2. Add using PostSharp.Patterns.Threading namespace to your file.

3. Add the ActorAttribute to the class.

4. Annotate your object model for parent/child relationships as described in Annotating an Object Model for
Parent/Child Relationships (Aggregatable) on page 225.

5. It is recommended, but not required, that you change all methods async methods, and modify the code that
calls them.

Example
Consider the following example of an AverageCalculator class. The code is not thread-safe because incrementing the
count has four operations (read and write) that must all be performed atomically.

class AverageCalculator
{

float sum;
int count;

publicvoid AddSample(float n)
{

this.count++;
this.sum += n;

}

publicfloat GetAverage()
{

returnthis.sum / this.count;
}

}

Actor Threading Model

303

We could use the Synchronized or Reader-Writer Synchronized threading model to make sure that the calling thread
will wait if the object is currently being accessed by another thread. Another solution in this situation is to avoid
concurrency altogether using the Actor pattern and asynchronous methods.
In the reworked example below, the AverageCalculator class has had the ActorAttribute added and the GetAverage
method has been changed into asynchronous with ReentrantAttribute attribute. The AddSample method was also
changed to an async method returning Task and ReentrantAttribute attribute was applied.

Note that we could keep the methods non-async, but it is a good practice to make the public API of all actors async
methods.

[Actor]
class AverageCalculator
{

float sum;
int count;

[Reentrant]
publicasync Task AddSample(float n)
{

this.count++;
this.sum += n;

}

[Reentrant]
publicasync Task<float> GetAverage()
{

returnthis.sum / this.count;
}

}

You can now use the same AverageCalculator from two concurrent threads.

class Program
{

staticvoid Main(string[] args)
{

MainAsync().GetAwaiter().GetResult();
}

staticasync Task MainAsync()
{

AverageCalculator averageCalculator = new AverageCalculator();

SampleObserver observer = new SampleObserver(averageCalculator);
DataSources.Source1.Subscribe(observer);
DataSources.Source2.Subscribe(observer);

Console.ReadKey();

float average = await averageCalculator.GetAverage();

Console.WriteLine("Average: {0}", average);
}

}

class SampleObserver : IObserver<float>
{

AverageCalculator calculator;

publicvoid OnNext(floatvalue)
{

// Each of the data sources can call us from a different thread and concurrently.// But we don't have to care since our calculator will enqueue method calls.this.calculator.AddSample(value);
}

// Details skipped.
}

Writing Thread-Safe Code with Threading Models

304

Behind the scenes, each invocation of AverageCalculator.AddSample is added to the message queue by the Actor-
Attribute, which then processes each call sequentially in the order it was added to the queue. This gives us the
guarantee that an instance of the AverageCalculator class is never being accessed concurrently by two threads, and
eliminates the need to make take multithreading into account.

Rules enforced by the Actor aspect
At build time, the Actor aspect emits an error in the following situations: if your class has public or internal instance
fields.

• The class has async methods that are not annotated with the ReentrantAttribute attribute (non-reentrant
async methods are not yet supported in actors).

• The class has public or internal instance fields.

At run-time, an actor will throw a ThreadMismatchException is some code attempts to access a field from a thread that
does not currently have access to the object. This typically happens when you schedule a background task or register to
an event handler, and you do not mark this method with the EntryPointAttribute custom attribute.

Working with a complex state
PostSharp generates code that prevents the fields of an actor class to be accessed from an invalid context. For instance,
trying to read an actor field from a background task would result in a ThreadAccessException. However, very often, the
state is more complex than fields of simple types like int or string. The state can be composed of several objects and
collections.
To prevent state corruption, it is important that PostSharp generates code that enforces the Actor model at run time
even for child objects of the actor.

To add complex state to actor classes:
1. Declare the Parent-Child relationship on the property using the ChildAttribute custom attribute.

2. Add the PrivateThreadAwareAttribute attribute to the child class.

For more information regarding parent-child relationships in threading models, see also Parent/Child, Visitor and
Disposable on page 223.

Example
[Actor]
class AverageCalculator
{

float sum;
int count;

[Child]
private CounterInfo counterInfo;

// Other details skipped for brevity
}

[PrivateThreadAware]
publicclass CounterInfo
{

publicstring Name { get; set; }
}

Dealing with constraints of the Actor model
Per definition of the Actor model, all methods are executed asynchronously. Methods that have no return value (void
methods) can be executed asynchronously without syntactic changes. However, methods that do have a return value
need to be made asynchronous using the async keyword.

Actor Threading Model

305

In some situations, the application of the async keyword and the corresponding dispatching of the method may be
unnecessary. For instance, a method that returns immutable information is always thread-safe and does not need to be
dispatched. For more information on excluding methods from dispatching, see Opting In and Out From Thread
Safety on page 309.

52.7. Thread-Unsafe Threading Model
When you are dealing with multithreaded code you will run into situations where some objects are not safe for concurrent
use by several threads. Although these objects should theoretically not be accessed concurrently, it is very hard to prove
that it never happens. And when it does happen, thread-unsafe data structures get corrupted, and symptoms may appear
much later. These issues are typically very difficult to debug. So instead of relying on hope, it would be nice if the object
threw an exception whenever it is accessed simultaneously by several threads. This is why we have the thread-unsafe
threading model.
This topic contains the following sections:

• Applying the Thread-Unsafe model to a class on page 306
• Rules enforced by the Thread-Unsafe aspect on page 306

Applying the Thread-Unsafe model to a class
To apply the Thread-Unsafe threading model to a class:

1. Add the PostSharp.Patterns.Threading package to your project.

2. Add using PostSharp.Patterns.Threading namespace to your file.

3. Add the ThreadUnsafeAttribute to the class.

4. Annotate your object model for parent/child relationships as described in Annotating an Object Model for
Parent/Child Relationships (Aggregatable) on page 225.

Rules enforced by the Thread-Unsafe aspect
The ThreadUnsafeAttribute aspect emits build-time errors in the following situations:

• The class contains a public or internal field.

Internally, the Thread-Unsafe model is implemented by a lock. The lock is automatically acquired by public and internal
methods, just like the Synchronized model.
A thread-unsafe object will throw the following exceptions:

• A ThreadAccessException whenever some code tries to access a field from a thread that does not own the
correct lock, i.e. the call stack does not contain a public or internal method of this method (e.g. a private
delegate call).

• A ConcurrentAccessException when two public or internal methods execute at the same time on the same
object (i.e. whenever the lock cannot be acquired without waiting).

Writing Thread-Safe Code with Threading Models

306

52.8. Making a Whole Project or Solution Thread Safe
When you want to make a large application thread-safe with PostSharp threading models, it can become difficult to
remember to assign a threading model to every single class. In this situation, you can add the thread-safety policy to your
project or solution.
The thread-safety policy emits warnings in two situations:

• classes that are not assigned to a threading model,
• static fields that are not read-only or not of a thread-safe type.

IMPORTANT NOTE
The thread-safety policy does not make your application thread-safe by itself. What the thread-safety policy does is to
remind you to use threading models in your code. It is the use of threading models that makes your application thread-
safe.

This topic contains the following sections:
• Adding the thread-safety policy using the UI. on page 307
• Adding the thread-safety policy to a project manually. on page 308
• Adding the thread-safety policy to a whole solution manually. on page 308

Adding the thread-safety policy using the UI.
To apply the thread-safety policy to your application with the UI:

1. Right click on your solution or your project in Solution Explorer, select Add followed by PostSharp Policy...

Making a Whole Project or Solution Thread Safe

307

2. In the Add PostSharp policy wizard, expand Threading and select Thread Safety.
3. If you clicked on the solution, select the projects that you would like to add the policy to.
4. Review the configuration that you have selected and click Next.
5. Close the wizard when the process had completed by clicking Finish.

If you added the policy to the whole solution, the result of running this wizard is that a pssln file has been added to your
project. The pssln file contains an entry that enables deadlock detection across all projects in your solution.

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading"><Multicast><t:ThreadSafetyPolicy/></Multicast></Project>

Adding the thread-safety policy to a project manually.
To add the thread-safety policy to a project manually:

1. Add the PostSharp.Patterns.Threading NuGet package to the project.
2. Add the ThreadSafetyPolicy any C# file. We recommend you add it to a new file named GlobalAspects.cs.

using PostSharp.Patterns.Threading;
[assembly: ThreadSafetyPolicy]

Adding the thread-safety policy to a whole solution manually.
To manually add the thread-safety policy to a whole solution:

1. Open the solution's pssln file. This can be found under the Solution Items folder in Visual Studio's Solution
Explorer.

If the pssln file doesn't exist manually add the file at the solution level. Name the file with the same name as
your solution and the pssln file extension.

2. If you had to create the pssln file and add it to your solution add the following XML to it. If the pssln file
already existed in your project proceed to the next step.

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading"></Project>

3. Add a multicast attribute to the Project element that will add ThreadSafetyPolicy to all the projects in the
solution.

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading"><Multicast><t:ThreadSafetyPolicy/></Multicast></Project>

4. Add the PostSharp.Patterns.Threading NuGet package to all projects in the solution.

Once you save the pssln file you will have added thread-safety policy to all projects in your solution.

Writing Thread-Safe Code with Threading Models

308

52.9. Opting In and Out From Thread Safety
By default, PostSharp enforces thread safety for all instance fields and all public and internal methods of any class to which
you applied a threading model.
However, there are times when you want to opt-out from this mechanism for a specific field or method. A typical reason is
that access to the field is synchronized manually using a different mechanism.
This section shows how to override the default thread safety implemented by PostSharp.
This topic contains the following sections:

• Opting out from thread-safety verification for a method on page 309
• Opting out from thread-safety for a field on page 309
• Opting in for thread safety for callback methods on page 310

Opting out from thread-safety verification for a method
To disable enforcement of the class-level threading model for a specific method, add the ExplicitlySynchronized-
Attribute attribute to that method.

In the following example, this custom attribute allows us to implement the ToString in a class that respects the Actor
model. Without the custom attribute, this would not have been possible because non-void public methods must have
the async keyword.

[Actor]
class Player
{

privatereadonlystring name;

[ExplicitlySynchronized]
publicoverridestring ToString()
{

returnthis.name;
}

}

When used on a method, the ExplicitlySynchronizedAttribute attribute has several effects:

1. Lock-based aspects such as SynchronizedAttribute or ReaderWriterSynchronizedAttribute will not
attempt to acquire a lock before executing this method.

2. Accesses to fields are not verified during the whole execution of the method (for the current thread).
3. All build-time verifications are disabled for this method.

CAUTION NOTE
By using the ExplicitlySynchronizedAttribute custom attribute, you are significantly increasing the risk that
multithreading defects in user code go undetected by PostSharp. Code using ExplicitlySynchronizedAttribute
should be more carefully covered by reviews and tests.

Opting out from thread-safety for a field
To disable enforcement of the class-level threading model for a specific field, add the ExplicitlySynchronized-
Attribute attribute to the field:

[Actor]
class MyActor
{

Opting In and Out From Thread Safety

309

[ExplicitlySynchronized]
int counter;

publicvoid FooBar()
{

// This line would throw an exception without [ExplicitlySynchronized].
Task.Factory.StartNew(() => Interlocked.Increment(refthis.counter));

}

}

When used on a field, the ExplicitlySynchronizedAttribute attribute has several effects:

1. Accesses to the field are never verified
2. All build-time verifications are disabled for this method.

Opting in for thread safety for callback methods
By default, thread safety is ensured when a thread first invokes a public or internal method of an object. The underlying
motivation is that public and internal methods are the primary way how a thread can enter an object. Another way is to
enter an object through a delegate call to a private method. By default, PostSharp does not ensure thread safety for
private methods. If you register a callback method, you need to add the EntryPointAttribute custom attribute on this
method.
In the following code snippet, the OnCreated method is invoked from a background thread by the FileSystemWatcher
class. The InputQueueWatcher is thread-safe thanks to the SynchronizedAttribute aspect.

[Synchronized]
class InputQueueWatcher
{

FileSystemWatcher watcher;

[Child]
AdvisableCollection<string> files = new AdvisableCollection<string>();

public InputQueueWatcher(string path)
{

this.watcher = new FileSystemWatcher();
this.watcher.Path = path;
this.watcher.NotifyFilter = NotifyFilters.LastWrite | NotifyFilters.FileName | NotifyFilters.DirectoryName;
this.watcher.Filter = "*.xml";
this.watcher.Created += new FileSystemEventHandler(OnCreated);

}

[EntryPoint]
privatevoid OnCreated(object source, FileSystemEventArgs e)
{

// Without [EntryPoint], the following line would throw ThreadAccessException.this.files.Add(e.FullPath);
}

public ICollection Files { get { returnthis.files; } }

}

52.10. Compatibility of Threading Models
Required introduction

Writing Thread-Safe Code with Threading Models

310

Compatibility Matrix
Parent Actor Freezable Immutable Private Reader-Writer

Synchronized
Synchronized Thread

Affine
Thread
Unsafe

Actor No Yes Yes Yes No No No Yes
Freezable No Yes Yes Yes No No No No
Immutable No Yes Yes Yes No No No No
Reader-Writer
Synchronized

Yes
(Own)

Yes Yes Yes Yes (Shared) No No No

Synchronized Yes
(Own)

Yes Yes Yes Yes (Shared) Yes (Shared) No No

Thread Affine Yes
(Own)

Yes Yes Yes No No Yes Yes
(Shared)

Thread Unsafe Yes
(Own)

Yes Yes Yes No No Yes Yes
(Shared)

Private

52.11. Enabling and Disabling Runtime Verification
When you apply a threading model to a class, PostSharp adds two kinds of behaviors: behaviors that are necessary to
implement the semantic of the threading model (for instance acquiring a lock or dispatching a method call) and behaviors
that validate that the source code is valid against the chosen threading model (for instance that no field is written if the
current method does not have write access). The second set of behaviors are called runtime verifications. By default, runtime
verifications are enabled in the Debug build and disabled in the Release build.
This section explains how to enable or disable runtime verification.
This topic contains the following sections:

• Understanding the default configuration on page 311
• Enabling or disabling runtime verification for a whole project on page 311
• Enabling and disabling runtime verification for a specific class on page 313

Understanding the default configuration
By default, runtime verification is disabled if the Optimize Code compiler flag is enabled. Therefore, runtime verification
is enabled by default in the Debug build and disabled in the Release build.

Enabling or disabling runtime verification for a whole project
Perform the following steps to enable runtime verification by using the Project Settings dialog

Enabling and Disabling Runtime Verification

311

Enabling Runtime Verification in Project Properties
1. Open the project's Properties window.

2. Select the build configuration that you want to enable runtime verification on.

NOTE
By default, projects have two different build configurations: Debug and Release. Each build configuration can,
and by default does, have a different behavior for runtime verification.

Writing Thread-Safe Code with Threading Models

312

3. Open the PostSharp tab.

4. In the Optional Features section there is a Runtime Verification dropdown. The dropdown has three options in
it; Default, Disabled, and Enabled.
The Default option will include either (Enabled) or (Disabled) after it. This value will change based on the
Optimize Code compiler flag setting. If the compiler flag is disabled the drop down option will read Default
(Enabled) and if the Optimize Code flag is enabled the dropdown option will read Default (Disabled).

Enabling and disabling runtime verification for a specific class
You can override the project-level configuration of the runtime verification setting by setting the Runtime-
VerificationEnabled property of the threading model custom attribute. This property is defined by the ThreadAware-
Attribute class, from which all threading model attributes derive.

[ThreadAffine(RuntimeVerificationEnabled = true)]

If the property is not manually set it derives its value from the setting on the project properties page. If you want to
override the default value all you need to do is set the value of the RuntimeVerificationEnabled to true or false.

Enabling and Disabling Runtime Verification

313

52.12. Run-Time Performance of Threading Model
When runtime verification of threading models is disabled (see Enabling and Disabling Runtime Verification on page 311),
there is almost no runtime overhead of using PostSharp threading models compared to implementing thread synchro-
nization manually, at least after the object model has been instantiated.
However, PostSharp threading models come at a high memory cost, and there may be a significant performance overhead
when instantiating large object graphs unless care is taken.
This topic contains the following sections:

• Memory Consumption on page 314
• Instantiation of Large Object Trees on page 314
• Assigning the Concurrency Controller Manually on page 315

Memory Consumption
As most complex aspects implemented with PostSharp, threading models have a high memory cost. Several object
instances are needed for each instance of a thread-safe class. If memory consumption is a concern, you should not use
threading models on classes that have a very high number of instances.

Instantiation of Large Object Trees
Threading models can have a significant impact on the cost of creating large object trees. In some situations, the cost of
instantiating the tree can become O(n^2) instead of O(n). The performance issue affects only the following threading
models:

• Synchronized,
• Reader-Writer Synchronized and
• Thread-Unsafe.

The performance issue stems from the fact that each root node in a tree needs its own instance of its concurrency
controller.
Consider the scenario when you build a tree using a depth-first approach. That means that you would first instantiate
the leaves of the tree, then the parent of the leaves, then the parent of the parent, and so on until you reach the root.
Depth-first tree instantiation is a common strategy when you instantiate immutable trees. Note however that the
immutable model is not affected by this issue.
When you start instantiating the leaves, and until the leaf is assigned to a parent, every leaf is the root of its own tree.
This means that an instance of the concurrency controller may be created if needed. When you instantiate the first-level
parents, a new concurrency controller is created for each first-level parent. When the leaf is assigned to its parent, the
concurrency controllers of the leaves will be replaced by the concurrency controller of the immediate parent.
The same phenomenon occurs at each level of the tree. Whenever you assign a sub-tree to a parent, the concurrency
controller of whole subtree is reassigned. Replacing the concurrency controller of a subtree is an O(n) operation, and it
should be achieved for each of the n nodes, which means that totally the concurrency controllers will be reassigned
O(n^2) times.

During the operation of instantiating the tree, O(n) controllers may be instantiated. However, at the end of the
operation, a single controller will remain in memory.
To prevent PostSharp from allocating O(n) controllers and performing O(n^2) reassignments, you need to manually
assign newly-created objects to a concurrency controller.

Writing Thread-Safe Code with Threading Models

314

Assigning the Concurrency Controller Manually
To avoid excessive creation and assignment of concurrency controllers, you can use the WithConcurrency-
Controller(IConcurrencyController) method to set the default controller for newly-created objects.

The following code snippet illustrates the use of WithConcurrencyController(IConcurrencyController). Thanks to
this method, a single concurrency controller instance is created, and each node is assigned only once to this
concurrency controller, amounting to 3 assignments for 3 nodes. Without the use of this method, 3 instances of the
concurrency controller would have been created, and totally 5 assignments would be done.

using (ThreadAwareServices.WithConcurrencyController(ThreadAwareServices.CreateSynchronizedController()))
{

var child1 = new SynchronizedObject();
var child2 = new SynchronizedObject();

var parent = new SynchronizedObject();
parent.Children.Add(child1);
parent.Children.Add(child2);

}

Run-Time Performance of Threading Model

315

Writing Thread-Safe Code with Threading Models

316

CHAPTER 53

Dispatching a Method to Background

Long running processes will block the further execution of code while the system waits for them to complete. When you are
building applications it's common to push long running processes to the background so that other processes can continue
without waiting. Two common ways of doing this are with asynchronous processing and the BackgroundWorker. Both
require a lot of boiler plate code to push execution to another thread.
PostSharp provides you with the ability to push execution of a method to a background thread without having to worry
about all of the boiler plate code.

To add execute a method in the background:
1. Add the PostSharp.Patterns.Threading package to your project.

2. Add using PostSharp.Patterns.Threading namespace to your file.

3. Add the BackgroundAttribute to the method that you want to push to the background for execution. The
method must have void, Task or TaskTResult return type.

Those simple steps are all that is required for you to declare that a method should be executed in a background thread.
If the method is void, it will be executed in the background, and the caller code will not wait until the background method
completes its execution. If the method returns a Task, the method will be fully executed in the background (even the first
segment of the method, before the first await keyword).

Run-Time Performance of Threading Model

317

Dispatching a Method to Background

318

CHAPTER 54

Dispatching a Method to the UI Thread

When you are building desktop or mobile user interfaces, parts of your code may execute on background threads.
However, the user interface itself can be accessed only from the UI thread. Therefore, it is often necessary to dispatch
execution of code from a background thread to the foreground thread.
Traditionally, thread dispatching has been implemented using the Invoke(Delegate) method in WinForms or the
Dispatcher class in XAML. However, this results in a large amount of boilerplate, making the code unreadable.

The DispatchedAttribute aspect addresses the issue of thread dispatching by forcing a method to execute on the thread
that created the object (typically the foreground thread).
This topic contains the following sections:

• Forcing a method to execute on the foreground thread on page 319
• Executing a method asynchronously on page 319
• Executing async methods in the foreground thread on page 320

Forcing a method to execute on the foreground thread
To force a method to execute on the foreground thread:

1. Add the PostSharp.Patterns.Threading package to your project.

2. Add using PostSharp.Patterns.Threading namespace to your file.

3. Add the DispatchedAttribute to the method that you want to push to the background for execution.

Example
The following example shows how to use both BackgroundAttribute and DispatchedAttribute to specify on which
threads different methods of the class are executed.

[Background]
privatevoid SaveButton_Click(object sender, RoutedEventArgs e)
{

using (var file = File.CreateText(this.path))
{

this.model.SaveTo(file);
}

this.SaveCompleted();
}

[Dispatched]
privatevoid SaveCompleted()
{

this.StatusLabel.Text = "Finished Saving";
}

Executing a method asynchronously
By default, the DispatchedAttribute forces the target method to execute synchronously on the foreground thread,
which means that the background thread will wait until the method execution has completed. This waiting causes some

Run-Time Performance of Threading Model

319

performance overhead. Additionally, synchronous execution is not always useful. If the method has no return value and
no side effect of interest for the calling thread, the method could be safely executed asynchronously, which means the
calling thread would not need to wait for the method execution to complete on the foreground thread, so that the
calling thread would continue its execution immediately after having enqueued the call to the foreground thread.
You can enable asynchronous execution of a dispatched method by passing the true value to the parameter of the
DispatchedAttribute(Boolean) constructor, for instance:

[Dispatched(true)]
privatevoid SaveCompleted()
{

this.StatusLabel.Text = "Finished Saving";
}

Executing async methods in the foreground thread
When you use the DispatchedAttribute aspect on asynchronous methods (async keyword in C#), the method is
guaranteed to execute on the foreground thread even when it is invoked from a background thread.

Dispatching a Method to the UI Thread

320

CHAPTER 55

Detecting Deadlocks at Runtime

A common problem that is found in multithreaded code is that multiple threads enter a situation where they are waiting for
each other to finish. This is a deadlock situation and neither thread will complete executing in this situation. Because the
threads are waiting on each other, neither is capable of providing diagnostic information to aid in debugging the situation.
The DeadlockDetectionPolicy helps provide this information.

This topic contains the following sections:
• Adding deadlock detection using the UI on page 321
• Manually adding deadlock detection to a project on page 325
• Manually adding deadlock detection to the whole solution on page 325
• Deadlock detection on page 326

Adding deadlock detection using the UI
To apply the deadlock detection to your application with the UI:

1. Right click on your solution in Solution Explorer, select Add followed by PostSharp Policy...

Run-Time Performance of Threading Model

321

2. In the Add PostSharp policy wizard, expand Threading and select Deadlock detection.

Detecting Deadlocks at Runtime

322

3. Select the projects that you would like to add deadlock detection to.

NOTE
You will need to add this to every project in your application. Excluding projects could cause your application
to fail.

Run-Time Performance of Threading Model

323

4. Review the configuration that you have selected and click Next.

5. Close the wizard when the process had completed by clicking Finish.

The result of running this wizard is that a pssln file has been added to your project.

Detecting Deadlocks at Runtime

324

The pssln file contains an entry that enables deadlock detection across all projects in your solution.

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading"><Multicast><t:DeadlockDetectionPolicy/></Multicast></Project>

Manually adding deadlock detection to a project
To manually add deadlock detection to a project:

1. Add the PostSharp.Patterns.Threading NuGet package to the project.
2. Add the DeadlockDetectionPolicy custom attribute to in any C# file. We recommend you add it to a new file

named GlobalAspects.cs.

[assembly: DeadlockDetectionPolicy]

NOTE
You will need to add this to every project in your application. Excluding projects could cause your application
to fail.

Manually adding deadlock detection to the whole solution
Adding deadlock detection at the solution level can also be done manually. This can be done by adding an entry to the
pssln file in the solution.

To manually add deadlock detection to a solution:
1. Open the solution's pssln file. This can be found under the Solution Items folder in Visual Studio's Solution

Explorer.

If the pssln file doesn't exist manually add the file at the solution level. Name the file with the same name as
your solution and the pssln file extension.

2. If you had to create the pssln file and add it to your solution add the following XML to it. If the pssln file
already existed in your project proceed to the next step.

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading"></Project>

3. Add a multicast attribute to the Project element that will add DeadlockDetectionPolicy to all the projects in
the solution.

<?xmlversion="1.0"encoding="utf-8"?><Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading"><Multicast><t:DeadlockDetectionPolicy/></Multicast></Project>

4. Add the PostSharp.Patterns.Threading NuGet package to all projects in the solution.

Once you save the pssln file you will have added deadlock detection to all projects in your solution.

Run-Time Performance of Threading Model

325

Deadlock detection
When a deadlock is detected a DeadlockException is thrown. The exception will include a detailed report of all the
threads and locks involved in the deadlock. Here is an example of that.

Detecting Deadlocks at Runtime

326

PART 13

Developing Custom Aspects

CHAPTER 56

Developing Simple Aspects

Simple aspects are aspects that are composed of a single transformation. Developing a simple aspect in PostSharp is
straightforward: you just have to create a new class, derive it from a primitive aspect class, and override some special
methods named advices.
If your aspect cannot be implemented as a single transformation, see Developing Composite Aspects on page 373.

In this section:
Article Description
Injecting Behaviors Before and
After Method
Execution on page 329

This article shows how to execute code when a method starts, succeeds, or fails,
around await operators of async methods, or yield return statements of iterator
methods.

Handling
Exceptions on page 337

This article describes how to write an aspect that handles exceptions.

Intercepting
Methods on page 341

This article explains how to intercept the execution of methods.

Intercepting Properties and
Fields on page 346

This article shows how to intercept read and write accesses to fields and properties.

Intercepting Events on page 351 This article describes how to intercept the action of adding a delegate to an event,
removing a delegate from an event, and invoking a delegate by raising the event.

Introducing Custom
Attributes on page 353

This article shows how to add a custom attribute to any element of code.

Introducing Managed
Resources on page 358

This article shows how to add a managed resource to the current assembly.

56.1. Injecting Behaviors Before and After Method Execution
The OnMethodBoundaryAspect aspect implements the so-called decorator pattern: it allows you to execute logic before and
after the execution of a target method.
You may want to use method decorators to perform logging, monitor performance, initialize database transactions or any
one of many other infrastructure related tasks. PostSharp provides you with an easy to use framework for all of these tasks
in the form of the OnMethodBoundaryAspect.

This topic contains the following sections:
• Executing code before and after method execution on page 330
• Accessing the current execution context on page 331
• Changing execution flow on page 332

Injecting Behaviors Before and After Method Execution

329

• Sharing state between advices on page 333
• Working with async methods on page 334
• Working with iterator methods on page 335

Executing code before and after method execution
When you are decorating methods, there are different locations that you may wish to inject functionality to. You may
want to perform a task prior to the method executing or just before it finishes execution. There are situations where you
may want to inject functionality only when the method has successfully executed or when it has thrown an exception. All
of these injection points are structured and available to you in the OnMethodBoundaryAspect class as virtual methods
(called advices) that you can implement if you need them.
The following table shows the advice methods available in the OnMethodBoundaryAspect class (see below for more
advice methods available on async and iterator methods).

Advice Description
OnEntry(MethodExecutionArgs) When the method execution starts, before any user code.

OnSuccess(MethodExecutionArgs) When the method execution succeeds (i.e. returns without an exception), after
any user code.

OnException(MethodExecutionArgs) When the method execution fails with an exception, after any user code. It is
equivalent to a catch block.

OnExit(MethodExecutionArgs) When the method execution exits, whether successfully or with an exception.
This advice runs after any user code and after the
OnSuccess(MethodExecutionArgs) or OnException(MethodExecutionArgs)
method of the current aspect. It is equivalent to a finally block.

To create a simple aspect that writes some text whenever a method enters, succeeds, or fails:
1. Add a reference to the PostSharp package to your project.
2. Create an aspect class and inherit OnMethodBoundaryAspect.

3. Annotate the class with the [PSerializableAttribute] custom attribute.

4. Override the OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs), OnException(Method-
ExecutionArgs) and/or OnExit(MethodExecutionArgs) as needed, and code the logic that needs to be
executed at these points.

5. Add the aspect to one or more methods. Since OnMethodBoundaryAspect derives from the Attribute class,
you can just add the aspect custom attribute to the methods you need. If you need to add the aspect to more
methods (for instance all public methods in a namespace), you can learn about more advanced techniques in
Adding Aspects to Code on page 111.

Example
The following code snippet shows a simple aspect based on OnMethodBoundaryAspect which writes a line to the console
during each of the four events. The aspect is applied to the Program.Main method.

[PSerializable]
publicclass LoggingAspect : OnMethodBoundaryAspect
{

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method has been entered.", args.Method.Name);
}

publicoverridevoid OnSuccess(MethodExecutionArgs args)

Developing Simple Aspects

330

{
Console.WriteLine("The {0} method executed successfully.", args.Method.Name);

}

publicoverridevoid OnExit(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method has exited.", args.Method.Name);
}

publicoverridevoid OnException(MethodExecutionArgs args)
{

Console.WriteLine("An exception was thrown in {0}.", args.Method.Name);
}

}

staticclass Program
{

[LoggingAspect]
staticvoid Main()
{

Console.WriteLine("Hello, world.");
}

}

Executing the program prints the following lines to the console:

The Main method has been entered.
Hello, world.
The Main method executed successfully.
The Main method has exited.

Accessing the current execution context
As illustrated in the example above, you can access information about the method being intercepted from the property
MethodExecutionArgsMethod, which gives you a reflection object MethodBase. This object gives you access to
parameters, return type, declaring type, and other characteristics. In case of generic methods or generic types, Method
gives you the proper generic method instance, so you can use this object to get generic parameters.
The MethodExecutionArgs object contains more information about the current execution context, as illustrated in the
following table:

Property Description
Method The method or constructor being executed (in case of generic methods, this property is set to the

proper generic instance of the method).
Arguments The arguments passed to the method. In case of out and ref arguments, the argument values can be

modified by the aspect.
Instance The object on which the method is being executed, i.e. the value of the this keyword.

ReturnValue The return value of the method. This property can be modified by the aspect.

Exception The Exception thrown by the method. This value can be modified (see below).

NOTE
The properties of the MethodExecutionArgs class cannot be directly viewed in the debugger. Because of
optimizations, the properties must be referenced in your source code in order to be viewable in the debugger.

Example
The following program illustrates how to consume the current context from the MethodExecutionArg parameter:

Injecting Behaviors Before and After Method Execution

331

[PSerializable]
publicclass LoggingAspect : OnMethodBoundaryAspect
{

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("Method {0}({1}) started.", args.Method.Name, string.Join(", ", args.Arguments));
}

publicoverridevoid OnSuccess(MethodExecutionArgs args)
{

Console.WriteLine("Method {0}({1}) returned {2}.", args.Method.Name, string.Join(", ", args.Arguments), args.ReturnValue);
}

}

staticclass Program
{

staticvoid Main()
{

Foo(1, 2);
}

staticint Foo(int a, int b)
{

Console.WriteLine("Hello, world.");
return3;

}
}

When this program executes, it prints the following output:

Method Foo(1, 2) started.
Hello, world.
Method Foo(1, 2) return 3.

Changing execution flow
There are several ways you can affect the execution of a method using the OnMethodBoundaryAspect aspect:

This section contains the following subsections:
• Returning without executing the method on page 332
• Throwing a different exception than the caught one on page 333

Returning without executing the method
When your aspect is interacting with the target code, there are situations where you will need to alter the execution flow
behavior. For example, your OnEntry(MethodExecutionArgs) advice may want to prevent the target method from
being executed. PostSharp offers this ability through the use of the MethodExecutionArgsFlowBehavior property.
Unless the target method is void, you will also need to set the MethodExecutionArgsReturnValue property.

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

if (args.Arguments.Count > 0 && args.Arguments[0] == null)
{

args.FlowBehavior = FlowBehavior.Return;
args.ReturnValue = -1;

}

Console.WriteLine("The {0} method was entered with the parameter values: {1}",
args.Method.Name, argValues.ToString());

}

As you can see, all that is needed to exit the execution of the target code is setting the FlowBehavior property on the
MethodExecutionArgs to Return.

Developing Simple Aspects

332

Managing execution flow control when dealing with exceptions there are two primary situations that you need to
consider: re-throwing the exception and throwing a new exception.

Throwing a different exception than the caught one
To throw a new exception you will have to perform two tasks. First, you will need to assign the new exception to the
Exception property. This is the exception that will be thrown as part of the flow behavior. After that, you will need to set
the FlowBehavior property to ThrowException.

publicoverridevoid OnException(MethodExecutionArgs args)
{

if (args.Exception.GetType() == typeof(IndexOutOfRangeException))
{

args.Exception = new CustomArrayIndexException("This was thrown from an aspect",
args.Exception);

args.FlowBehavior = FlowBehavior.ThrowException;
}

}

NOTE
The remaining FlowBehavior enumeration value is Continue. In OnException(MethodExecutionArgs), this behavior
will not rethrow the caught exception. In OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and
OnExit(MethodExecutionArgs) the target code execution will continue with no interruption.

NOTE
The default FlowBehavior value for OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and On-
Exit(MethodExecutionArgs) is Continue. For OnException(MethodExecutionArgs) the default value is Rethrow-
Exception.

Sharing state between advices
When you are working with multiple advices on a single aspect, you will encounter the need to share state between
these advices. For example, if you have created an aspect that times the execution of a method, you will need to track
the starting time at OnEntry(MethodExecutionArgs) and share that with OnExit(MethodExecutionArgs) to calculate
the duration of the call.
To do this we use the MethodExecutionTag property on the MethodExecutionArgs parameter in each of the advices.
Because MethodExecutionTag is an object type, you will need to cast the value stored in it while retrieving it and before
using it.

[PSerializable]
publicclass ProfilingAspect : OnMethodBoundaryAspect
{

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

args.MethodExecutionTag = Stopwatch.StartNew();
}

publicoverridevoid OnExit(MethodExecutionArgs args)
{

var sw = (Stopwatch)args.MethodExecutionTag;
sw.Stop();

System.Diagnostics.Debug.WriteLine("{0} executed in {1} seconds", args.Method.Name,
sw.ElapsedMilliseconds / 1000);

}
}

Injecting Behaviors Before and After Method Execution

333

NOTE
The value stored in MethodExecutionTag will not be shared between different instances of the aspect. If the aspect is
attached to two different pieces of target code, each attachment will have its own unshared MethodExecutionTag for
state storage.

Working with async methods
The specificity of async methods is that their execution can be suspended while they are awaiting a dependent
operation (typically another async method or a Task). While an async method is suspended, it does not block any
thread. When the dependent operation has completed, the execution of the async method can be resumed, possibly on
a different thread than the one the method was previously executing on.
There are many situations in which you may want to execute some logic when an async method is being suspended or
resumed. For instance, a profiling aspect may exclude the time when the method is waiting for a dependency. You can
achieve this by overriding the OnYield(MethodExecutionArgs) and OnResume(MethodExecutionArgs) methods of the
OnMethodBoundaryAspect class.

The following table shows the advices that are specific to async methods.

Advice Description
OnYield(MethodExecutionArgs) When the method execution being suspended, i.e. when the operand of the await

operator is a task that has not yet completed.
OnResume(MethodExecutionArgs) When the method execution being resumed, i.e. when the operand of the await

operator has completed.

NOTE
When the operand of the await is a task that has already completed, the OnYield(MethodExecutionArgs) and On-
Resume(MethodExecutionArgs) methods are not invoked.

See Semantic Advising of Iterator and Async Methods on page 359 for more details regarding the behavior OnMethod-
BoundaryAspect aspect on asynchronous methods.

Example
In this example, we will reuse the ProfilingAttribute class from the previous section and will extend it to exclude the
time spent while waiting for dependent operations.

[PSerializable]
publicclass ProfilingAspect : OnMethodBoundaryAspect
{

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

args.MethodExecutionTag = Stopwatch.StartNew();
}

publicoverridevoid OnExit(MethodExecutionArgs args)
{

var sw = (Stopwatch)args.MethodExecutionTag;
sw.Stop();

System.Diagnostics.Debug.WriteLine("{0} executed in {1} seconds", args.Method.Name,
sw.ElapsedMilliseconds / 1000);

}

publicoverridevoid OnYield(MethodExecutionArgs args)
{

Developing Simple Aspects

334

Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Stop();

}

publicoverridevoid OnResume(MethodExecutionArgs args)
{

Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Start();

}

}

Let's apply the [Profiling] attribute to the TestProfiling method.

[Profiling]
publicasync Task TestProfiling()
{

await Task.Delay(3000);
Thread.Sleep(1000);

}

During the code execution, the stopwatch will start upon entering the TestProfiling method. It will stop before the
await statement and resume when the task awaiting is done. Finally, the time measuring is stopped again before exiting
the TestProfiling method and the result is written to the console.

Method ProfilingTest executed for 1007ms.

Working with iterator methods
Iterator methods are methods that contain the yield keyword. Under the hood, the C# or VB compiler transforms the
iterator method into a state machine class that implements the IEnumerableT and IEnumeratorT interfaces. Calling the
MoveNext method causes the method to execute until the next yield keyword. The keyword causes the method
execution to be suspended, and it is resumed by the next call to MoveNext.

Just like with async methods, you can use the OnYield(MethodExecutionArgs) and OnResume(MethodExecutionArgs)
methods to inject behaviors when an iterator method is suspended or resumed.
The following table explains the behavior of the different advices of the OnMethodBoundaryAspect aspects in the context
of iterator methods.

Advice Description
OnEntry(MethodExecutionArgs) When the method execution starts, i.e. during the first call of the MoveNext

method, before any user call.
OnYield(MethodExecutionArgs) When the iterator method emits a result using the yield return statement

(and the iterator execution is therefore suspended). The operand of the yield
return statement (i.e. the value of the IEnumeratorCurrent property) can be
read from the YieldValue property of the MethodExecutionArgs parameter.

OnResume(MethodExecutionArgs) When the method execution being resumed by a call to MoveNext. Note,
however, that the first call to MoveNext results into a call to
OnEntry(MethodExecutionArgs).

OnSuccess(MethodExecutionArgs) When the iterator method execution succeeds (i.e. returns without an
exception, causing the MoveNext method to return false) or is interrupted (by
disposing of the enumerator), after any user code.

OnException(MethodExecutionArgs) When the method execution fails with an exception, after any user code. It is
equivalent to a catch block around the whole iterator method.

Injecting Behaviors Before and After Method Execution

335

Advice Description
OnExit(MethodExecutionArgs) When the iterator method execution successfully (when MoveNext method

returns false), is interrupted (by disposing of the enumerator) or fails with an
exception. This advice runs after any user code and after the
OnSuccess(MethodExecutionArgs) or OnException(MethodExecutionArgs)
method of the current aspect. It is equivalent to a finally block around the
whole iterator.

See Semantic Advising of Iterator and Async Methods on page 359 for more details regarding the behavior OnMethod-
BoundaryAspect aspect on iterator methods.

Example
The following program illustrates the timing of different advices in the context of an iterator.

[PSerializable]
class MyAspect : OnMethodBoundaryAspect
{

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("! entry");
}

publicoverridevoid OnResume(MethodExecutionArgs args)
{

Console.WriteLine("! resume");
}
publicoverridevoid OnYield(MethodExecutionArgs args)
{

Console.WriteLine($"! yield return {args.YieldValue}");
}

publicoverridevoid OnSuccess(MethodExecutionArgs args)
{

Console.WriteLine("! success");
}

publicoverridevoid OnExit(MethodExecutionArgs args)
{

Console.WriteLine("! exit");
}

}

class Program
{

staticvoid Main(string[] args)
{

foreach (var i in Foo())
{

Console.WriteLine($"# received {i}");
}

Console.WriteLine("# done");
}

[MyAspect]
static IEnumerable<int> Foo()
{

Console.WriteLine("@ part 1");
yieldreturn1;
Console.WriteLine("@ part 2");
yieldreturn2;
Console.WriteLine("@ part 3");
yieldreturn3;
Console.WriteLine("@ part 4");

Developing Simple Aspects

336

}
}

Executing the program prints the following output:

! entry
@ part 1
! yield return 1
received 1
! resume
@ part 2
! yield return 2
received 2
! resume
@ part 3
! yield return 3
received 3
! resume
@ part 4
! success
! exit
done

56.2. Handling Exceptions
Adding exception handlers to code requires the addition of try/catch statements which can quickly pollute code.
Exception handling implemented this way is also not reusable, requiring the same logic to be implemented over and over
wherever exceptions must be dealt with. Raw exceptions also present cryptic information and can often expose too much
information to the user.
PostSharp provides a solution to these problems by allowing custom exception handling logic to be encapsulated into a
reusable class, which is then easily applied as an attribute to all methods and properties where exceptions are to be dealt
with.
This topic contains the following sections:

• Intercepting an exception on page 337
• Specifying the type of handled exceptions on page 338
• Ignoring ("swallowing") exceptions on page 339
• Replacing or wrapping exceptions on page 340
• Accessing the current execution context on page 340

Intercepting an exception
PostSharp provides the OnExceptionAspect class which is the base class from which exception handlers are to be
derived from.
The key element of this class is the OnException(MethodExecutionArgs) method: this is the method where the
exception handling logic (i.e. what would normally be in a catch statement) goes. A MethodExecutionArgs parameter is
passed into this method by PostSharp; it contains information about the exception.

To create an exception handling aspect:
1. Add a reference to the PostSharp package to your project.
2. Derive a class from OnExceptionAspect.

3. Apply the PSerializableAttribute to the class.

Handling Exceptions

337

4. Override OnException(MethodExecutionArgs) and implement your exception handling logic in this class. The
Exception object is available on the Exception property of the MethodExecutionArgs parameter.

5. Add the aspect to one or more methods. Since OnExceptionAspect derives from the Attribute class, you can
just add the aspect custom attribute to the methods you need. If you need to add the aspect to more methods
(for instance all public methods in a namespace), you can learn about more advanced techniques in Adding
Aspects to Code on page 111.

Example
The following snippet shows an example of an exception handler which watches for exceptions of any type, and then
writes a message to the console when an exception occurs:

[PSerializable]
publicclass PrintExceptionAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

Once created, apply the derived class to all methods and/or properties for which the exception handling logic is to be
used, as shown in the following example:

class Customer
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }

[PrintException]
publicvoid StoreName(string path)
{

File.WriteAllText(path, string.Format("{0} {1}", this.FirstName, this.LastName));
}

}

Here PrintException will output a message when an exception occurs in trying to write text to a file.

Specifying the type of handled exceptions
The GetExceptionType(MethodBase) method can be used to return the type of the exception which is to be handled by
this aspect. Otherwise, all exceptions will be caught and handled by this class. Note that the GetException-
Type(MethodBase) method is evaluated at build time.

If the aspect needs to handle several types of exception, the GetExceptionType should return a common base type, and
the OnException implementation should be modified to dynamically handle different types of exception.

Example
In the following snippet, we updated the PrintExceptionAttribute aspect and added the possibility to specify from
the custom attribute constructor which type of exception should be traced.

[PSerializable]
publicclass PrintExceptionAttribute : OnExceptionAspect
{

Type type;

public PrintExceptionAttribute(Type type)
{

this.type = type;
}

Developing Simple Aspects

338

// Method invoked at build time.// Should return the type of exceptions to be handled. publicoverride Type GetExceptionType(MethodBase method)
{

returnthis.type;
}

publicoverridevoid OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

class Customer
{

publicstring FirstName { get; set; }
publicstring LastName { get; set; }

[PrintException(typeof(IOException)]
publicvoid StoreName(string path)
{

File.WriteAllText(path, string.Format(“{0} {1}”, this.FirstName, this.LastName));
}

}

Ignoring ("swallowing") exceptions
The FlowBehavior member of MethodExecutionArgs in the exception handler’s OnException(MethodExecutionArgs)
method, can be set to ignore an exception. Note however that ignoring exceptions is generally dangerous and not
recommended. In practice, it’s only safe to ignore exceptions in event handlers (e.g. to display a message in a WPF form)
and in thread entry points.
Exceptions can be ignored by setting the FlowBehavior property to Return. You must then set the return value of the
method by setting the ReturnValue property.

Example
The following aspect catches all exceptions flowing from the methods the aspect is applied to, prints the exception to
the console, and makes the target method return -1 instead of failing with an exception.

[PSerializable]
publicclass PrintAndIgnoreExceptionAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
args.FlowBehavior = FlowBehavior.Return;
args.ReturnValue = -1;

}
}

publicclass Customer
{

[PrintException(typeof(IOException))]
publicint GetDataLength(string path)
{

return File.ReadAllText(path).Length;
}

}

Handling Exceptions

339

Replacing or wrapping exceptions
Many times, the original exception must be hidden from the user or the client of the service, and should be replaced by
another exception.This can be done by setting the MethodExecutionArgsFlowBehavior property to FlowBehavior.
ThrowException and the MethodExecutionArgsException to the new exception.

• FlowBehavior.RethrowException: rethrows the original exception after the exception handler exits. This is the
default behavior for the OnException(MethodExecutionArgs) advice.

• FlowBehavior.ThrowException: throws a new exception once the exception handler exits. This is useful when
details of the original exception should be hidden from the user or when a more meaningful exception is to be
shown instead. When throwing a new exception, a new exception object must be assigned to the Exception
member of MethodExecutionArgs. The following snippet shows the creation of a new BusinessException-
Attribute which throws a BusinessException containing a description of the cause:

[PSerializable]
publicsealedclass BusinesssExceptionAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs args)
{

args.FlowBehavior = FlowBehavior.ThrowException;
args.Exception = new BusinessException("Bad Arguments", new Exception("One or more arguments were null. Use the id " + guid.ToString() + " for more information"));

}
}

Example
The following aspect handles all exceptions in the BusinessServices class by generating a GUID for it, writing all details
to the trace file and then throwing a BusinessException showing just the incident GUID and hiding other details.

[PSerializable]
publicsealedclass HandleExceptionsAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs args)
{

Guid guid = Guid.NewGuid();

// In a real-world app, we would file the exception in the QA database.
Trace.WriteLine(#"Exception {guid}:");
Trace.WriteLine(args.Exception.ToString());

args.FlowBehavior = FlowBehavior.ThrowException;
args.Exception = new BusinessException($"The service failed unexpectedly. Please report the incident to the QA team with the id #{guid}.");

}
}

[HandleExceptions]
publicclass BusinessServices
{

// Dozens of methods here.
}

publicclass BusinessException : Exception
{

public BusinessException(string message) : base(message)
{
}

}

Accessing the current execution context
The OnException(MethodExecutionArgs) method requires one argument of type MethodExecutionArgs. This object
gives access to the exception being handled, the identity of the method being executed, its arguments, and the current
object.

Developing Simple Aspects

340

The following table lists the pieces of context made available by the MethodExecutionArgs class.

Property Description
Method The method or constructor being executed (in case of generic methods, this property is set to the proper

generic instance of the method). This is not necessarily equal to the method that originally threw the
exception.

Arguments The arguments passed to the method. In case of out and ref arguments, the argument values can be
modified by the aspect.

Instance The object on which the method is being executed, i.e. the value of the this keyword.

Exception The Exception thrown by the method. This value can be modified (see below).

NOTE
The properties of the MethodExecutionArgs class cannot be directly viewed in the debugger. Because optimizations,
the properties must be referenced in your source code in order to be viewable in the debugger.

Example
The following code improves the previous example by adding more context information to the print-out of the
exception details.

[PSerializable]
publicsealedclass HandleExceptionsAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs args)
{

Guid guid = Guid.NewGuid();

// In a real-world app, we would file the exception in the QA database.
Trace.WriteLine($"Exception {guid} when invoking the method {args.Method.DeclaringType.FullName}.{args.Method.Name}({string.Join(", ", args.Arguments)}) ");
Trace.WriteLine(args.Exception.ToString());

args.FlowBehavior = FlowBehavior.ThrowException;
args.Exception = new BusinessException($"The service failed unexpectedly. Please report the incident to the QA team with the id #{guid}.");

}
}

56.3. Intercepting Methods
It is often useful to be able to intercept the invocation of a method and invoke your own hook in its place. Common use
cases for this capability include dispatching the method execution to a different thread, asynchronously executing the
method at a later time, and retrying the method call an when exception is thrown.
PostSharp addresses these needs with the MethodInterceptionAspect aspect class which intercepts the invocation of a
method before the method is executed. It also allows you to invoke the original method and access its arguments and
return value.
The current article covers method interception, for another approach to injecting behaviors into methods, see Injecting
Behaviors Before and After Method Execution on page 329.
This topic contains the following sections:

• Intercepting a method call on page 342
• Accessing the current execution context on page 343

Intercepting Methods

341

• Intercepting methods returning a Task, including async methods on page 344

Intercepting a method call
To create an aspect that retries a method call on exception:

1. Add a reference to the PostSharp package to your project.
2. Create an aspect class and inherit MethodInterceptionAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

3. Override and implement the OnInvoke(MethodInterceptionArgs) method and implement the interception
logic. Call args.Proceed() to invoke the intercepted method.

NOTE
Calling base.OnInvoke() is equivalent to calling args.Proceed().

4. Add the aspect to one or more methods. Since MethodInterceptionAspect derives from the Attribute class,
you can just add the aspect custom attribute to the methods you need. If you need to add the aspect to more
methods (for instance all public methods in a namespace), you can learn about more advanced techniques in
Adding Aspects to Code on page 111.

Example
Consider the following CustomerService class which has methods to load and save customer entities and relies on calls
to a database or a web-service.

publicclass CustomerService
{

publicvoid Save(Customer customer)
{

// Database or web-service call.
}

}

Occasionally, the connection to the underlying store may become unreliable and the application user is presented with
the error message. To improve the user experience you may want to retry the failing operation several times before
displaying the error message. In the following steps, we'll create a method interception class which can be applied to
repository methods and will retry the invocation whenever an exception is thrown by the original method.
The complete aspect code is as follows:

[PSerializable]
publicclass RetryOnExceptionAttribute : MethodInterceptionAspect
{

public RetryOnExceptionAttribute()
{

this.MaxRetries = 3;
}

publicint MaxRetries { get; set; }

publicoverridevoid OnInvoke(MethodInterceptionArgs args)
{

int retriesCounter = 0;

while (true)
{

try
{

args.Proceed();

Developing Simple Aspects

342

return;
}
catch (Exception e)
{

retriesCounter++;
if (retriesCounter > this.MaxRetries) throw;

Console.WriteLine(
"Exception during attempt {0} of calling method {1}.{2}: {3}",
retriesCounter, args.Method.DeclaringType, args.Method.Name, e.Message);

}
}

}
}

Apply the [RetryOnException] custom attributes to all methods where the behavior is needed.

In the following snippet, this aspect is applied to the CustomerService.Save method:

publicclass CustomerService
{

[RetryOnException(MaxRetries = 5)]
publicvoid Save(Customer customer)
{

// Database or web-service call.
}

}

Whenever the CustomerService.Save method is invoked, the RetryOnExceptionAttribute.OnInvoke method is called
instead. The aspect method will invoke the original method and retry if necessary.

Accessing the current execution context
As illustrated in the example above, you can access information about the method being intercepted from the property
MethodInterceptionArgsMethod, which gives you the MethodBase of the method that has been intercepted. This object
gives you access to parameters, return type, declaring type, and other characteristics. In case of generic methods or
generic types, MethodInterceptionArgsMethod gives you the proper generic method instance, so you can use this
object to get generic parameters.
The MethodInterceptionArgs parameter gives you access to other pieces of information regarding the current
execution context.

Property Description
Method The method being executed (in case of generic methods, this property is set to the proper generic

instance of the method).
Arguments The arguments passed to the method. If you modify the arguments and call args.Proceed(), the

intercepted method will be invoked with the modified arguments.
Instance The object on which the method is being executed, i.e. the value of the this keyword.

ReturnValue The return value of the method. This property is populated after the aspect calls args.Proceed. The
aspect can then modify the value of this property if it needs to return a different value than the one
returned by the intercepted method.

Intercepting Methods

343

Intercepting methods returning a Task, including async methods
The Task class in .NET represents operations that can execute asynchronously. Whenever you want to intercept a
method that returns a Task, you have two options of how to define the target of the interception:

• Intercepting the logic that creates and returns a new Task. The logic of the asynchronous operation
represented by the Task is not intercepted, and the Task's status, return value and thrown exception are not
handled by an aspect. This is what happens when you intercept a Task-returning method with an aspect
implementing only OnInvoke(MethodInterceptionArgs).

• Intercepting both the logic that instantiates the Task and the logic of the Task. In this case, you intercept the
asynchronous operation represented by the task. You can await for the completion of the task, and you can
handle the task's return value and thrown exception inside the aspect. This interception mode is called
semantic advising.

To intercept the whole Task logic, your aspect must implement the OnInvokeAsync(MethodInterceptionArgs) method.
Your implementation can call args.ProceedAsync() instead of args.Proceed() to invoke the intercepted method and
execute the intercepted task.
When an aspect implements both OnInvoke(MethodInterceptionArgs) and OnInvokeAsync(MethodInterception-
Args), PostSharp automatically selects the proper method when the target method returns a Task. You can change this
behavior by changing the value of the SemanticallyAdvisedMethodKinds aspect property. See Semantic Advising of
Iterator and Async Methods on page 359 for details regarding this property.
In this article, we will demonstrate how to control the semantic behavior of the MethodInterceptionAspect aspect
when it is applied to a method returning a task or to an async method. For a more general information about using
MethodInterceptionAspect see Intercepting Methods on page 341.

Example
To demonstrate when the semantic approach to method interception can be useful, let's extend at the RetryOn-
ExceptionAttribute aspect created in the previous example.

The previous version of RetryOnExceptionAttribute aspect intercepts the original method, but it does not intercept
the async task returned by the method. As a result, the aspect cannot catch the exception thrown by the async task and
the test method fails. In order to properly handle async methods, we need to add an implementation of the OnInvoke-
Async(MethodInterceptionArgs) method to the RetryOnExceptionAttribute aspect:

[PSerializable]
publicclass RetryOnExceptionAttribute : MethodInterceptionAspect
{

public RetryOnExceptionAttribute()
{

this.MaxRetries = 3;
}

publicint MaxRetries { get; set; }

publicoverridevoid OnInvoke(MethodInterceptionArgs args)
{

int retriesCounter = 0;

while (true)
{

try
{

args.Proceed();
return;

}
catch (Exception e)
{

retriesCounter++;

Developing Simple Aspects

344

if (retriesCounter > this.MaxRetries) throw;

Console.WriteLine(
"Exception during attempt {0} of calling method {1}.{2}: {3}",
retriesCounter, args.Method.DeclaringType, args.Method.Name, e.Message);

}
}

}

publicoverrideasync Task OnInvokeAsync(MethodInterceptionArgs args)
{

int retriesCounter = 0;

while (true)
{

try
{

await args.ProceedAsync();
return;

}
catch (Exception e)
{

retriesCounter++;
if (retriesCounter > this.MaxRetries) throw;

Console.WriteLine(
"Exception during attempt {0} of calling method {1}.{2}: {3}",
retriesCounter, args.Method.DeclaringType, args.Method.Name, e.Message);

}
}

}
}

We can now apply the [RetryOnException] aspect to an async method:

[RetryOnException]
privateasync Task AsyncThrow()
{

await Task.Yield();
if (--this.counter > 0)
{

thrownew Exception();
}

}

Whenever the AsyncThrow method is invoked, the RetryOnExceptionAttribute.OnInvokeAsync method is called
instead. The aspect method will invoke the original method asynchronously and await for its completion. If the
asynchronous task throws an exception, the aspect will catch the exception and either retry the asynchronous call or re-
throw the exception.

Intercepting methods returning a null Task
The following example shows how to intercept methods that may return a null Task. There is no way for the an aspect
based on a semantically-advised MethodInterceptionAspect to return a null Task. If the aspect requires returning a
null Task, it must use non-semantic advising. See Semantic Advising of Iterator and Async Methods on page 359 for
details.

[PSerializable]
publicsealedclass MyAspect1 : MethodInterceptionAspect
{

publicoverrideasync Task OnInvokeAsync(MethodInterceptionArgs args)
{

object instance = args.Instance;
Arguments arguments = args.Arguments;

MethodBindingInvokeAwaitable bindingInvokeAwaitable = args.AsyncBinding.InvokeAsync(ref instance, arguments);

Intercepting Methods

345

Task task = bindingInvokeAwaitable.GetTask();

if (task != null)
{

args.ReturnValue = await bindingInvokeAwaitable;
}
else
{

args.ReturnValue = "Some special value";
}

}
}

56.4. Intercepting Properties and Fields
In .NET, both fields and properties are "things" that can be set and get. You can intercept get and set operations using the
LocationInterceptionAspect. It makes it possible to develop useful aspects, such as validation, filtering, change tracking,
change notification, or property virtualization (where the property is backed by a registry value, for instance).
This topic contains the following sections:

• Intercepting Get operations on page 346
• Intercepting Set operations on page 348
• Getting and setting the underlying property on page 349
• Intercepting fields on page 350
• Getting the property or property being accessed on page 350

Intercepting Get operations
In this example, we will see how to create an aspect that filters the value read from a field or property.

To create an aspect that filters the value read from a field or property
1. Add a reference to the PostSharp package to your project.
2. Create an aspect that inherits from LocationInterceptionAspect and add the custom attribute

[PSerializableAttribute].

3. Override the OnGetValue(LocationInterceptionArgs) method.

[PSerializable]
publicclass StringCheckerAttribute : LocationInterceptionAspect
{

publicoverridevoid OnGetValue(LocationInterceptionArgs args)
{

base.OnGetValue(args);
}

}

Developing Simple Aspects

346

4. Calling base.OnGetValue actually retrieves the value from the underlying field or property, and populates the
Value property. Add some code to check if the property currently is set to null If the current value is null, we
want to return a predefined value. To do this we can set the Value property. Any time this property is
requested, and it is set to null, the value "foo" will be returned.

publicoverridevoid OnGetValue(LocationInterceptionArgs args)
{

base.OnGetValue(args);

if (args.Value == null)
{

args.Value = "foo";
}

}

5. Now that you have a complete getter interception aspect written you can attach it to the target code. Simply
add an attribute to either properties or fields to have the interception attached.

publicclass Customer
{

[StringChecker]
privatereadonlystring _address;

public Customer(string address)
{

_address = address;
}
[StringChecker]
publicstring Name { get; set; }
publicstring Address { get { return _address; } }

}

NOTE
Adding aspects to target code one property or field at a time can be a tedious process. There are a number
of techniques in the article Adding Aspects to Multiple Declarations on page 114 that explain how to add
aspects en mass.

Intercepting Properties and Fields

347

6. Now when you create an instance of a customer and immediately try to access the Name and Address values
the get request will be intercepted and null values will be returned as "foo".

class Program
{

staticvoid Main(string[] args)
{

var customer = new Customer("123 Main Street");
Console.WriteLine("Address: {0}", customer.Address);
Console.WriteLine("Name: {0}", customer.Name);
Console.ReadKey();

}
}

Property and field interception is a simple and seamless task. Once you have intercepted your target you can act on the
target or you can allow the original code to execute.

Intercepting Set operations
The previous section showed how to intercept a get accessor. Intercepting a set accessor is accomplished in a similar
manner by implementing OnSetValue(LocationInterceptionArgs) in the LocationInterceptionAspect.

The following snippet shows the addition of OnSetValue(LocationInterceptionArgs) to the StringCheckerAttribute
example:

[PSerializable]
publicclass StringCheckerAttribute : LocationInterceptionAspect
{
publicoverridevoid OnGetValue(LocationInterceptionArgs args)
{
base.OnGetValue(args);
}

publicoverridevoid OnSetValue(LocationInterceptionArgs args)
{
base.OnSetValue(args);
}
}

When applied to a property with a set operator, OnSetValue(LocationInterceptionArgs) will intercept the set
operation. In the Customer example shown below, OnSetValue(LocationInterceptionArgs) will be called whenever
the Name property is set:

publicclass Customer
{

.

.

.

Developing Simple Aspects

348

[StringChecker]
publicstring Name { get; set; }
}

The SetNewValue(Object) method of LocationInterceptionArgs can be used instead of base.OnSetValue() to pass
a different value in for the property. For example, OnSetValue(LocationInterceptionArgs) could be used to check for
a null string, and then change the string to a non-null value:

[PSerializable]
publicclass StringCheckerAttribute : LocationInterceptionAspect
{

.

.

.
publicoverridevoid OnSetValue(LocationInterceptionArgs args)
{
if (args.Value == null)
{
args.Value = “Empty String";
}

args.ProceedSetValue();

}
}

Getting and setting the underlying property
PostSharp provides a mechanism to check a property’s underlying value via the LocationInterceptionArgsGet-
CurrentValue method. This can be useful to check the current property value when a setter is called and then take
some appropriate action.
For example, the following snippet shows a modified OnSetValue(LocationInterceptionArgs) method which gets the
current underlying property value and compares the (new) value passed into the setter against the current value. If
current and new value don’t match then some message is written:

publicoverridevoid OnSetValue(LocationInterceptionArgs args)
{

//get the current underlying valuestring existingValue = (string)args.GetCurrentValue();

if (((existingValue==null) && (args.Value != null)) || (!existingValue.Equals(args.Value)))
{

Console.WriteLine(“Value changed.”);
args.ProceedSetValue();

}
}

NOTE
GetCurrentValue will call the underlying property getter without going through OnGetValue(LocationInterception-
Args). If several aspects are applied to the property (and/or to the property setter), GetCurrentValue will go through
the next aspect in the chain of invocation.

PostSharp also provides a mechanism to set the underlying property in a getter via the SetNewValue(Object) method
of LocationInterceptionArgs. This could be used for example, to ensure that a default value is assigned to the
underlying property if there is currently no value. The following snippet shows a modified OnGetValue(Location-
InterceptionArgs) method which gets the current underlying value, and sets a default value if the current value is null:

publicoverridevoid OnGetValue(LocationInterceptionArgs args)
{

object o = args.GetCurrentValue();

Intercepting Properties and Fields

349

if (o == null)
{

args.SetNewValue("value not set");
}

base.OnGetValue(args);
}

Intercepting fields
One benefit to implementing a LocationInterceptionAspect is that it can be applied directly to fields, allowing for
reads and writes to those fields to be intercepted, just like with properties.
Applying a LocationInterceptionAspect implementation to a field is simply a matter of setting it as an attribute on a
field, just as it was done with a property:

publicclass Customer
{

.

.

.
[StringChecker]
publicstring name;
}

With the attribute applied to the name field, all attempts to get and set that field will be intercepted by StringChecker
in its OnGetValue(LocationInterceptionArgs) and OnSetValue(LocationInterceptionArgs) methods.

Note that when a LocationInterceptionAspect is added to a field, the field is replaced by a property of the same field
and visibility. The field itself is renamed and made private.

Getting the property or property being accessed
Information about the property or field being intercepted can be obtained through the LocationInterceptionArgs via
its Location property. The type of this property, LocationInfo, can represent a FieldInfo, a PropertyInfo, or a
ParameterInfo (although LocationInterceptionAspect cannot be added to parameters).

One use for this is to reflect the property name whenever a property is changed. In the following example, we have an
Entity class that implements INotifyPropertyChanged and a public OnPropertyChanged method which allows notifi-
cations to be made whenever a property is changed. The Customer class has been modified to derive from Entity.

class Entity : INotifyPropertyChanged
{

publicevent PropertyChangedEventHandler PropertyChanged;

publicvoid OnPropertyChanged(string propertyName)
{

if (PropertyChanged != null)
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

}
}

class Customer : Entity
{

publicstring Name { get; set; }
}

With the ability to invoke an OnPropertyChanged event, we can create a LocationInterceptionAspect which invokes
this event when setting a value and pass in the property name from the underlying PropertyInfo object:

[PSerializable]
publicclass NotifyPropertyChangedAttribute : LocationInterceptionAspect
{

Developing Simple Aspects

350

publicoverridevoid OnSetValue(LocationInterceptionArgs args)
{
If (args.Value != args.GetCurrentValue())
{
args.Value = args.Value;
args.ProceedSetValue();
((Entity)args.Instance).OnPropertyChanged(args.Location.Name);
}
}
}

NOTE
This example is a simplistic implementation of the NotifyPropertyChangedAttribute aspect. For a production-ready
implementation, see the section INotifyPropertyChanged on page 187.

This aspect can then be applied to the Customer class:

[NotifyPropertyChangedAttribute]
class Customer : INotifyPropertyChanged
{

publicstring Name { get; set; }
}

Now when the Name property is changed, NotifyPropertyChangedAttribute will invoke the Entity.OnProperty-
Changed method passing in the property name retrieved from its underlying property.

56.5. Intercepting Events
You interact with events in three primary ways: subscribing, unsubscribing and raising them. Like methods and properties,
you may find yourself needing to intercept these three interactions. How do you execute code every time that an event is
subscribed to? Or raised? Or unsubscribed? PostSharp provides you with a simple mechanism to accomplish this easily.
This topic contains the following sections:

• Intercepting Add and Remove on page 351
• Intercepting Raise on page 352
• Accessing the current context on page 353
• Example: Removing offending event subscribers on page 353

Intercepting Add and Remove
Throughout the life of an event, it is possible to have many different event handlers subscribe and unsubscribe. You may
want to log each of these actions.

1. Add a reference to the PostSharp package to your project.
2. Create an aspect that inherits from EventInterceptionAspect. Add the [PSerializableAttribute] custom

attribute.
3. Override the OnAddHandler(EventInterceptionArgs) method and add your logging code to the method

body.

Intercepting Events

351

4. Add the base.OnAddHandler call to the body of the OnAddHandler(EventInterceptionArgs) method. If this is
omitted, the original call to add a handler will not be executed. Unless you want to stop the addition of the
handler, you will need to add this line of code.

[PSerializable]
publicclass CustomEventHandling : EventInterceptionAspect
{

publicoverridevoid OnAddHandler(EventInterceptionArgs args)
{

base.OnAddHandler(args);
Console.WriteLine("A handler was added");

}
}

5. To log the removal of an event handler, override the OnRemoveHandler(EventInterceptionArgs) method.

6. Add the logging you require to the method body.
7. Add the base.OnRemoveHandler call to the body of the OnRemoveHandler(EventInterceptionArgs) method.

Like you saw when overriding the OnAddHandler(EventInterceptionArgs) method, if you omit this call, the
original call to remove the handler will not occur.

publicoverridevoid OnRemoveHandler(EventInterceptionArgs args)
{

base.OnRemoveHandler(args);
Console.WriteLine("A handler was removed");

}

Once you have defined the interception points in the aspect, you will need to attach the aspect to the target code. The
simplest way to do this is to add the attribute to the event handler definition.

publicclass Example
{

[CustomEventHandling]
public EventHandler<EventArgs> SomeEvent;

publicvoid DoSomething()
{

if (SomeEvent != null)
{

SomeEvent.Invoke(this, EventArgs.Empty);
}

}
}

Intercepting Raise
When you are intercepting events, you may also have situations where you want to execute additional code when the
event is raised. Raising of an event can occur in many places and you will want to centralize this code to avoid
repetition.

1. Override the OnInvokeHandler(EventInterceptionArgs) method in your aspect class and add the logging
you require to the method body.

2. Add a call to base.OnInvokeHandler to ensure that the original invocation occurs.

publicoverridevoid OnInvokeHandler(EventInterceptionArgs args)
{

base.OnInvokeHandler(args);
Console.WriteLine("A handler was invoked");

}

By adding the attribute to the target event handler earlier in this process you have enabled intercepting of each raised
event.

Developing Simple Aspects

352

Accessing the current context
At any time, the Handler property is set to the delegate being added, removed, or invoked. You can read and write this
property. If you write it, the delegate you assign must be compatible with the type of the event. The Event property gets
you the EventInfo of the event being accessed.

Within OnInvokeHandler(EventInterceptionArgs), the property Arguments gives access to the arguments with which
the delegate was invoked.
These concepts will be illustrated in the following example.

Example: Removing offending event subscribers
When events are subscribed to, the component that raises the event has no way to ensure that the subscriber will
behave properly when that event is raised. It's possible that the subscribing code will throw an exception when the
event is raised and when that happens you may want to unsubscribe the handler to ensure that it doesn't continue to
throw the exception. The EventInterceptionAspect can help you to accomplish this easily.

1. Override the OnInvokeHandler(EventInterceptionArgs) method in your aspect.

2. In the method body add a try...catch block.

3. In the try block add a call to base.OnInvokeHandler and in the catch block add a call to Remove-
Handler(Delegate)

[PSerializable]
publicclass CustomEventHandling : EventInterceptionAspect
{

publicoverridevoid OnInvokeHandler(EventInterceptionArgs args)
{

try
{

base.OnInvokeHandler(args);
}
catch (Exception e)
{

Console.WriteLine("Handler '{0}' invoked with arguments {1} failed with exception {2}.",
args.Handler.Method,
string.Join(", ", args.Arguments.Select(a => a == null ? "null" : a.ToString())),
e.GetType().Name);

args.RemoveHandler(args.Handler);
throw;

}
}

}

Now, any time an exception is thrown during event execution, the offending event handler will be unsubscribed from
the event.

56.6. Introducing Custom Attributes
Applying custom attributes to class members in C# is a powerful way to add metadata about those members at compile
time.
PostSharp provides the ability to create a custom attribute class which when applied to another class, can iterate through
those class members and automatically decorate them with custom attributes. This can be useful for example, to automat-

Introducing Custom Attributes

353

ically apply custom attributes or groups of custom attributes when new class members are added, without having to
remember to do it manually each time.
This topic contains the following sections:

• Introducing new custom attributes on page 354
• Copying existing custom attributes on page 355

Introducing new custom attributes
In the following example, we’ll create an attribute decorator class which applies .NET’s DataContractAttribute to a
class and DataMemberAttribute to members of a class at build time.

1. Start by creating a class called AutoDataContractAttribute which derives from TypeLevelAspect. Type-
LevelAspect transforms the class into an attribute which can be applied to other classes. Also implement
IAspectProvider which exposes the ProvideAspects(Object) method for iterating on class members.
ProvideAspects(Object) will be called for each member in the target class and will contain the code for
applying the attributes:

publicsealedclass AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

}

Developing Simple Aspects

354

2. Implement the ProvideAspects(Object) method to cast the targetElement parameter to a Type object. Note
that this method will be called at build time. Since ProvideAspects(Object) will be called for the class itself
and for each member of the target class, the Type object can be used for inspecting each member and making
decisions about when and how to apply custom attributes. In the following snippet, the implementation
returns a new AspectInstance for the Type containing a new DataContractAttribute and then iterates
through each property of the Type returning a new AspectInstance with the DataMemberAttribute for each.
Note that both the DataContractAttribute and DataMemberAttribute are both wrapped in Custom-
AttributeIntroductionAspect objects:

publicsealedclass AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// This method is called at build time and should just provide other aspects. public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type targetType = (Type) targetElement;

CustomAttributeIntroductionAspect introduceDataContractAspect =
new CustomAttributeIntroductionAspect(

new ObjectConstruction(typeof (DataContractAttribute).GetConstructor(Type.EmptyTypes)));
CustomAttributeIntroductionAspect introduceDataMemberAspect =

new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataMemberAttribute).GetConstructor(Type.EmptyTypes)));

// Add the DataContract attribute to the type. yieldreturnnew AspectInstance(targetType, introduceDataContractAspect);

// Add a DataMember attribute to every relevant property. foreach (PropertyInfo property in
targetType.GetProperties(BindingFlags.Public | BindingFlags.DeclaredOnly | BindingFlags.Instance))

{
if (property.CanWrite)

yieldreturnnew AspectInstance(property, introduceDataMemberAspect);
}

}
}

NOTE
Since the ProvideAspects(Object) method returns an IEnumerable, the yield keyword should be used to
return aspects for PostSharp to apply.

3. Apply the AutoDataContractAttribute class. In the following example we apply it to a Product class where it
will decorate Product with DataContractAttribute and each member with DataMemberAttribute:

[AutoDataContractAttribute]
publicclass Product
{

publicint ID { get; set; }

publicstring Name { get; set; }

publicint RevisionNumber { get; set; }
}

Copying existing custom attributes
Another way to introduce attributes to class members is to copy them from another class. This is useful, for example,
when distinct classes have members with the same names and are of the same types. In this case, attributes can be
defined in one class and then that class can be used to decorate other similar classes with same attributes.
In the following snippet, Product’s ID and Name properties have both been modified to contain an additional attribute
from the System.ComponentModel.DataAnnotations namespace – Editable, Display, and Required respectively.

Introducing Custom Attributes

355

Below Product is another class called ProductViewModel containing the same properties to which we want to copy the
attributes to:

class Product
{

[EditableAttribute(false)]
[Required]
publicint Id { get; set; }

[Display(Name = "The product's name")]
[Required]
publicstring Name { get; set; }
publicint RevisionNumber { get; set; }

}

class ProductViewModel
{

publicint Id { get; set; }
publicstring Name { get; set; }
publicint RevisionNumber { get; set; }

}

To copy the attributes from the properties of Product to the corresponding properties of ProductViewModel, create an
attribute class which can be applied to ProductViewModel to perform this copy process:

1. Create a TypeLevelAspect which implements IAspectProvider. In the snippet below our class is called Copy-
CustomAttributesFrom:

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{
}

2. Create a constructor to take in the class type from which the property attributes are to be copied from. This
class type will be used in the next step to enumerate its properties:

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{
private Type sourceType;

public CopyCustomAttributesFrom(Type srcType)
{

sourceType = srcType;
}

}

Developing Simple Aspects

356

3. Implement ProvideAspects(Object):

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{

// Details skipped.public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type targetClassType = (Type)targetElement;

//loop thru each property in targetforeach (PropertyInfo targetPropertyInfo in targetClassType.GetProperties())
{

PropertyInfo sourcePropertyInfo = sourceType.GetProperty(targetPropertyInfo.Name);

//loop thru all custom attributes for the source property and copy to the target propertyforeach (CustomAttributeData customAttributeData in sourcePropertyInfo.GetCustomAttributesData())
{

//filter out attributes that aren’t DataAnnotations if (customAttributeData.AttributeType.Namespace.Equals("System.ComponentModel.DataAnnotations"))
{

CustomAttributeIntroductionAspect customAttributeIntroductionAspect =
new CustomAttributeIntroductionAspect(new ObjectConstruction(customAttributeData));

yieldreturnnew AspectInstance(targetPropertyInfo, customAttributeIntroductionAspect);
}

}

}
}

}

The ProvideAspects(Object) method iterates through each property of the target class and then gets the
corresponding property from the source class. It then iterates through all custom attributes defined for the
source property, copying each to the corresponding property of the target class. ProvideAspects(Object)
also filters out attributes which aren’t from the System.ComponentModel.DataAnnotations namespace to
demonstrate how you may want to ignore some attributes during the copy process.

4. Decorate the ProductViewModel class with the CopyCustomAttributesFrom attribute, specifying Product as
the source type in the constructor. During compilation, CopyCustomAttributesFrom’s Provide-
Aspects(Object) method will then perform the copy process from Product to ProductViewModel:

[CopyCustomAttributesFrom(typeof(Product))]
class ProductViewModel
{

// Details skipped.
}

The following screenshot shows the Product and ProductViewModel classes reflected from an assembly. Here we can
see that the Editable and Display attributes were copied from Product to ProductViewModel using CopyCustom-
AttributesAttribute at build time:

NOTE
It is not possible to delete or replace an existing custom attribute.

Introducing Custom Attributes

357

56.7. Introducing Managed Resources
Embedding resources in .NET allows for data to be packaged together with your code in an assembly. Resources are
normally specified at design time and then embedded by the compiler during build time.
PostSharp’s AssemblyLevelAspect adds additional flexibility by allowing you to programmatically add resources at compile
time. In doing so you can add logic and therefore flexibility in determining which resources get embedded and how. For
example, you could use this feature to encrypt a resource just before embedding it into your assembly.

Introducing resources
In the following example, we’ll create an assembly decorator which retrieves the current date and time during
compilation, and then stores that information in the current assembly as a resource. The example will then show that
that information can be retrieved from the assembly at run time.

1. Start by creating a class called AddBuildInfoAspect which derives from AssemblyLevelAspect. Also
implement IAspectProvider which exposes the ProvideAspects(Object) method. The Provide-
Aspects(Object) method will be called once by PostSharp, providing access to assembly information and
allowing for a resource to be programmatically added to the assembly:

publicsealedclass AddBuildInfoAspect : AssemblyLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
}

}

2. Implement the ProvideAspects(Object) method:

publicsealedclass AddBuildInfoAspect : AssemblyLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Assembly assembly = (Assembly)targetElement;

byte[] userNameData = Encoding.ASCII.GetBytes(
assembly.FullName + " was compiled by: " + Environment.UserName);

ManagedResourceIntroductionAspect mria2 = new ManagedResourceIntroductionAspect("BuildUser", userNameData);

yieldreturnnew AspectInstance(assembly, mria2);
}

}

In this example, the targetElement object passed in is cast to an Assembly object from which the assembly
named is retrieved. The code then gets the current date and time, concatenates it with the assembly name,
and then converts this string to a byte array. The byte array is then stored along with a name for the data in
PostSharp’s ManagedResourceIntroductionAspect object, and returned via an AspectInstance. PostSharp
then embeds the resource into the current assembly.

3. Open your project’s AssemblyInfo.cs file and add a line to include the AddBuildInfoAspect class:

[assembly:AddBuildInfoAspect]

With this code in place, the assembly will now embed the date and time as a resource into itself during compilation.
The following code demonstrates how to retrieve the data at run time:

class Program
{

staticvoid Main(string[] args)
{

Assembly a = Assembly.GetExecutingAssembly();

Developing Simple Aspects

358

Stream stream = a.GetManifestResourceStream("BuildUser");

byte[] bytesRead = newbyte[stream.Length];
stream.Read(bytesRead, 0, (int)stream.Length);
stringvalue = Encoding.ASCII.GetString(bytesRead);
Console.WriteLine(value);

}
}

This will display the following line in the console window:

56.8. Semantic Advising of Iterator and Async Methods
In most C# and VB methods, the source code is very similar to the way how the method is actually executed by the .NET
runtime. However, with async and iterator methods, mapping between source code and assembly code is far from being
straightforward. The compiler performs a complex transformation of the source code and generates a state machine type. If
you disassemble an async or iterator method, you would just find some instructions that instantiate this state machine.
When you apply an aspect to an async or iterator method, it leads to an ambiguity whether the aspect should be applied
semantically at the abstraction level of the source code, or whether it should be applied non-semantically at the abstraction
level of the assembly code.
By default, PostSharp applies semantic advising for async and iterator methods. It also uses semantic advising for all
methods returning a Task.

This article discusses all details of semantic advising.
This topic contains the following sections:

• Semantic advising for asynchronous code on page 359
• Semantic advising for iterators on page 360
• Semantic advising vs non-semantic advising on page 361
• Supported and default advising modes on page 362
• Enabling and disabling semantic advising on page 362
• Coping with situations where semantic advising is not available on page 363

Semantic advising for asynchronous code
Consider the following code snippet:

publicclass FlowerService
{

Semantic Advising of Iterator and Async Methods

359

[MyAspect]
public Task<Flower> GetFlowerAsync1(int flowerId, string connectionString)
{

var connection = ConnectionManager.GetConnection(connectionString);
returnthis.GetFlowerAsync2(flowerId, connection);

}

[MyAspect]
publicasync Task<Flower> GetFlowerAsync2(int flowerId, Connection connection)
{

var flowerData = await connection.GetFlowerAsync(flowerId);
var familyData = await connection.GetFlowerFamilyAsync(flowerData.FamilyId);
returnnew Flower(flowerId, flowerData.Name, familyData.Name);

}

}

The GetFlowerAsync1 method returns a Task but is not async (it would be useless and hurt performance to make it
async). The GetFlowerAsync2 method both returns a Task and is async.

Both methods are enhanced by [MyAspect]. For different behaviors implemented by MyAspect, how would you expect
MyAspect to work?

• If MyAspect was an exception handler, you would probably expect all exceptions to be caught by MyAspect,
including exceptions thrown by the GetFlowerAsync and GetFlowerFamilyAsync methods and the
constructor of the Flower class. You would be deceived to realize that the aspect only handles exceptions
thrown in the process of instantiating Task<Flower> and execute the part of the task that can run synchro-
nously.

• If MyAspect was a profiling aspect, you would probably want to measure the time taken by the whole method
to execute. That is, you will probably be interested in the time of the whole Task<Flower> to run to
completion, not just the time to instantiate it and run to the first waiting point.

• If MyAspect was a caching aspect, you would probably want to cache the Flower object, not the Task<Flower>
itself.

That is, most of the time, you want the aspect to apply to the semantic of the method, not to its implementation (how it
is implemented in MSIL and executed by the .NET runtime).
We use the term semantic advising when an aspect or advice is applied to the level of abstraction of the programming
language (C# or VB). Non-semantic advising or low-level advising means that PostSharp applies the aspect to the level
of abstraction of MSIL.
Semantic advising is the default behavior for all methods returning a Task (or any other awaitable type such as Value-
Task) and all async methods.

Semantic advising for iterators
The notion of semantic advising also applies to iterator methods, i.e. methods that include the yield return statement.

Consider the following code snippet:

publicclass PostcardService
{

[MyAspect]
public IEnumerable<Postcard> GetPostcards1()
{

returnnew [] { new Postcard("Hello from Alaska"), new Postcard("Hello from Siberia") };
}

[MyAspect]
public IEnumerable<Postcard> GetPostcards2(int flowerId, Connection connection)
{

yieldreturnnew Postcard("Hello from Alaska");

Developing Simple Aspects

360

yieldreturnnew Postcard("Hello from Siberia");
}

}

The GetPostcards2 method requires special attention. Under the hood, the C# or VB compiler generates a new class
implementing the IEnumerableT and IEnumeratorT interfaces, called the enumerator class. At runtime, calling the Get-
Postcards2 method only instantiates the enumerator class. The initial logic of GetPostcards2 is moved to the MoveNext
method of the enumerator.
Let's do the same exercise as for asynchronous methods. For different behaviors implemented by MyAspect, how would
you expect MyAspect to work?

• If MyAspect was an exception handler, you would probably want the aspect to catch any exception thrown by
the C# code that you can see. That is, in GetPostcards2, you actually want to catch exceptions in the MoveNext
method of the enumerator class. In this case, you need semantic advising.

• If MyAspect was a profiling aspect, you may want to only measure the time when GetPostcards2 is actually
executing, but exclude the time when the caller is processing the data returned by the enumerator. Therefore,
you will also want to add behaviors to the MoveNext method of the enumerator class. In this case again, you
need semantic advising.

• If MyAspect was a caching aspect, however, you will want to cache a copy of the enumerator itself, therefore
you will need to enhance the GetPostcards2 method and not the MoveNext method. In this case, you don't
need semantic advising.

Semantic advising vs non-semantic advising
The following table compares semantic advising with non-semantic advising in several situations.

Semantic Advising Non-Semantic Advising
Async methods:
Code covered or
intercepted by
the aspect

The whole async method. The part of the async method before the first await operator
whose operand (typically a Task) has not yet completed.

Return value The operand of the return
statement, i.e. TaskTResultResult.

The TaskTResult object itself.

Non-async
methods
returning a
Task:

Code covered or
intercepted by
the aspect

Both the code that instantiates or
gets the Task and the whole
execution of the Task.

Only the code that instantiates or gets the Task (and if the
Task represents an async method, the first segment of the
method that runs synchronously).

Return value The value of the
TaskTResultResult property.

The TaskTResult object itself.

Iterator
methods:
Code covered or
intercepted by
the aspect

The whole method. The compiler-generated code that instantiates the enumerator
class (no user code is covered).

Return value None. The enumerator.

Semantic Advising of Iterator and Async Methods

361

Supported and default advising modes
Semantic advising is available for the OnMethodBoundaryAspect, OnExceptionAspect and MethodInterceptionAspect
aspects. Whenever semantic advising makes sense, it is the default advising mode.

The following table specifies where semantic advising is supported and where it is the default advising mode.

Target methods Advising modes supported by On-
MethodBoundaryAspect and On-
ExceptionAspect

Advising modes supported
by MethodInterception-
Aspect

Default
advising
mode

async method returning
void

Semantic and non-semantic Non-semantic. Semantic.

async method returning a
Task

Semantic and non-semantic Semantic and non-semantic Semantic.

async method returning
something else than void or
a Task

Semantic and non-semantic Non-semantic Semantic

Iterator method Semantic and non-semantic Non-semantic Semantic
Normal method returning
IEnumerableT or
IEnumeratorT

Non-semantic Non-semantic Non-
semantic

CAUTION NOTE
With MethodInterceptonAspect, the default advising mode is always non-semantic when the OnInvoke-
Async(MethodInterceptionArgs) advice is not implemented by the aspect.

As you can see, the default mode is semantic even in situations where semantic advising is not available, where we
believe semantic advising would be desirable. This design allows us to implement support for semantic advising in
future versions of PostSharp without breaking backward compatibility. However, PostSharp will emit a build-time error if
you try to use semantic advising on a method that is not supported.
The next sections explain how to opt out from semantic advising and how to cope with situations when semantic
advising is not available.

Enabling and disabling semantic advising
You can disable or enable semantic advising by setting the SemanticallyAdvisedMethodKinds property of your aspect.
You would typically set this property in the constructor or in the CompileTimeInitialize(MethodBase, AspectInfo)
method.
If you want to disable semantic advising in all situations, set the SemanticallyAdvisedMethodKinds property to None.
Otherwise, you can select individual situations in which semantic advising should be applied by setting the property to a
bitwise combination of the values of the SemanticallyAdvisedMethodKinds enumeration. For instance, the Async |
Iterator value instructs PostSharp to use semantic advising for async methods and iterators but not for other methods
returning a Task or an enumerable.

Example
The following code snippet shows how to configure a caching aspect so that semantic advising is used for methods
returning a Task but not for methods returning an enumerable.

Developing Simple Aspects

362

[PSerializable]
publicclass CacheAttribute : MethodInterceptionAspect
{

public CacheAttribute()
{

this.SemanticallyAdvisedMethodKinds = SemanticallyAdvisedMethodKinds.ReturnsAwaitable;
}

// Detailed skipped.

}

Coping with situations where semantic advising is not available
By default, PostSharp will emit a build-time error if you're applying a semantically advising aspect to a method that does
not support it (for instance an asynchronous MethodInterceptionAspect cannot be applied to an async void method.

Instead of failing with an error, you can change the behavior by setting the UnsupportedTargetAction aspect property.
The default value is Fail. You can choose Ignore to silently skip applying the aspect or advice to the target method, or
Fallback to apply non-semantic advising.

Semantic Advising of Iterator and Async Methods

363

Developing Simple Aspects

364

CHAPTER 57

Understanding Aspect Lifetime and Scope

An original feature of PostSharp is that aspects are instantiated at compile time. Most other frameworks instantiate aspects
at run time.
Persistence of aspects between compile time and run time is achieved by serializing aspect instances into a binary resource
stored in the transformed assembly. Therefore, you should carefully mark all aspect classes with the PSerializable-
Attribute custom attribute, and distinguish between serialized fields (typically initialized at compile-time and used at run-
time) and non-serialized fields (typically used at run-time only or at compile-time only).
This topic contains the following sections:

• Scope of Aspects
• Steps in the Lifetime of an Aspect Instance

Scope of Aspects
PostSharp offers two kinds of aspect scopes: static (per-class) and per-instance.

Statically Scoped Aspects
With statically-scoped aspects, PostSharp creates one aspect instance for each element of code to which the aspect
applies. The aspect instance is stored in a static field and is shared among all instances of the target class.
In generic types, the aspect instance has not exactly the same scope as static fields. Consider the following piece of
code:

publicclass GenericClass<T>
{

static T f;

[Trace]
publicvoidvoid SetField(T value) { f = value; }

}

publicclass Program
{

publicstaticvoid Main()
{

GenericClass<int>.SetField(1);
GenericClass<long>.SetField(2);

}
}

In this program, there are two instances of the static field f (one for GenericClass<int>, the second for Generic-
Class<long>) but only a single instance of the aspect Trace.

Instance-Scoped Aspects
Instance-scoped aspects have the same scope (instance or static) as the element of code to which they are applied. If an
instance-scoped aspect is applied to a static member, it will have static scope. However, if it is applied to an instance
member or to a class, it will have the same lifetime as the class instance: an aspect instance will be created whenever the
class is instantiated, and the aspect instance will be garbage-collectable at the same time as the class instance.

Semantic Advising of Iterator and Async Methods

365

Instance-scoped aspects are implemented according to the “prototype pattern”: the aspect instance created at compile
time serves as a prototype, and is cloned at run-time whenever the target class is instantiated.
Instance-scoped aspects must implement the interface IInstanceScopedAspect. Any aspect may be made instance-
scoped. The following code is a typical implementation of the interface IInstanceScopedAspect:

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{

returnthis.MemberwiseClone();
}

void IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

Steps in the Lifetime of an Aspect Instance
The following table summarizes the different steps of the aspect instance lifetime:

Phase Step Description
Compile-
Time

Instantiation PostSharp creates a new instance of the aspect for every target to which it applies. If the
aspect has been applied using a multicast custom attribute (MulticastAttribute), there
will be one aspect instance for each matching element of code.
When the aspect is given as a custom attribute or a multicast custom attribute, each custom
attribute instance is instantiated using the same mechanism as the Common Language
Runtime (CLR) does: PostSharp calls the appropriate constructor and sets the properties
and/or fields with the appropriate values. For instance, when you use the construction
[Trace(Category="FileManager")], PostSharp calls the default constructor and the
Category property setter.

Validation PostSharp validates the aspect by calling the CompileTimeValidate aspect method. See
Validating Aspect Usage on page 369 for details.

Compile-Time
Initialization

PostSharp invokes the CompileTimeInitialize aspect method. This method may, but must
not, be overridden by concrete aspect classes in order to perform some expensive
computations that do not depend on runtime conditions. The name of the element to which
the custom attribute instance is applied is always passed to this method.

Serialization After the aspect instances have all been created and initialized, PostSharp serializes them
into a binary stream. This stream is stored inside the new assembly as a managed resource.

Run-
Time

Deserialization Before the first aspect must be executed, the aspect framework deserializes the binary
stream that has been stored in a managed resource during post-compilation.
At this point, there is still one aspect instance per target class.

Per-Class
Runtime
Initialization

Once all custom attribute instances are deserialized, we call for each of them the
RuntimeInitialize method. But this time we pass as an argument the real
System.Reflection object to which it is applied.

Per-Instance
Runtime
Initialization

This step applies only to instance-scoped aspects when they have been applied to an
instance member.
When a class is instantiated, the aspect framework creates an aspect instance by invoking
the method CreateInstance(AdviceArgs) of the prototype aspect instance. After the new
aspect instance has been set up, the aspect framework invokes the
RuntimeInitializeInstance.

Advice
Execution

Finally, advices (methods such as OnEntry(MethodExecutionArgs)) are executed.

Understanding Aspect Lifetime and Scope

366

CHAPTER 58

Initializing Aspects

As explained in the section Understanding Aspect Lifetime and Scope on page 365, a different aspect instance is associated
with every element of code it is applied to. Aspect instances are created at compile time, serialized into the assembly as a
managed resource, and deserialized at run time. If the aspect is instance-scoped, instances are duplicated from the
prototype and initialized.
Therefore, you can override one of the following three methods to handle aspect initializations:

1. The method CompileTimeInitialize is invoked at compile time, and should initialize only serializable fields of
the aspect, so that the value of these fields will be available at run time. The argument of this method is the
System.Reflection object representing the element of code to which this aspect instance has been applied.
Therefore, this method can already perform expensive computations that depend only on metadata.

2. The method RuntimeInitialize is invoked at run time. Note that the aspect constructor itself is not invoked at
run time. Therefore, overriding RuntimeInitialize is the only way to perform initialization tasks at run time. If
the aspect is instance-scoped, this method is executed on the prototype instance.

3. The methods IInstanceScopedAspectCreateInstance(AdviceArgs) and IInstanceScopedAspectRuntime-
InitializeInstance is invoked only for instance-scoped aspects. They initialize the aspect instance itself, as
RuntimeInitialize was invoked on the prototype.

TIP
Initializing an aspect at compile time is useful when you need to compute a difficult result that depends only on metadata
-- that is, it does not depend on any runtime information. An example is to build the strings that need to be printed by a
tracing aspect. It is rather expensive to build strings that contain the full type name, the method name, and eventually
placeholders for generic parameters and parameters. However, all required pieces of information are available at compile
time. So compile time is the best moment to compute these strings.

58.1. Coping with Custom Object Serializers
Some aspects need to be initialized when a new instance of the class to which they are applied is created. For instance,
instance-scoped aspect must be cloned from the prototype; members imported into the through ImportMemberAttribute
must be bound to aspect fields.
PostSharp enhances every constructor of every enhanced class so that aspects are properly initialized.
However, it is possible to create new instances of classes by bypassing the constructor. This happens, for instance, when
classes are deserialized by the BinaryFormatter or the DataContractSerializer. These formatters use the method
FormatterServicesGetUninitializedObject(Type) to create new instances, but this method bypasses all constructors.

PostSharp implements a workaround for the deserializers BinaryFormatter and DataContractSerializer: it creates or
modifies a method annotated by the custom attribute OnDeserializingAttribute, so that aspects are initialized properly.

Coping with Custom Object Serializers

367

However, if you are using a custom deserializer, or for any reason create instances using the method the method
FormatterServicesGetUninitializedObject(Type), you will have to initialize aspects manually.

Initializing Aspects Manually
There are two possible ways to initialize an aspect from user code.

By Defining a Method InitializeAspects
You can define in your classes (typically in one of the root classes of your class hierarchy) a method with the following
name and signature:

protectedvirtualvoid InitializeAspects();

When PostSharp discovers this method, it will insert its own initialization logic at the beginning of the Initialize-
Aspects method. The original logic is not deleted. This method can safely have an empty implementation.

The following constraints apply:
• The method should be virtual unless the class is sealed.

• The method should be protected or public unless the class is internal.

For instance, the following class would enable aspects (applied to this class or on derived classes) to be initialized after
deserialization (note that PostSharp automatically generates this code for BinaryFormatter and DataContract-
Serializer; you only need to do it manually for a custom serializer).

[DataContract]
publicabstractclass BaseClass
{

protectedvirtualvoid InitializeAspects()
{
}

[OnDeserializing]
privatevoid OnDeserializingInitializeAspects()
{

this.InitializeAspects();
}

}

By Invoking AspectUtilities.InitializeCurrentAspects
Instead of providing an empty method InitializeAspects, it is possible to invoke the method Aspect-
UtilitiesInitializeCurrentAspects. A call to this method will be translated into a call to InitializeAspects. It has
to be invoked from a non-static method of an enhanced class.
If the class from which InitializeCurrentAspects is invoked has not been enhanced by an aspect requiring initial-
ization, the call to this method is simply ignored.

NOTE
Using this approach may be brittle in some situations: calls to InitializeCurrentAspects will have no effect if
aspects are applied to derived classes, but not to the calling class. In this scenario, it is preferable to define the method
InitializeAspects.

Initializing Aspects

368

CHAPTER 59

Validating Aspect Usage

Some aspects make sense only on a specific subset of targets. For instance, an aspect may require being applied to non-
static methods only. Another aspect may not be compatible with methods that have ref or out parameters. If these
constraints are not respected, these aspects will fail at run time. However, defects detected by the compiler are always
cheaper to fix than ones detected later. So, as the developer of an aspect, you should ensure that the build will fail if your
aspect is being used on an invalid target.
This topic contains the following sections:

• Using [MulticastAttributeUsage] on page 369
• Implementing CompileTimeValidate on page 369
• Using Message Sources on page 370
• Validating Attributes That Are Not Aspects on page 371

Using [MulticastAttributeUsage]
The first level of protection is to configure multicasting properly with [MulticastAttributeUsageAttribute], as
described in the article Adding Aspects Declaratively Using Attributes on page 113. However, this approach can only
filter based on characteristics that are supported by the multicasting component.

Implementing CompileTimeValidate
The best way to validate aspect usage is to override the CompileTimeValidate(Object) method of your aspect class.

In this example, we will show how an aspect RequirePermissionAttribute can require being applied only to methods
of types that implement the ISecurable interface.

1. Inherit from one of the pre-built aspects. In this case, OnMethodBoundaryAspect.

publicclass RequirePermissionAttribute: OnMethodBoundaryAspect

2. Override the CompileTimeValidate(Object) method.

publicoverridebool CompileTimeValidate(MethodBase target)
{

3. Perform a check to see if the target class implements the interface in question.

Type targetType = target.DeclaringType;
if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

}

Coping with Custom Object Serializers

369

4. If the target does not implement the interface you must signal the compilation process that this target should
not have the aspect applied to it. There are two ways to do this. The first option is to throw an Invalid-
AnnotationException.

if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

thrownew InvalidAnnotationException("The target type does not implement ISecurable.");
}

5. The second option is to emit an error message to the compilation process.

if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

Message.Write(SeverityType.Error, "Custom01",
"The target type does not implement ISecurable.", target);

returnfalse;
}

NOTE
You may have noticed that CompileTimeValidate(Object) returns a boolean value. If you only return false from this
method the compilation process will silently ignore it. You must either throw the InvalidAnnotationException or
emit an error message to not silently ignore the false return value.

Making use of the CompileTimeValidate(Object) method is a great way to encode custom rules for applying aspects
to target code. While it could be used to duplicate the functionality of the AttributeTargetTypeAttributes or
AttributeTargetMemberAttributes, its real power is to go beyond those filtering techniques. By using CompileTime-
Validate(Object) you are able to filter aspect application in any manner that you can interrogate your codebase using
reflection.

Using Message Sources
If you plan to raise many messages, you may prefer to define your own MessageSource. A MessageSource is backed by a
managed resource mapping error codes to error messages.
In order to create your own MessageSource, you should:

1. Create an implementation of the IMessageDispenser. Typically, implement the GetMessage(String) method
using a large switch statement. To each message will correspond a string

Validating Aspect Usage

370

2. Create a static instance of the MessageSource class for your message source.

For instance, the following code defines a message source based on a message dispenser:

internalclass ArchitectureMessageSource : MessageSource
{

publicstaticreadonly ArchitectureMessageSource Instance = new ArchitectureMessageSource();

private ArchitectureMessageSource() : base("PostSharp.Architecture", new Dispenser())
{
}

privateclass Dispenser : MessageDispenser
{

public Dispenser() : base("CUS")
{
}

protectedoverridestring GetMessage(int number)
{

switch (number)
{

case1:
return"Interface {0} cannot be implemented by {1} because of the [InternalImplement] constraint.";

case2:
return"{0} {1} cannot be referenced from {2} {3} because of the [ComponentInternal] constraint.";

case3:
return"Cannot use [ComponentInternal] on {0} {1} because the {0} is not internal.";

case4:
return"Cannot use [Internal] on {0} {1} because the {0} is not public.";

default:
returnnull;

}
}

}
}

3. Then you can use a convenient set of methods on your MessageSource object:

MyMessageSource.Instance.Write(classType, SeverityType.Error, "CUS001", newobject[] { interfaceType, classType });

NOTE
You can also emit information and warning messages.

TIP
Use ReflectionSearch to perform complex queries over System.Reflection.

Validating Attributes That Are Not Aspects
You can validate any attribute derived from Attribute by implementing the interface IValidableAnnotation.

Coping with Custom Object Serializers

371

Validating Aspect Usage

372

CHAPTER 60

Developing Composite Aspects

PostSharp offers two approaches to aspect-oriented development. The first, as explained in section Developing Simple
Aspects on page 329, is very similar to object-oriented programming. It requires the aspect developer to override virtual
methods or implement interfaces. This approach is very efficient for simple problems.
One way to grow in complexity with the first approach is to use the interface IAspectProvider (see Adding Aspects
Dynamically on page 384). However, even this technique has its limitations.
This chapter documents the second approach, closer to the classic paradigm of aspect-oriented programming introduced
by AspectJ. This approach allows developers to implement more complex design patterns using aspects. We call the aspects
developed with this approach composite aspects, because they are freely composed of different elements named advices
and pointcuts.
An advice is anything that adds a behavior or a structural element to an element of code. For instance, introducing a
method into a class, intercepting a property setter, or catching exceptions, are advices.
A pointcut is a function returning a set of elements of code to which advices apply. For instance, a function returning the set
of properties annotated with the custom attribute DataMember is a pointcut.

Classes supporting advices and pointcuts are available in the namespace PostSharp.Aspects.Advices.

A composite aspect generally derives from a class that does not define its own advices: AssemblyLevelAspect, TypeLevel-
Aspect, InstanceLevelAspect, MethodLevelAspect, LocationLevelAspect or EventLevelAspect. As such, these aspects
have no functionality. You can add functionalities by adding advices to the aspect.
Advices are covered in the following sections:

Section Description
Adding Behaviors to
Existing
Members on page 374

Advices with equivalent functionality as OnMethodBoundaryAspect,
MethodInterceptionAspect, LocationInterceptionAspect, and EventInterceptionAspect.

Introducing Interfaces,
Methods, Properties and
Events on page 378

Make the aspect introduce an interface into the target class. The interface is implemented by
the aspect itself.

Accessing Members of the
Target Class on page 382

Make the aspect introduce a new method, property or event into the target class. The new
member is implemented by the aspect itself. Conversely, the aspect can import a member of
the target so that it can invoke it through a delegate.

Coping with Custom Object Serializers

373

60.1. Adding Behaviors to Existing Members
In order to add new behaviors to (i.e. modify) existing members (methods, fields, properties, or events), two questions must
be addressed:

• What transformation should be performed? The answer lays in the advice. This advice is a method of your advice,
annotated with a custom attribute determining in which situation the method should be invoked. You can freely
choose the name of the method, but its signature must match the one expected by the advice type.

• Where should it be performed, i.e. on which elements of code? The answer lays in the pointcut, another custom
attribute expected on the method providing the transformation.

This topic contains the following sections:
• How to Add a Behavior to an Existing Member
• Advice Kinds on page 375
• Pointcuts Kinds on page 375
• Grouping Advices on page 376

How to Add a Behavior to an Existing Member
1. Start with an empty aspect class deriving AssemblyLevelAspect, TypeLevelAspect, InstanceLevelAspect,

MethodLevelAspect, LocationLevelAspect or EventLevelAspect. Mark it as serializable.

2. Choose an advice type in the list below. For instance: OnMethodEntryAdvice.

3. Create a method. The signature of this method should match exactly the signature matched by this advice
type.

4. Annotate this method with a custom attribute of the advice type you chose. For instance: [OnMethodEntry-
Advice].

5. Choose a pointcut type in the list below. For instance: SelfPointcut. Annotate the advice method with that
custom attribute. For instance: [SelfPointcut].

Example
The following code shows a simple tracing aspect implemented with an advice and a pointcut. This aspect is exactly
equivalent to a class derived from OnMethodBoundaryAspect where only the method OnEntry(MethodExecutionArgs)
has been overwritten. The example is a method-level aspect and SelfPointcut means that the advice applies to the
same target as the method itself.

using System;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;
using PostSharp.Serialization;

namespace Samples6
{

[PSerializable]
publicsealedclass TraceAttribute : MethodLevelAspect
{

[OnMethodEntryAdvice, SelfPointcut]
publicvoid OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("Entering {0}.{1}", args.Method.DeclaringType.Name, args.Method.Name);
}

}
}

Developing Composite Aspects

374

Advice Kinds
The following table lists all types of advices that can transform existing members. Note that all these advices are
available as a part of a simple aspect (for instance OnMethodEntryAdvice corresponds to OnMethodBoundaryAspectOn-
Entry(MethodExecutionArgs). For a complete documentation of the advice, see the documentation of the
corresponding simple aspect.

Advice Type Targets Description
OnMethodEntryAdvice

OnMethodSuccessAdvice

OnMethodExceptionAdvice

OnMethodExitAdvice

Methods These advices are equivalent to the advices of the aspect
OnMethodBoundaryAspect. The target method to be wrapped by a
try/catch/finally construct.

OnMethodInvokeAdvice Methods This advice is equivalent to the aspect MethodInterceptionAspect. Calls
to the target methods are replaced to calls to the advice.

OnLocationGetValueAdvice

OnLocationSetValueAdvice

Fields,
Properties

These advices are equivalent to the advices of the aspect
LocationInterceptionAspect. Fields are changed into properties, and
calls to the accessors are replaced to calls to the proper advice.

LocationValidationAdvice Fields,
Properties,
Parameters

This advice is equivalent to the ValidateValue(UTP, String,
LocationKind)LocationInterceptionAspect method of the
ILocationValidationAspectT aspect interface. It validates values
assigned to their targets and throws an exception in case of error.

OnEventAddHandlerAdvice

OnEventRemoveHandlerAdvice

OnEventInvokeHandlerAdvice

Events These advices are equivalent to the advices of the aspect
EventInterceptionAspect. Calls to add and remove semantics are
replaced by calls to advices. When the event is fired, the
OnEventInvokeHandler is invoked for each handler, instead of the
handler itself.

Pointcuts Kinds
Pointcuts determine where the transformation provided by the advice should be applied.
From a logical point of view, pointcuts are functions that return a set of code elements. A pointcut can only select
elements of code that are inside the target of the aspect itself. For instance, if an aspect has been applied to a class A,
the pointcut can select the class A itself, members of A, but different classes or members of different classes.

Multicast Pointcut
The pointcut type MulticastPointcut allows expressing a pointcut in a purely declarative way, using a single custom
attribute. It works in a very similar way as MulticastAttribute (see Adding Aspects Declaratively Using
Attributes on page 113) the kind of code elements being selected, their name and attributes can be filtered using
properties of this custom attribute.
For instance, the following code applies the OnPropertySet advice to all non-abstract properties of the class to which
the aspect has been applied.

[OnLocationSetValueAdvice,
MulticastPointcut(Targets = MulticastTargets.Property,

Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
publicvoid OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

Adding Behaviors to Existing Members

375

Method Pointcut
The pointcut type MethodPointcut allows expressing a pointcut imperatively, using a C# or VB method. The argument
of the custom attribute should contain the name of the method implementing the pointcut.
The only parameter of this method should be type-compatible with the kind of elements of code to which the aspect
applies. The return value of the pointcut method should be a collection (IEnumerableT) of objects that are type-
compatible with the kind of elements of code to which the advice applies.
For instance, the following code applies the OnPropertySet advice to all writable properties that are not annotated with
the IgnorePropertyChanged custom attribute.

private IEnumerable<PropertyInfo> SelectProperties(Type type)
{

const BindingFlags bindingFlags = BindingFlags.Instance |
BindingFlags.DeclaredOnly | BindingFlags.Public;

returnfrom property
in type.GetProperties(bindingFlags)

where property.CanWrite && !property.IsDefined(typeof(IgnorePropertyChanged))
select property;

}

[OnLocationSetValueAdvice, MethodPointcut("SelectProperties")]
publicvoid OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

As you can see in this example, pointcut methods can use the power of LINQ to query System.Reflection.

Self Pointcut
The pointcut type SelfPointcut simply selects the target of the aspect.

Grouping Advices
The table of above shows advice types grouped in families. Advices of different type but of the same family can be
grouped into a single logical filter, so they are considered as single transformation.

Why Grouping Advices
Consider for instance three advices of the family OnMethodBoundaryAspect: OnMethodEntryAdvice, OnMethodSuccess-
Advice and OnMethodExceptionAdvice. The way how they are ordered is important, as it results in a different
generation of the try/catch/finally block.

The following table compares advice ordering strategies. In the left column, advices are executed in the order: OnEntry,
OnExit, OnException. In the right column, advices are grouped together.

Developing Composite Aspects

376

void Method()
{

try
{

OnEntry();

try
{

// Original method body.
}
finally
{

OnExit();
}

}
catch
{

OnException();
throw;

}
}

void Method()
{

OnEntry();

try
{

// Original method body.
}
catch
{

OnException();
throw;

}
finally
{

OnExit();
}

}

The code in the left column may make sense in some situations, but it is not consistent with the code generated by On-
MethodBoundaryAspect. Note that the advices may have been ordered differently: the order OnEntry, OnException, On-
Exit would have generated the same code as in the right column. However, you would have had to use custom
attributes to specify order relationships between advices (see Ordering Advices on page 388). Grouping advices is a
much easier way to ensure consistency.
Additionally, when advices of the OnMethodBoundaryAspect family are grouped together, it will be possible to share
information among them using MethodExecutionTag.

The reasons to group advices of the family LocationInterceptionAspect and EventInterceptionAspect are similar:
advices grouped together behave consistently as a single filter (see [interception-aspects]).

How to Group Advices
To group several advices into a single filter:

1. Choose a master advice. The choice of the master advice is arbitrary. All other advices of the group are called
slave advices.

2. Annotate the master advice method with one advice custom attribute (see Available Advices on page 375 and
one pointcut custom attribute (see Available Pointcuts on page 375), as usual.

3. Annotate all slave advices with one advice custom attribute. Set the property Master of the custom attribute to
the name of the master advice method.

4. Do not specify any pointcut on slave advice methods.

The following code shows how two advices of type OnMethodEntryAdvice and OnMethodExitAdvice can be grouped
into a single filter:

[OnMethodEntryAdvice, MulticastPointcut]
publicvoid OnEntry(MethodExecutionArgs args)
{
}

[OnMethodExitAdvice(Master="OnEntry")]
publicvoid OnExit(MethodExecutionArgs args)
{
}

Adding Behaviors to Existing Members

377

60.2. Introducing Interfaces, Methods, Properties and Events
Some design patterns require you to add properties, methods or interfaces to your target code. If many components in
your codebase need to represent the same construct, repetitively adding those constructs flies in the face of the DRY (Don't
Repeat Yourself) principle. So how can you add code constructs to your target code without it becoming repetitive?
PostSharp offers a number of ways for you to add different code constructs to your codebase in a controlled and consistent
manner. Let's take a look at those techniques.
This topic contains the following sections:

• Introducing interfaces on page 378
• Introducing methods on page 379
• Introducing properties on page 380
• Controlling the visibility of introduced members on page 382
• Overriding members or interfaces on page 382

Introducing interfaces
One of the common situations that you will encounter is the need to implement a specific interface on a large number
of classes. This may be INotifyPropertyChanged, IDisposable, IEquatableT or some custom interface that you have
created. If the implementation of the interface is consistent across all of the targets then there is no reason that we
shouldn't centralize its implementation. So how do we go about adding that interface to a class at compile time?

1. Let's add the IIdentifiable interface to the target code.

publicinterface IIdentifiable
{

Guid Id { get; }
}

2. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute [PSerializable-
Attribute].

3. The key to adding an interface to target code is that you must implement that interface on your aspect. Let's
implement the IIdentifiable interface on our aspect. It's this implementation of the interface that will be
added to the target code, so anything that you include in method or property bodies will be added to the
target code as you have declared it in the aspect.

[PSerializable]
publicclass IdentifiableAspect : InstanceLevelAspect, IIdentifiable
{

public Guid Id { get; privateset; }
}

4. Add the IntroduceInterfaceAttribute attribute to the aspect and include the interface type that you want
to add to the target code.

[IntroduceInterface(typeof(IIdentifiable))]
[PSerializable]
publicclass IdentifiableAspect : InstanceLevelAspect, IIdentifiable
{

public Guid Id { get; privateset; }
}

Developing Composite Aspects

378

5. Finally you need to declare where this aspect should be applied to the codebase. In this example, let's add it,
as an attribute, to a class.

[IdentifiableAspect]
publicclass Customer
{

publicstring Name { get; set; }
publicstring Address { get; set; }

}

6. After compilation, you can decompile the target code and see that the interface has been added to it.

As you can see in the decompiled code, interfaces are implemented explicitly on the target code. It is also possible to
introduce public members to target code. This is covered below.

NOTE
Interfaces and members introduced by PostSharp are not visible at compile time. To access the dynamically applied
interface you must make use of a special PostSharp feature; the CastSourceType, TargetType(SourceType) pseudo-
operator. The CastSourceType, TargetType(SourceType) method will allow you to safely cast the target code to the
interface type that was dynamically applied. Once that call has been done, you are able to make use of the instance
through the interface constructs.
There is no way to access a dynamically-inserted method, property or event, other than through reflection or the
dynamic keyword.

NOTE
When you start adding code constructs to your target code, you need to determine how to initialize them correctly.
Because these code constructs are not available for you to work with at compile time you need to figure out how to
deal with them some other way. To see more about initializing code constructs that you introduce via aspects, please
see the section Initializing Aspects on page 367.

Introducing methods
The introduction of methods to your target code is very similar to introducing interfaces. The biggest difference is that
you will be introducing code at a much more granular level.

1. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute [PSerializable-
Attribute].

Introducing Interfaces, Methods, Properties and Events

379

2. Add to the aspect the method you want to introduce to the target code.

[PSerializable]
publicclass OurCustomAspect : InstanceLevelAspect
{

publicvoid TheMethodYouWantToUse(string aValue)
{

Console.WriteLine("Inside a method that was introduced {0}", aValue);
}

}

NOTE
The method that you declare must be marked as public. If it is not you will see an error at compile time.

3. Decorate the method with the IntroduceMemberAttribute attribute.

[IntroduceMember]
publicvoid TheMethodYouWantToUse(string aValue)
{

Console.WriteLine("Inside a method that was introduced {0}", aValue);
}

4. Finally, declare where you want this aspect to be applied in the codebase.

[OurCustomAspect]
publicclass Customer
{

publicstring Name { get; set; }
}

5. After compilation, you can decompile the target code and see that the method has been added.

Introducing properties
The introduction of properties is almost exactly the same as the introduction of methods. Like introducing a method
you will use the IntroduceMemberAttribute attribute. Let's take a look at the details.

1. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute [PSerializable-
Attribute].

Developing Composite Aspects

380

2. Add the property you want to introduce to the aspect.

[PSerializable]
publicclass OurCustomAspect : InstanceLevelAspect
{

publicstring Name { get; set; }
}

NOTE
The property that you declare must be marked as public. If it is not you will see a compiler error.

3. Decorate the property with the IntroduceMemberAttribute attribute.

[IntroduceMember]
publicstring Name { get; set; }

4. Add the aspect attribute to the target code where the aspect should be applied.

[OurCustomAspect]
publicclass Customer
{

}

5. After you have compiled the codebase you can decompile the target code and see that the property has been
added.

As noted for both the introduction of methods and properties, the code being introduced must be declared as public.
This is needed to ensure that PostSharp can function. If you look closely at the decompiled targets you will see that the
introduced members are actually calling the methods/properties that were declared on the aspect. If the method/
property on the aspect is not public, the target code will not be able to call it as it should.

NOTE
It is possible to introduce properties to target code, but it is not possible to introduce fields to your target code. The
reason is that all members are introduced by delegation: the actual implementation of the member always resides in
the aspect.

Introducing Interfaces, Methods, Properties and Events

381

Controlling the visibility of introduced members
You may not want the introduced member to have public visibility once it has been introduced to the target code. Post-
Sharp allows you to control the visibility of the introduced member through the use of the Visibility property on the
aspect. To declare that a member should be introduced with private visibility, all you have to do is declare it as such.

[IntroduceMember(Visibility = Visibility.Private)]
publicstring Name { get; set; }

You have the ability to introduce members with a number of different visibilities including public, private, assembly
(internal in C#) and others. You also have the ability to mark an introduction so that it will be declared as virtual if you
set the IsVirtual property to true.

[IntroduceMember(Visibility = Visibility.Private, IsVirtual = true)]
publicstring Name { get; set; }

Overriding members or interfaces
One thing you need to be aware of is the situation where you are introducing a member that may already exist in the
scope of the target code. Perhaps the method you are trying to introduce is available on the target code through
inheritance. It's possible that the method is explicitly declared on the target code as well. The introduction of a member
via an aspect needs to take these situations into account. PostSharp allows you to take these situations into account
through the use of the OverrideAction property.

The OverrideAction property allows you to declare a rule for how the introduction of a member or interface should
behave if the member or interface is already implemented on the target code. This property allows you to declare rules
such as Fail (any conflict situation will throw a compile time error), Ignore (continue on without trying to introduce the
member/interface), OverrideOrFail or OverrideOrIgnore. It's important to understand how you want to apply your
introduced members/interfaces in situations where that member/interface may already exist.

[IntroduceMember(OverrideAction = MemberOverrideAction.Fail)]
publicstring Name { get; set; }

60.3. Accessing Members of the Target Class
PostSharp makes it possible to import a delegate of a target class method, property or event into the aspect class, so that
the aspect can invoke this member.
These mechanisms allow developers to encapsulate more design patterns using aspects.
This topic contains the following sections:

• Importing Members of the Target Class
• Interactions Between Several Member Introductions and Imports

Importing Members of the Target Class
Importing a member into an aspect allows this aspect to invoke the member. An aspect can import methods, properties,
or fields.

Developing Composite Aspects

382

To import a member of the target type into the aspect class:
1. Define a field into the aspect class, of the following type:

Member
Kind

Field Type

Method A typed Delegate, typically one of the variants of Action or FuncTResult. The delegate signature
should exactly match the signature of the imported method.

Property PropertyTValue, where the generic argument is the type of the property.

Collection
Indexer

PropertyTValue, TIndex, where the first generic argument is the type of the property value and
the second is the type of the index parameter. Indexers with more than one parameter are not
supported.

Event EventTDelegate, where the generic argument is the type of the event delegate (for instance
EventHandler).

2. Make this field public. The field cannot be static.
3. Add the custom attribute ImportMemberAttribute to the field. As the constructor argument, pass the name of

the member to be imported.

At runtime, the field is set to a delegate of the imported member. Properties and events are imported as set of
delegates (PropertyTValueGet, PropertyTValueSet; EventTDelegateAdd, EventTDelegateRemove). These delegates can
be invoked by the aspect as any delegate.
The property ImportMemberAttributeIsRequired determines what happens if the member could not be found in the
target class or in its parent. By default, the field will simply have the null value if it could not be bound to a member. If
the property IsRequired is set to true, a compile-time error will be emitted.

Interactions Between Several Member Introductions and Imports
Although member introduction and import may seem simple advices at first sight, things become more complex when
the several advices try to introduce or import the same member. PostSharp handles these situations in a robust and
predictable way. For this purpose, it is primordial to process classes, aspects and advices in a consistent order.
PostSharp enforces the following order:

1. Base classes are processed first, derived classes after. Therefore, when a class is being processed, all parent
classes have already been fully processed.

2. Aspects targeting the same class are sorted (see Coping with Several Aspects on the Same
Target on page 385) and executed.

3. Advices of the same aspect are sorted and executed in the following order:
a. Member imports which have the property ImportMemberAttributeOrder set to Before-

Introductions.

b. Member introductions.
c. Members imports which have the property ImportMemberAttributeOrder set to After-

Introductions (this is the default value).

Based on this well-defined order, the advices behave as follow:

Accessing Members of the Target Class

383

Advice Precondition Behavior
ImportMemberAttribute No member,

or private
member
defined in a
parent class.

Error if ImportMemberAttributeIsRequired is true, ignored otherwise
(by default).

Non-virtual
member
defined.

Member imported.

Virtual
member
defined.

If ImportMemberAttributeOrder is BeforeIntroductions, the
overridden member is imported. This similar to calling a method with
the base prefix in C#. Otherwise (and by default), the member is
dynamically resolved using the virtual table of the target object.

IntroduceMemberAttribute No member,
or private
member
defined in a
parent class.

Member introduced.

Non-virtual
member
defined in a
parent class

Ignored if the property IntroduceMemberAttributeOverrideAction is
Ignore or OverrideOrIgnore, otherwise fail (by default).

Virtual
member
defined in a
parent class

Introduce a new override method if the property
IntroduceMemberAttributeOverrideAction is OverrideOrFail or
OverrideOrIgnore, ignore if the property is Ignore, otherwise fail (by
default).

Member
defined in the
target class
(virtual or not)

Fail by default or if the property
IntroduceMemberAttributeOverrideAction is Fail.

Otherwise:
1. Move the previous method body to a new method so that the

previous implementation can be imported by advices
ImportMemberAttribute with the property Order set to
BeforeIntroductions.

2. Override the method with the imported method.

60.4. Adding Aspects Dynamically
Additionally to providing advices, an aspect can provide other aspects dynamically using IAspectProvider. This allows
aspect developers to address situations where it is not possible to add aspects declaratively (using custom attributes) to the
source code; aspects can be provided on the basis of a complex analysis of the target assembly using System.Reflection,
or by reading an XML file, for instance.
For details about IAspectProvider, see Adding Aspects Programmatically using IAspectProvider on page 133.

Developing Composite Aspects

384

CHAPTER 61

Coping with Several Aspects on the Same
Target

As the team learns aspect-oriented programming and starts adding more aspect to projects, chances raise that several
aspects are added to the same element of code. This could be a major source of troubles if PostSharp did not provide a
robust framework to detect and prevent conflicts between aspects:

• Most aspects need to be ordered. For instance, an authorization aspect must be executed before a caching
aspect.

• Even if some aspects don't care to be ordered, it's good to have them applied in predictable order. Otherwise,
some code that works today may be broken tomorrow -- just because aspects were applied in a different order.

• Some aspects conflict; they cannot be together on the same aspect, or not in a given order. For instance, it does
not make sense to persist an object using two different aspects: one would persist to the database, the other to
the registry.

• Some aspects require other aspects to be applied. For instance, an aspect changing the mouse pointer to an
hourglass requires the method to execute asynchronously, otherwise the pointer shape will never be updated.

PostSharp addresses these issues by making it possible to add dependencies between aspects. The aspect dependency
framework is implemented in the namespace PostSharp.Aspects.Dependencies.

NOTE
The aspect dependency framework is not related to the notion of dependency injection.

Aspect Dependency Custom Attributes
You can express dependencies of an aspect by annotating the aspect class with custom attributes derived from the type
AspectDependencyAttribute. Several derived types are available; every type matches other aspects according to
different criteria.

Attribute Type Description
AspectTypeDependencyAttribute This custom attribute expresses a dependency with a well-known aspect class.

AspectRoleDependencyAttribute This custom attribute expresses a dependency with any aspect classes enrolled
in a given role. Its dual is ProvideAspectRoleAttribute: this custom attribute
enrolls an aspect class into a role. A role is simply a string. Whenever possible,
consider using one of the roles defined in the class StandardRoles.

Adding Aspects Dynamically

385

Attribute Type Description
AspectEffectDependencyAttribute This custom attribute expresses a dependency with any aspect that has a specific

effect on the source code or the control flow. Effects are represented as a string,
whose valid values are listed in the type StandardEffects. Effects are
provisioned by the aspect weaver on the basis of a rough analysis of what the
aspect may do; aspect developers cannot assign new effects to aspects.
However, they can waive effects by using the custom attribute
WaiveAspectEffectAttribute. For instance, an aspect developer can specify
that a trace attribute has no effect at all; this aspect will commute with any other
aspect (see below).

All these custom attributes have similar structure and members. The first parameter of their constructor, of type Aspect-
DependencyAction, determines the kind of dependency relationship added between the current aspect and the aspects
matched by the custom attribute.
PostSharp supports the following kinds of relationships:

Action Description
Order The dependency expresses an order relationship. The second constructor of the custom attribute, of type

AspectDependencyPosition (with values Before or After), must be specified. The custom attributes
determine the position of the current aspect with respect to matched aspects.

Require The dependency expresses a requirement. PostSharp will issue a compile-time error if the requirement is
not satisfied for any target of the current aspect. The second constructor of the custom attribute, of type
AspectDependencyPosition, is optional. If specified, an aspect matching the dependency should be present
before or after the current aspect.

Conflict The dependency expresses a conflict. PostSharp will issue a compile-time error if any aspect matching the
dependency rule is present on any target of the current aspect. The second constructor of the custom
attribute, of type AspectDependencyPosition, is optional. If specified, an error is issued only if a matching
aspect is present before or after the current aspect.

Commute The dependency specifies that the current aspect is commutable with any matching aspect. When aspects
are commutable, PostSharp does not issue any warning if they are not strongly ordered.

Custom attribute types and values of the enumeration AspectDependencyAction are orthogonal; they can be freely
combined.

Examples
Using role-based dependencies
The following code shows how three aspects can be ordered without having explicit knowledge of each other. Each
aspect provides a different role, and defines dependencies with respect to other roles.

[ProvideAspectRole(StandardRoles.Threading)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.Before, "UI")]
publicsealedclass AsyncAttribute : MethodInterceptionAspect
{

// Details skipped
}

[ProvideAspectRole(StandardRoles.ExceptionHandling)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.After, StandardRoles.Threading)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.After, "UI")]
publicsealedclass ExceptionDialogAttribute : OnExceptionAspect
{

// Details skipped
}

Coping with Several Aspects on the Same Target

386

[ProvideAspectRole("UI")]
publicsealedclass StatusTextAttribute : OnMethodBoundaryAspect
{

// Details skipped
}

Using effect-based dependencies
The following code shows how to protect an authorization aspect to be executed after an aspect which may change the
control flow and skip the execution of the method, such as a caching aspect. Then, it shows how the aspectAsync-
Attribute can opt out from this effect, because the aspect developer knows that does aspect does not skip the
execution of the method, but only defers it.

[AspectEffectDependency(AspectDependencyAction.Conflict, AspectDependencyPosition.Before,
StandardEffects.ChangeControlFlow)]

publicsealedclass AuthorizationAttribute : OnMethodBoundaryAspect
{

// Details skipped.
}

[WaiveAspectEffect(StandardEffects.ChangeControlFlow)]
publicsealedclass AsyncAttribute : MethodInterceptionAspect
{

// Details skipped
}

Deferring Ordering to Aspect Users
By adding dependencies to the aspect class, the aspect developer specifies the order of execution of aspects in a fully
static way. The same order is used for every element of code to which aspects apply. While this behavior is most of the
time desirable, there may be situations where we want to defer ordering to users of our aspects.
Aspect users can influence the order of execution of an aspect by setting the aspect property AspectPriority, typically
when using the aspect custom attribute (the same property is available in the configuration object as Aspect-
ConfigurationAspectPriority, see [aspect-configuration]).
Setting the AspectPriority results to an aspect in adding an ordering dependency between this aspect and all other
aspects where the same property has been set. Therefore, aspect priorities complement, and do not replace, other
ordering dependencies. The aspect developer may specify vital aspect dependencies (that is, under-specify aspect
ordering), and let it to the aspect user to complete the ordering with priorities.

CAUTION NOTE
Do not confuse the property AspectPriority with AttributePriority. The latter determines an order in which
several custom attributes of the same type are processed by the MulticastAttribute engine. The first determines in
which order the aspects are executed at run time.

Adding Dependencies to Third-Party Aspects
If you are using aspects provided by several third-party vendors who don't know about each other, you may need to
solve conflicts on your own.
You can do that by adding any custom attribute derived from AspectDependencyAttribute at assembly level, and use
the property TargetType to specify to which aspect class the dependency applies.

Here is an example:

[assembly: AspectTypeDependency(AspectDependencyAction.Order, AspectDependencyPosition.Before,
typeof(Vendor1.TraceAspect), TargetType = typeof(Vendor2.ExceptionHandlingAspect)]

Adding Aspects Dynamically

387

61.1. Ordering Advices
The section Coping with Several Aspects on the Same Target on page 385 talks in terms of aspect dependencies and aspect
ordering. Most of what has been said there is also valid to advices. When we talk of the order of execution of aspects, we
actually mean the execution of advices ("aspects" themselves, “stricto sensu”, are never executed).
Dependencies defined at aspect level implicitly apply to all advices. When developing a composite aspect (see Developing
Composite Aspects on page 373), it is possible to add dependencies directly to advice methods by annotating them with
custom attributes of the namespace PostSharp.Aspects.Dependencies.

Note that all advices provided by an aspect are ordered in a single block. Suppose that a method is the target of advices
Aspect1.MethodA, Aspect1.MethodB and Aspect2.MethodC. The next table shows valid and invalid orders:

Valid Orders Invalid Orders
Aspect1.MethodA, Aspect1.MethodB, Aspect2.MethodC Aspect1.MethodA, Aspect2.MethodC, Aspect1.MethodB

Aspect1.MethodB, Aspect1.MethodA, Aspect2.MethodC Aspect1.MethodB, Aspect2.MethodC, Aspect1.MethodA

Aspect2.MethodC, Aspect1.MethodA, Aspect1.MethodB

Aspect2.MethodC, Aspect1.MethodB, Aspect1.MethodA

Ordering Advices of the Same Aspect
Advices of the same aspect can be used using any custom attribute derived from AspectDependencyAttribute.

Because advices of the same aspect instance are necessarily ordered in block, it is appropriate to specify dependencies
between aspect classes extensively, and specify ordering of advices only in the scope of the current aspect instance. The
most appropriate dependency custom attribute for this purpose is AdviceDependencyAttribute, which accepts the
name of the advice method as a parameter.

Coping with Several Aspects on the Same Target

388

CHAPTER 62

Understanding Aspect Serialization

As explained in section Understanding Aspect Lifetime and Scope on page 365, aspects are first instantiated at build time
by the weaver, are then initialized by the CompileTimeInitialize method, and serialized and stored in the assembly as a
managed resource. Aspects are then deserialized at run time, before being executed.
Because of the aspect life cycle, aspect classes must be made serializable as described in this section.
This topic contains the following sections:

• Default serialization strategy on page 389
• Fallback serialization strategy on page 389
• Aspects without serialization on page 390

Default serialization strategy
Typically, aspects can be made serializable by adding a custom attribute to the class, which causes all fields of the class
to be serialized. Fields that do not need to be serialized must be annotated with an opt-out custom attribute. PostSharp
chooses the serialization strategy according to these custom attributes. The serialization strategy is implemented in
classes derived from the abstract AspectSerializer class. The default serialization strategy is implemented in the
PortableAspectSerializer class, that is backed by PortableFormatter.

This is how you can apply default serialization strategy to your aspect:
• To make the class serializable, annotate the class with the [PSerializableAttribute] custom attribute.

• To exclude the field from the serialization, annotate the field with the [PNonSerializedAttribute] custom
attribute.

Fallback serialization strategy
In some cases, the default serialization strategy implemented by the PortableAspectSerializer class may not be
appropriate for your aspects. For example, the data structures used in your classes may not be supported by the
PortableFormatter implementation or you may need your code to be backward compatible with PostSharp 4.2 and
earlier. In versions 4.2 and earlier the default serialization strategy was implemented in the BinaryAspectSerializer
class, that was backed by BinaryFormatter. You can still use BinaryAspectSerializer as a fallback serialization
strategy in PostSharp 4.3 and later.
To apply fallback serialization strategy to your aspects, use [SerializableAttribute] custom attribute instead of
[PSerializableAttribute], and use [NonSerializedAttribute] custom attribute instead of [PNonSerialized-
Attribute].

NOTE
The BinaryAspectSerializer class is supported only in projects that target the .NET Framework with full trust.

Ordering Advices

389

Aspects without serialization
In some situations, serializing and deserializing the aspect may be a suboptimal solution. In case aspect field values are
a pure function of constructor arguments and properties, it may be more efficient to emit code that instantiates these
aspects at run time instead of serializing-deserializing them. This is the case, typically, if the aspect does not implement
the CompileTimeInitialize method.

In this situation, it is better to use a different serializer: MsilAspectSerializer.

NOTE
MsilAspectSerializer is actually not a serializer. When you use this implementation instead of a real serializer, the
aspect is not serialized, but the weaver generates MSIL instructions to build the aspect instance at run time, by calling
the aspect class constructor and by setting its fields and properties.

You can specify which serializer should be used for a specific aspect class by setting the property Aspect-
ConfigurationSerializerType of the configuration of this aspect class or instance.

See section [aspect-configuration] for details.
The following code shows how to choose the serializer type for an OnMethodBoundaryAspect:

[OnMethodBoundaryAspectConfiguration(SerializerType=typeof(MsilAspectSerializer))]
publicsealed MyAspect : OnMethodBoundaryAspect

Understanding Aspect Serialization

390

CHAPTER 63

Customizing Aspect Appearance in Visual
Studio

This chapter explains how to configure how your custom aspects appear in PostSharp Tools for Visual Studio. It contains the
following topics:

Section Description
Customizing Aspect Description in
Tooltips on page 391

This topic describes how to change the description of custom aspects in PostSharp-
generated tooltips in Visual Studio.

Estimating Code
Savings on page 392

This topic explains how to give hints so that PostSharp can better estimate how
many lines of code are saved thanks to your aspect.

63.1. Customizing Aspect Description in Tooltips
When you position the mouse cursor over a declaration that has been enhanced by an aspect, PostSharp Tools adds a
description of the aspect to the Intellisense tooltip. The description that PostSharp generates by default is sometimes little
helpful. To make the Intellisense description of your aspect more understandable for its users, you should override the
default description.

Simple Aspects
Simple aspects are aspects built by deriving from a base class such as OnMethodBoundaryAspect and overriding virtual
methods of the base class, such as OnEntry(MethodExecutionArgs). They are described in the section Developing
Simple Aspects on page 329.
To set the description of a simple aspect, add the AspectDescriptionAttribute custom attribute to the aspect class.

This is illustrated in the following code snippet.

[PSerializable]
[AspectDescription("Applies the exception handling policy")]
publicsealedclass ExceptionHandlerAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs eventArgs)
{

if (!ExceptionHandler.OnException(eventArgs.Exception))
{

eventArgs.FlowBehavior = FlowBehavior.Continue;
}

}
}

Customizing Aspect Description in Tooltips

391

Composite Aspects
Composite aspects are aspects where advices are not overridden from the base class, but are added using advice and
pointcut custom attributes such as OnMethodEntryAdvice and MethodPointcut. Composite aspects are described in
section Developing Composite Aspects on page 373. Unlike simple aspects, composite aspects can have several advices,
With composite aspects, you should add a description to every advice. You can do that by setting the Description
property of the advice custom attribute.
The following code snippet illustrates how to set the description of the advice. This description will appear in the
Intellisense tooltip of each property affected by this advice.

[OnLocationSetValueAdvice(Description="Persists the property to disk."),
MulticastPointcut(Targets = MulticastTargets.Property,

Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
publicvoid OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

63.2. Estimating Code Savings
During build, PostSharp attempts to estimate how many lines of handwritten code were avoided thanks to aspects. By
default, PostSharp considers that 2 lines of code are saved every time an advice is applied to a target. This is of course a
very rough estimate. You can add information to your aspects and advices to make the estimate more accurate.

TIP
When adding code saving estimate, ask yourself the following question: how much code would an intelligent developer
have written if she has to implement the same feature without PostSharp, using the best possible strategy? Do not assume
that the strategy you took to implement the feature with an aspect would be the same as the strategy for handwritten
code.

This topic contains the following sections:
• Simple aspects on page 392
• Composite aspects on page 393
• Adding code saving hints programmatically on page 393

Simple aspects
Simple aspects are aspects built by deriving from a base class such as OnMethodBoundaryAspect and overriding virtual
methods of the base class, such as OnEntry(MethodExecutionArgs). They are described in the section Developing
Simple Aspects on page 329.
By default, PostSharp estimates that 2 lines of handwritten code are avoided for each advice method that you override,
every time the aspect is applied to a target.
To override the default value, add the LinesOfCodeAvoidedAttribute custom attribute to the aspect class. The
argument of the custom attribute constructor must be set to the number of lines of handwritten coded avoided every
time the aspect is applied to a target.
The following code snippet shows how to specify that 4 lines of code are avoided every time the aspect is applied. If the
aspect is applied to 100 methods, PostSharp will estimate that 400 lines of handwritten code have been avoided.

Customizing Aspect Appearance in Visual Studio

392

[PSerializable]
[LinesOfCodeAvoided(4)]
publicsealedclass ExceptionHandlerAttribute : OnExceptionAspect
{

publicoverridevoid OnException(MethodExecutionArgs eventArgs)
{

if (!ExceptionHandler.OnException(eventArgs.Exception))
{

eventArgs.FlowBehavior = FlowBehavior.Continue;
}

}
}

Composite aspects
Composite aspects are aspects where advices are not overridden from the base class, but are added using advice and
pointcut custom attributes such as OnMethodEntryAdvice and MethodPointcut. Composite aspects are described in
section Developing Composite Aspects on page 373. Unlike simple aspects, composite aspects can have several advices,
By default, PostSharp estimates that 2 lines of handwritten code are avoided for each advice, every time the advice is
applied to a target. Some advices may have different default values. For instance, the IntroduceInterfaceAttribute
advice shall count 2 lines of code per introduced interface method.
You can still use the aspect-level LinesOfCodeAvoidedAttribute custom attribute. It will increment the estimated
number of avoided lines of code every time the aspect is applied to a target. However, to provide more relevant
estimates, you need to provide code saving information at advice level.
To specify how many lines of handwritten code are avoided every time an advice is applied to a target, specify the
Advice property of the advice custom attribute.

The following code snippet shows how to specify that 1 line of code is avoided every time the advice is applied.
Suppose that the aspect is applied to 100 classes and each class has in average 5 instance non-abstract properties. In
this situation, PostSharp will estimate that 500 lines of handwritten code have been avoided.

[OnLocationSetValueAdvice(LinesOfCodeAvoided = 1),
MulticastPointcut(Targets = MulticastTargets.Property,

Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
publicvoid OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

Adding code saving hints programmatically
In the previous sections, we described how to add code saving hints declarively using custom attributes. Sometimes
declarative estimations are not accurate enough. To learn how to add programmatic hints, see Pushing Information to
PostSharp Tools Programmatically on page 393.

63.3. Pushing Information to PostSharp Tools
Programmatically
The IWeavingSymbolsService service allows you to push information from your aspect, at build time, to PostSharp Tools
for Visual Studio.
This service can be used in the following scenarios:

• Adding some text to the Intellisense tooltip of a declaration.

Pushing Information to PostSharp Tools Programmatically

393

• Adding some code saving information.
• Add some annotation that means that PostSharp Tools should consider that a declaration has been decorated

with a custom attribute. This annotation is then taken into account by the analytic engine that powers the real-
time quick actions and diagnostics of PostSharp Tools. For instance, the FieldRule facility uses this feature.

To get an instance of this service, use the GetServiceT(Boolean) method from PostSharpEnvironment.CurrentProject.
GetService.

Customizing Aspect Appearance in Visual Studio

394

CHAPTER 64

Consuming Dependencies from an Aspect

Aspects, as other components, may have dependencies to other application services. Aspects may be bound to the abstract
interface to this service, and may need to resolve the dependency at run time.
However, two reasons prevent us from the following approaches that are usual with dependency injection containers:

• Aspects are instantiated at build time, and dependency-injection containers only exist at run-time.
• Aspects typically have a static scope. Unless they implement the IInstanceScopedAspect, aspect instances are

stored in static fields, even when applied to instance members.

These characteristics are not an obstacle to using service containers, but different patterns must be followed.
This section presents several ways to consume dependencies from an aspect:

• Using a Global Composition Container on page 395
• Using a Global Service Locator on page 398
• Using Dynamic Dependency Resolution on page 400
• Using Contextual Dependency Resolution on page 403
• Importing Dependencies from the Target Object on page 406

64.1. Using a Global Composition Container
Although the aspect cannot be instantiated by the dependency injection container, it is possible to initialize the aspect from
an ambient container at run time. An ambient container is one that is exposed as a static member and that is global to the
whole application.
Dependency injection containers typically offer methods to initialize objects that have been instantiated externally. For
instance, the Managed Extensibility Framework offers the SatisfyImportsOnce(ComposablePart) method.

The dependency injection method can be invoked from the RuntimeInitialize(MethodBase) method.

NOTE
User code has no control over the time when and the thread on which an aspect is initialized. Therefore, using Thread-
StaticAttribute to make the container local to the current thread is not a reliable approach.

Using a Global Composition Container

395

IMPORTANT NOTE
The service container must be initialized before the execution of any class that is enhanced by the aspect. It means that it
is not possible to use the aspect on test classes themselves. To relax this constraint, it is possible to initialize the
dependency lazily, when the first advice is hit.

Example: testable logging aspect with a global MEF service container
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.GlobalServiceContainer
{

publicinterface ILogger
{

void Log(string message);
}

publicstaticclass AspectServiceInjector
{

privatestatic CompositionContainer container;

publicstaticvoid Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

publicstaticvoid BuildObject(object o)
{

if (container == null)
thrownew InvalidOperationException();

container.SatisfyImportsOnce(o);
}

}

[PSerializable]
publicclass LogAspect : OnMethodBoundaryAspect
{

[Import] private ILogger logger;

publicoverridevoid RuntimeInitialize(MethodBase method)
{

AspectServiceInjector.BuildObject(this);
}

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

logger.Log("OnEntry");
}

}

internalclass Program
{

privatestaticvoid Main(string[] args)
{

AspectServiceInjector.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

// The static constructor of LogAspect is called before the static constructor of the type// containing target methods. This is why we cannot use the aspect in the Program class.

Consuming Dependencies from an Aspect

396

Foo.LoggedMethod();
}

}

internalclass Foo
{

[LogAspect]
publicstaticvoid LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internalclass ConsoleLogger : ILogger
{

publicvoid Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.GlobalServiceContainer.Test
{

[TestClass]
publicclass TestLogAspect
{

static TestLogAspect()
{

AspectServiceInjector.Initialize(new TypeCatalog(typeof (TestLogger)));
}

[TestMethod]
publicvoid TestMethod()
{

TestLogger.Clear();
new TargetClass().TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

privateclass TargetClass
{

[LogAspect]
publicvoid TargetMethod()
{
}

}
}

[Export(typeof (ILogger))]
internalclass TestLogger : ILogger
{

publicstaticreadonly StringBuilder stringBuilder = new StringBuilder();

publicvoid Log(string message)
{

stringBuilder.AppendLine(message);
}

publicstaticstring GetLog()
{

return stringBuilder.ToString();

Using a Global Composition Container

397

}

publicstaticvoid Clear()
{

stringBuilder.Clear();
}

}
}

64.2. Using a Global Service Locator
If all aspect instances are using the same global dependency injection container, it is likely that dependencies of all
instances will resolve to the same service implementation. Therefore, storing dependencies in an instance field may be a
waste of memory, especially for aspects that are applied to a very high number of code elements.
Alternatively, dependencies can be stored in static fields and initialized in the aspect static constructor.

TIP
Use the PostSharpEnvironmentIsPostSharpRunning property to make sure that this part of the static constructor is
executed at run time only, when PostSharp is not running.

In this case, dependency injection method such as SatisfyImportsOnce(ComposablePart) cannot be used. Instead, the
container must be used as a service locator. For instance, MEF exposes the method ExportProviderGetExport.

IMPORTANT NOTE
The service locator must be initialized before the execution of any class that is enhanced by the aspect. It means that it is
not possible to use the aspect on the entry-point class (Program or App, typically). To relax this constraint, it is possible to
initialize the dependency on demand, for instance using the LazyT construct.

Example: testable aspect with a global MEF service locator
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.GlobalServiceLocator
{

publicinterface ILogger
{

void Log(string message);
}

publicstaticclass AspectServiceLocator
{

privatestatic CompositionContainer container;

publicstaticvoid Initialize(ComposablePartCatalog catalog)
{

Consuming Dependencies from an Aspect

398

container = new CompositionContainer(catalog);
}

publicstatic Lazy<T> GetService<T>() where T : class
{

returnnew Lazy<T>(GetServiceImpl<T>);
}

privatestatic T GetServiceImpl<T>()
{

if (container == null)
thrownew InvalidOperationException();

return container.GetExport<T>().Value;
}

}

[PSerializable]
publicclass LogAspect : OnMethodBoundaryAspect
{

privatestaticreadonly Lazy<ILogger> logger;

static LogAspect()
{

if (!PostSharpEnvironment.IsPostSharpRunning)
{

logger = AspectServiceLocator.GetService<ILogger>();
}

}

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

logger.Value.Log("OnEntry");
}

}

internalclass Program
{

privatestaticvoid Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

LoggedMethod();
}

[LogAspect]
publicstaticvoid LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internalclass ConsoleLogger : ILogger
{

publicvoid Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

Using a Global Service Locator

399

namespace DependencyResolution.GlobalServiceLocator.Test
{

[TestClass]
publicclass TestLogAspect
{

static TestLogAspect()
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (TestLogger)));
}

[TestMethod]
publicvoid TestMethod()
{

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[LogAspect]
privatevoid TargetMethod()
{
}

}

[Export(typeof (ILogger))]
internalclass TestLogger : ILogger
{

publicstaticreadonly StringBuilder stringBuilder = new StringBuilder();

publicvoid Log(string message)
{

stringBuilder.AppendLine(message);
}

publicstaticstring GetLog()
{

return stringBuilder.ToString();
}

publicstaticvoid Clear()
{

stringBuilder.Clear();
}

}
}

64.3. Using Dynamic Dependency Resolution
Both previous approaches have a static dependency resolution strategy: it cannot be changed over time. Therefore, these
strategies could be unsuitable in cases where several tests need different configurations of the dependency container.
A possible solution is to resolve dependencies dynamically each time they are needed, and not only at aspect initialization.
Although this solution is ideal for the sake of testing, it may be too inefficient for production. Therefore, the solution would
still need to provide dependency caching for production mode. Caching would neutralize the dynamic characteristics of
dependency resolution.
This solution would be based on the following elements:

1. The service locator can be initialized in two modes: production (the resolution strategy is immutable) and testing
(the resolution strategy can be modified).

Consuming Dependencies from an Aspect

400

2. The service locator returns a delegate (Func<T>, where T is the dependency type), instead of the dependency itself
(T or Lazy<T>).

3. The aspect calls the service locator during aspect initialization and stores the delegate.
4. The aspect calls the delegate at run time.

Example: testable logging aspect with a global MEF service container with dynamic resolution
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.Dynamic
{

publicinterface ILogger
{

void Log(string message);
}

publicstaticclass AspectServiceLocator
{

privatestatic CompositionContainer container;
privatestaticbool isCacheable;

publicstaticvoid Initialize(ComposablePartCatalog catalog, bool isCacheable)
{

if (AspectServiceLocator.isCacheable && container != null)
thrownew InvalidOperationException();

container = new CompositionContainer(catalog);
AspectServiceLocator.isCacheable = isCacheable;

}

publicstatic Func<T> GetService<T>() where T : class
{

if (isCacheable)
{

return () => new Lazy<T>(GetServiceImpl<T>).Value;
}
else
{

return GetServiceImpl<T>;
}

}

privatestatic T GetServiceImpl<T>()
{

if (container == null)
thrownew InvalidOperationException();

return container.GetExport<T>().Value;
}

}

[PSerializable]
publicclass LogAspect : OnMethodBoundaryAspect
{

privatestaticreadonly Func<ILogger> logger;

static LogAspect()
{

if (!PostSharpEnvironment.IsPostSharpRunning)

Using Dynamic Dependency Resolution

401

{
logger = AspectServiceLocator.GetService<ILogger>();

}
}

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

logger().Log("OnEntry");
}

}

internalclass Program
{

privatestaticvoid Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)), true);

LoggedMethod();
}

[LogAspect]
publicstaticvoid LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internalclass ConsoleLogger : ILogger
{

publicvoid Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Dynamic.Test
{

[TestClass]
publicclass TestLogAspect
{

[TestMethod]
publicvoid TestMethod()
{

// The ServiceLocator can be initialized for each test.
AspectServiceLocator.Initialize(new TypeCatalog(typeof (TestLogger)), false);

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[LogAspect]
privatevoid TargetMethod()
{
}

}

[Export(typeof (ILogger))]

Consuming Dependencies from an Aspect

402

internalclass TestLogger : ILogger
{

publicstaticreadonly StringBuilder stringBuilder = new StringBuilder();

publicvoid Log(string message)
{

stringBuilder.AppendLine(message);
}

publicstaticstring GetLog()
{

return stringBuilder.ToString();
}

publicstaticvoid Clear()
{

stringBuilder.Clear();
}

}
}

64.4. Using Contextual Dependency Resolution
The dependency resolution strategy does not necessarily need to resolve to the same service implementation for all
occurrences of the dependency. It is possible to design a strategy that depends on the context. For instance, the service
locator could accept the aspect type and the target element of code as parameters. Test code could configure the service
locator to resolve dependencies to specific implementations for a given context.
Evaluating context-sensitive rules may be CPU-intensive, but it needs to be done only during testing. In production mode,
dependency resolution can be delegated to a global service catalog.

Example: testable logging aspect with contextual dependency resolution
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.Contextual
{

publicinterface ILogger
{

void Log(string message);
}

publicstaticclass AspectServiceLocator
{

privatestatic CompositionContainer container;
privatestatic HashSet<object> rules = new HashSet<object>();

publicstaticvoid Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

publicstatic Lazy<T> GetService<T>(Type aspectType, MemberInfo targetElement) where T : class
{

Using Contextual Dependency Resolution

403

returnnew Lazy<T>(() => GetServiceImpl<T>(aspectType, targetElement));
}

privatestatic T GetServiceImpl<T>(Type aspectType, MemberInfo targetElement) where T : class
{

// The rule implementation is naive but this is for testing purpose only.foreach (object rule in rules)
{

DependencyRule<T> typedRule = rule as DependencyRule<T>;
if (typedRule == null) continue;

T service = typedRule.Rule(aspectType, targetElement);
if (service != null) return service;

}

if (container == null)
thrownew InvalidOperationException();

// Fallback to the container, which should be the default and production behavior.return container.GetExport<T>().Value;
}

publicstatic IDisposable AddRule<T>(Func<Type, MemberInfo, T> rule)
{

DependencyRule<T> dependencyRule = new DependencyRule<T>(rule);
rules.Add(dependencyRule);
return dependencyRule;

}

privateclass DependencyRule<T> : IDisposable
{

public DependencyRule(Func<Type, MemberInfo, T> rule)
{

this.Rule = rule;
}

public Func<Type, MemberInfo, T> Rule { get; privateset; }

publicvoid Dispose()
{

rules.Remove(this);
}

}
}

[PSerializable]
publicclass LogAspect : OnMethodBoundaryAspect
{

private Lazy<ILogger> logger;

publicoverridevoid RuntimeInitialize(MethodBase method)
{

logger = AspectServiceLocator.GetService<ILogger>(this.GetType(), method);
}

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

logger.Value.Log("OnEntry");
}

}

internalclass Program
{

privatestaticvoid Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

LoggedMethod();
}

[LogAspect]
publicstaticvoid LoggedMethod()

Consuming Dependencies from an Aspect

404

{
Console.WriteLine("Hello, world.");

}
}

[Export(typeof (ILogger))]
internalclass ConsoleLogger : ILogger
{

publicvoid Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Contextual.Test
{

[TestClass]
publicclass TestLogAspect
{

[TestMethod]
publicvoid TestMethod()
{

// The ServiceLocator can be initialized for each test.using (
AspectServiceLocator.AddRule<ILogger>(

(type, member) =>
type == typeof (LogAspect) && member.Name == "TargetMethod" ? new TestLogger() : null)

)
{

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}
}

[LogAspect]
publicvoid TargetMethod()
{
}

}

internalclass TestLogger : ILogger
{

publicstaticreadonly StringBuilder stringBuilder = new StringBuilder();

publicvoid Log(string message)
{

stringBuilder.AppendLine(message);
}

publicstaticstring GetLog()
{

return stringBuilder.ToString();
}

publicstaticvoid Clear()
{

stringBuilder.Clear();
}

}
}

Using Contextual Dependency Resolution

405

64.5. Importing Dependencies from the Target Object
The principal reason why aspects are believed to be difficult to test is that they are statically scoped by default, i.e. aspect
objects are stored in static fields. However, any aspect can be made instance-scoped if it implements the IInstance-
ScopedAspect interface. See Understanding Aspect Lifetime and Scope on page 365 for more information about aspect
scopes.
Instance-scoped aspects can consume dependencies from the objects to which they are applied. They can also add
dependencies to the target objects.
For instance, an aspect can consume a service ILogger using the following procedure:

To consume a service from an instance-scoped aspect:
1. Add a public property of name Logger and type ILogger to the aspect and add the IntroduceMemberAttribute

custom attribute. This will cause the aspect to add a property to the target class. Use the parameter Member-
OverrideAction.Ignore to ignore the property if it already exists in the target type of if it has been added by
another aspect.

2. Add two custom attributes ImportAttribute and CopyCustomAttributesAttribute to the Logger property. This
will cause the aspect to add the [Import] custom attribute to the Logger property added to the target class.

3. Add a public field of name LoggerProperty and type Property<ILogger> to the aspect class and add the
ImportMemberAttribute custom attribute to this field, with "Logger" as the parameter value. This will allow the
aspect to read the Logger property even if it has been defined from outside the aspect.

4. The aspect can now consume the dependency by calling this.LoggerProperty.Get().

The procedure is illustrated in the next example.

Example: testable logging aspect that consumes the dependency from the target object
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.ComponentModel.Design;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;
using PostSharp.Extensibility;
using PostSharp.Reflection;
using PostSharp.Serialization;

namespace DependencyResolution.InstanceScoped
{

publicinterface ILogger
{

void Log(string message);
}

[PSerializable]
publicclass LogAspect : OnMethodBoundaryAspect, IInstanceScopedAspect
{

[IntroduceMember(Visibility = Visibility.Family, OverrideAction = MemberOverrideAction.Ignore)]
[CopyCustomAttributes(typeof (ImportAttribute))]
[Import(typeof(ILogger))]
public ILogger Logger { get; set; }

Consuming Dependencies from an Aspect

406

[ImportMember("Logger", IsRequired = true)]
public Property<ILogger> LoggerProperty;

publicoverridevoid OnEntry(MethodExecutionArgs args)
{

this.LoggerProperty.Get().Log("OnEntry");
}

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{

returnthis.MemberwiseClone();
}

void IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

}

[Export(typeof (MyServiceImpl))]
internalclass MyServiceImpl
{

[LogAspect]
publicvoid LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

internalclass Program
{

privatestaticvoid Main(string[] args)
{

AssemblyCatalog catalog = new AssemblyCatalog(typeof (Program).Assembly);
CompositionContainer container = new CompositionContainer(catalog);
MyServiceImpl service = container.GetExport<MyServiceImpl>().Value;
service.LoggedMethod();

}
}

[Export(typeof (ILogger))]
internalclass ConsoleLogger : ILogger
{

publicvoid Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.InstanceScoped.Test
{

[TestClass]
publicclass TestLogAspect
{

[TestMethod]
publicvoid TestMethod()
{

TypeCatalog catalog = new TypeCatalog(typeof (TestLogger), typeof (TestImpl));
CompositionContainer container = new CompositionContainer(catalog);
TestImpl service = container.GetExport<TestImpl>().Value;
TestLogger.Clear();

Importing Dependencies from the Target Object

407

service.TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[Export(typeof (TestImpl))]
privateclass TestImpl
{

[LogAspect]
publicvoid TargetMethod()
{
}

}
}

[Export(typeof (ILogger))]
internalclass TestLogger : ILogger
{

publicstaticreadonly StringBuilder stringBuilder = new StringBuilder();

publicvoid Log(string message)
{

stringBuilder.AppendLine(message);
}

publicstaticstring GetLog()
{

return stringBuilder.ToString();
}

publicstaticvoid Clear()
{

stringBuilder.Clear();
}

}
}

Consuming Dependencies from an Aspect

408

PART 14

Validating Architecture

CHAPTER 65

Restricting Interface Implementation

Under some circumstances, you may want to restrict users of an API to implement an interface. You may want to allow them
to consume the interface but not to implement it in their own classes, so that, later, you can add new members to this
interface without breaking the user's code. If retaining the interface as a public artifact is required, the programming
language does not give you any option to enforce the desired restriction. Enter the InternalImplementAttribute from
PostSharp.
This topic contains the following sections:

• Adding the constraint to the interface on page 411
• Emitting an error instead of a warning on page 413
• Ignoring warnings on page 414

Adding the constraint to the interface
To restrict implementation of publicly declared interfaces you simply need to add [InternalImplementAttribute] to
that interface.

1. Place the caret over the interface that you want to add the attribute select the "Add architectural constraint..."

Importing Dependencies from the Target Object

411

2. Select "Prevent interface implementation in a different assembly" and select Next.

3. Verify that you will be adding the InternalImplementAttribute attribute to the correct piece of code.

Restricting Interface Implementation

412

4. Once the download, installation and configuration of PostSharp have finished you can close the wizard and
look at the changes that were made to your codebase.

5. You'll notice that the only thing that has changed in the code is the addition of the [InternalImplement-
Attribute] attribute.

[InternalImplement]
publicinterface ICustomerRepository
{

IEnumerable<Customer> FetchAll();
}

Once that is done, implementing the interface that was decorated with the InternalImplementAttribute from another
assembly will create a compile time warning.

NOTE
To perform this architectural validation the project that is trying to implement the interface will need to be processed
by PostSharp.

Emitting an error instead of a warning
If a warning isn't strong enough for your environment you can change the output to a compile time error by setting the
InternalImplementAttribute to have a Severity type of Error.

[InternalImplement(Severity = SeverityType.Error)]
publicinterface ICustomerRepository

Importing Dependencies from the Target Object

413

{
IEnumerable<Customer> FetchAll();

}

Now any reference to the decorated interface from another assembly will generate an error and fail the compilation of
your project.

Ignoring warnings
If you are trying to implement a constrained interface in a separate assembly and you want to override the warning
being generated there is a solution available for you. The IgnoreWarningAttribute attribute can be applied to stop
warnings from being generated.

NOTE
The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the warnings to be errors,
those errors will still be generated even if the IgnoreWarningAttribute attribute is present.

To suppress warnings all that you need to do is add the IgnoreWarningAttribute attribute to the offending piece of
code. In this example, we would suppress the warning being generated by adding the attribute to the class that is
implementing the constrained interface. Once we have done that, the warning generated for that specific implemen-
tation would be suppressed. All other locations that are implementing this interface will continue to generate their
warnings.

NOTE
You may wonder where the identifier AR0101 comes from. IgnoreWarningAttribute actually works with any PostSharp
warning and not just this one. Any build error, whether from MSBuild, C# or PostSharp, has an identifier. To see error
identifiers in Visual Studio, open the View menu and click on the Output item, select "Show output from: Build". You
will see warnings including their identifiers.

[IgnoreWarning("AR0101")]
publicclass PreferredCustomerRepository : ICustomerRepository
{

public IEnumerable<Customer> FetchAll()
{

returnnull;
}

}

Restricting Interface Implementation

414

CHAPTER 66

Controlling Component Visibility Beyond
Private and Internal

When you are working on applications it's common to run across situations where you want to restrict access to a
component you have written. Usually, you control this access using the private and/or internal keywords when defining the
component. A class marked as internal can be accessed by any other class in the same assembly, but that may not be the
level of restriction needed within the codebase. Access to a private class is restricted to those components that are inside
the same class or struct that contains the private class, which prevents any other classes from accessing it. In one situation
we are restricting access to the component to only the class or struct that contains it. In the other situation, we are allowing
access to the component from any other component that is in the same assembly. What if needed something in between?
PostSharp offers the ability to define component access rules that exist between the scope of the internal and private
keywords. This gives us the opportunity to restrict access to a component only from other components in the same
namespace. We can also restrict access to a select few other components.
As an example let's look at a data access related class. As a precaution against developer's circumventing our data access
structure we want to limit access to this repository class.
This topic contains the following sections:

• Restricting access to specific namespaces on page 415
• Restricting access to specific types on page 418
• Controlling component visibility outside of the containing assembly on page 419
• Emitting errors instead of warnings on page 422
• Ignoring warnings on page 422

Restricting access to specific namespaces
Our first step is to limit access to this class only to other classes within the validation namespace.

1. Put the caret on the internal class that should have restricted access. Select "Add architectural constraint..."
from the smart tag options.

Importing Dependencies from the Target Object

415

2. Select "Prohibit use outside of given types" from the list of options.

3. Verify that you will be adding the ComponentInternalAttribute attribute to the correct piece of code.

Controlling Component Visibility Beyond Private and Internal

416

4. Once the download, installation and configuration of PostSharp have finished you can close the wizard and
look at the changes that were made to your codebase.

5. You'll notice that the only thing that has changed in the code is the addition of the [ComponentInternal-
Attribute] attribute.

namespace Sharpcrafters.Crm.Console.Repositories
{

publicclass InvoiceRepository
{

[ComponentInternal]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff returnnull;
}

}
}

6. The [ComponentInternalAttribute] attribute is templated to accept a string for the namespace that should
be able to access this method. There are two options that you could use. The first is to pass the attribute an
array of typeof(...) values that represents the types that can access this method. The second option is to
pass in an array of strings that contain the namespaces of the code that should be able to access this method.
For our example, replace the typeof(TODO) with a string for the validation namespace.

Importing Dependencies from the Target Object

417

7. If you try to access this component from a namespace that hasn't been granted access you will see a compile
time warning in the Output window.

namespace Sharpcrafters.Crm.Console.Services
{

publicclass InvoiceServices
{

public IEnumerable<InvoiceForList> FetchAllInvoicesForCustomer(Guid id)
{

var invoiceRepository = new InvoiceRepository();

var allInvoices = invoiceRepository.FetchAllForCustomer(id);
return

allInvoices.Where(x => !x.PaidInFull).Select(
x => new InvoiceForList

{
PurchaseDate = x.PurchaseDate,
ShipDate = x.ShipDate,
TotalAmount = x.Total

});
}

}
}

NOTE
If you are trying to access the component from a namespace that is in a different project you will need Post-
Sharp to process that project for the validation to occur.

Restricting access to specific types
Under some circumstances, namespace level restrictions may not be tight enough for your needs. In that situation, you
have the ability to apply this constraint at a type level.

1. To restrict access at a component type level you need to explicitly define which component types will have
access. This is done by passing types into the constructor of the ComponentInternalAttribute attribute's
constructor. The construct accepts an array of Type which allows you to define many different component
types that should be granted access.

publicclass InvoiceRepository
{

[ComponentInternal(typeof(Sharpcrafters.Crm.Console.Services.InvoiceServices))]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff returnnull;
}

}

Controlling Component Visibility Beyond Private and Internal

418

2. Now if you try to access this component from a type that hasn't been granted access you will see a compile
time warning in the Output window.

publicclass CustomerServices
{

public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

Controlling component visibility outside of the containing assembly
Because of framework limitations or automated testing requirements you sometimes need to declare components as
public so that you can perform the desired tasks or testing. For some of those components, you probably don't want
external applications accessing them. For instance, WPF controls need a default constructor for use in the designer, but
sometimes you want another constructor to be used at run time, so you want to prevent the default constructor to be
used from code.
PostSharp offers you the ability to decorate a publically declared component in such a way that it is not accessible by
applications that reference its assembly. All you need to do is apply the InternalAttribute attribute.

1. Let's mark the Customer class so that it can only be accessed from the assembly it resides in.

namespace Sharpcrafters.Crm.Core
{

publicclass Customer
{

publicint Id { get; set; }
publicstring Name { get; set; }

}
}

2. Place the caret on the publically declared component that you want to restrict external access to and expand
the smart tag. Select "Add architectural constraint".

Importing Dependencies from the Target Object

419

3. When prompted to select a constraint, choose to "Prohibit use outside of the project".

4. The summary page gives you the opportunity to review the selections that you have made. If you notice that
the configuration is not what you wanted you can click the Previous button and adjust your selections. If the
configuration meets your needs click Next. In this demo, you will see that the [InternalAttribute] attribute
is being added to the Customer class.

Controlling Component Visibility Beyond Private and Internal

420

5. Once the download, installation and configuration of PostSharp have finished you can close the wizard and
look at the changes that were made to your codebase.

6. You'll notice that the only thing that has changed in the code is the addition of the [InternalAttribute]
attribute.

namespace Sharpcrafters.Crm.Core
{

[Internal]
publicclass Customer
{

publicint Id { get; set; }
publicstring Name { get; set; }

}
}

7. When you attempt to make use of that public component in a different assembly a compile time warning will
appear in the Output window.

namespace Sharpcrafters.Crm.Console.Repositories
{

publicclass CustomerRepository:ICustomerRepository
{

public IEnumerable<Customer> FetchAll()
{

returnnew List<Customer>{new Customer{Id=1,Name="Joe Johnson"}};
}

}
}

NOTE
The assembly that is attempting to use the public component will need to reference PostSharp for this
validation to occur.

Importing Dependencies from the Target Object

421

Emitting errors instead of warnings
By default, any situation that breaks the access rules defined by the application of the ComponentInternalAttribute or
InternalAttribute attribute will generate a compile time warning. It's possible to escalate this warning to the error
level.

1. Changing the output warning to an error requires you to set the Severity level.

[ComponentInternal(typeof (InvoiceServices), Severity = SeverityType.Error)]
public IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff returnnull;
}

2. Now when you try to access the component when access hasn't been granted the Output window will display
an error message.

Ignoring warnings
There may be specific situations where you want to suppress the warning message that is being generated at compile
time. In those cases, you can apply the IgnoreWarningAttribute attribute to the locations where you want to allow
access to the component.

NOTE
The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the warnings to be errors,
those errors will still be generated even if the IgnoreWarningAttribute attribute is present.

If you wanted to allow access to the constrained component in a specific method you could add the IgnoreWarning-
Attribute attribute to that method.

publicclass CustomerServices
{

[IgnoreWarning("AR0102")]
public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

NOTE
AR0102 is the identifier of the warning emitted by ComponentInternalAttribute. To ignore warnings emitted by
Internal, use the identifier AR0104.

You may wonder where these identifiers come from. IgnoreWarningAttribute actually works with any PostSharp
warning and not just this one. Any build error, whether from MSBuild, C# or PostSharp, has an identifier. To see error
identifiers in Visual Studio, open the View menu and click on the Output item, select "Show output from: Build". You
will see warnings including their identifiers.

Controlling Component Visibility Beyond Private and Internal

422

If you wanted to allow access in an entire class you could add the IgnoreWarningAttribute attribute at the class level.
Any access to the constrained component within the class would have its warning suppressed.

[IgnoreWarning("AR0102")]
publicclass CustomerServices
{

public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

Importing Dependencies from the Target Object

423

Controlling Component Visibility Beyond Private and Internal

424

CHAPTER 67

Developing Custom Architectural
Constraints

When you are creating your applications it is common to adopt custom design patterns that must be respected across all
modules. Custom design patterns have the same benefits as standard ones, but they are specific to your application. For
instance, the team could decide that every class derived from BusinessRule must have a nested class named Factory,
derived from BusinessRulesFactory, with a public default constructor.

Even performing line-by-line code reviews can miss violations of the pattern. Is there a better way to ensure that this
doesn't happen? PostSharp offers the ability create custom architectural constraints. The constraints that you write are able
to verify anything that you can query using reflection.
There are two kinds of constraints: scalar constraints and referential constraints.
This topic contains the following sections:

• Creating a scalar constraint on page 425
• Creating a referential constraint on page 428
• Validating the constraint itself on page 430
• Ignoring warnings on page 430

Creating a scalar constraint
Scalar constraints typically validate an element of code, while referential constraints validate how an element of code is
being used.
Let's start with a scalar constraint and create a constraint that verifies the first condition our BusinessRule design
pattern: that any class derived from BusinessRule must have a nested class named Factory. We can model this
condition as a scalar constraint that applies to any class derived from BusinessRule. Therefore, we will create a type-
level scalar constraint, apply it to the BusinessRule class, and use attribute inheritance to have the constraint automat-
ically applied to all derived classes.

1. Create a class that inherits from the ScalarConstraint class in PostSharp.

using System;
publicclass BusinessRulePatternValidation : ScalarConstraint
{
}

2. Designate what code construct type this validation aspect should work for by adding the Multicast-
AttributeUsageAttribute attribute. In this case, we want the validation to occur on types only, and we want
to enable inheritance.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{
}

Importing Dependencies from the Target Object

425

3. Override the ValidateCode(Object) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{

publicoverridevoid ValidateCode(object target)
{
}

}

4. Create a rule that checks that there's a nested type called Factory. You'll note that the target parameter for
the ValidateCode(Object) method is an object type. Depending on which target type you declare in the
MulticastAttributeUsageAttribute attribute, the value passed through this parameter will change. For
MulticastTargets.Type the type passed is Type. To make use of the target for validation you must cast to
that type first.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{

publicoverridevoid ValidateCode(object target)
{

var targetType = (Type) target;

if (targetType.GetNestedType("Factory") == null)
{

// Error
}

}
}

NOTE
Valid types for the target parameter of the ValidateCode(Object) method include Assembly, Type,
MethodInfo, ConstructorInfo, PropertyInfo, EventInfo, FieldInfo, and ParameterInfo.

5. Write a warning that the rule being broken to the Output window in Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{

publicoverridevoid ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(
targetType, SeverityType.Warning,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);

}
}

}

Developing Custom Architectural Constraints

426

6. Attach the rule to the code that needs to be protected. For this example we want to add this rule to the
BusinessRule class.

[BusinessRulePatternValidation]
publicclass BusinessRule
{

// No Factory class here.
}

NOTE
This example shows applying the constraint to only one class. If you want to apply a constraint to large
portions of your codebase, read the section on Adding Aspects to Multiple Declarations on page 114

7. Now if you compile the project you will see an error in the Output window of Visual Studio when you run a
build.

8. In some circumstances you may determine that a warning isn't aggressive enough. We can alter the rule that
you have created so that it outputs a compile time error instead. All that you need to do is change the
SeverityType in the Message.Write to Error.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{

publicoverridevoid ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(
targetType, SeverityType.Error,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);

}
}

}

Using this technique it is possible to create rules or restrictions based on a number of different criteria and implement
validation for several design patterns.
When you are working on projects you need to ensure that they adhere to the ideals and principles that our project
teams hold dear. As with any process in software development, manual verification is guaranteed to fail at some point in
time. As you do in other areas of the development process, you should look to automate the verification and
enforcement of our ideals. The ability to create custom architectural constraints provides both the flexibility and verifi-
cation that you need to achieve this goal.

Importing Dependencies from the Target Object

427

Creating a referential constraint
Now let's create a referential constraint that verifies the second condition our BusinessRule design pattern: that the
BusinessRule class can only be used in the Controllers namespace. You can model this condition as a referential
constraint and apply the constraint to any class in your codebase. If you apply this constraint to the entirety of your
codebase you will ensure that the BusinessRule design pattern is only referenced in the Controllers namespace.

1. Create a class that inherits from the ReferentialConstraint class in PostSharp.

publicclass BusinessRuleUseValidation : ReferentialConstraint
{
}

2. Declare that this aspect should work only on types by adding the MulticastAttributeUsageAttribute
attribute to the class.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRuleUseValidation : ReferentialConstraint
{
}

3. Override the ValidateCode(Object, Assembly) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
BusinessRuleUseValidation : ReferentialConstraint
{

publicoverridevoid ValidateCode(object target, Assembly assembly)
{
}

}

4. Create the rule that checks for the use of the BusinessRule type in the target code.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{

publicoverridevoid ValidateCode(object target, Assembly assembly)
{

var targetType = (Type) target;
var usages = ReflectionSearch

.GetMethodsUsingDeclaration(typeof (BusinessRule));

if (usages !=null)
{

// Warning
}

}
}

NOTE
The rule here makes use of the ReflectionSearch helper class that is provided by the PostSharp framework.
This class, along with others, is an extension to the built in reflection functionality of .NET and can be used
outside of aspects as well.

Developing Custom Architectural Constraints

428

5. Write a warning message to be included in the Output window of Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
publicclass BusinessRulePatternValidation : ScalarConstraint
{

publicoverridevoid ValidateCode(object target, Assembly assembly)
{

var targetType = (Type) target;
var usages = ReflectionSearch
.GetMethodsUsingDeclaration(typeof (BusinessRule));

if (usages !=null)
{

Message.Write(
targetType, SeverityType.Warning,
"2002",
"The {0} type contains a reference to 'BusinessRule'" +
"which should only be referenced from Controllers.",
targetType.Name);

}
}

}

6. Attach the referential constraint that you created to any code that needs to be checked. In this example, add
an attribute to the AccountRepository class.

namespace PostSharp.Architecture.Repositories
{

[BusinessRuleUseValidation]
publicclass AccountRepository
{

publicvoid AddAccount(string name)
{

var businessRule = new BusinessRule();
businessRule.DoStuff();

}
}

}

NOTE
This example shows applying the constraint to only one class. If you want to apply this constraint to a larger
portion of your codebase, read the section on Adding Aspects to Multiple Declarations on page 114.

7. Now when you compile the project you will see a warning in the Output window in Visual Studio.

NOTE
If using a warning isn't aggressive enough you can change the SeverityType to Error. Now when the rule is
broken an error will appear in the Output window of Visual Studio and the build will not be successful.

Importing Dependencies from the Target Object

429

CAUTION NOTE
PostSharp constraints operate at the lowest level. For instance, checking relationships of a type with the rest of the
code does not implicitly check the relationships of the methods of this type. Also, checking relationships of
namespaces is not possible.
Custom attribute multicasting can be used to apply a constraint to a large number of types, for instance all types of a
namespace. But this would result in one constraint instance for every type, method and field on this namespace.
Although this has no impact on run time, it could severely affect build time. For this reason, the current version of
PostSharp Constraints is not suitable to check isolation (layering) of namespaces at large scale.

Referential constraints provide you with the ability to declare architectural design patterns right in your code. By
documenting these patterns right in the codebase you are able to provide easy access for the development team as well
as continual verification that your desired design patterns are being adhered to.

Validating the constraint itself
Now that you have created scalar and referential constraints you can be assured that certain architectural rules are
being consistently implemented in your codebase. There is one thing that is missing though.
With what you have done thus far, it is possible to attach your architectural constraints to any code element in your
projects. This may not be appropriate. For example, the scalar constraint that you created to perform the Business-
RulePatternValidation may be a valid constraint only on classes that exist in the Models namespace.

Let's look at how we can ensure that this constraint is only enforced on classes that exist in the Models namespace.

1. Open the BusinessRulePatternValidation class that you created earlier.

2. Override the ValidateConstraint(Object) method.

3. Write the validation logic to ensure that this constraint is only applied to classes in the Models namespace.

NOTE
When the ValidateConstraint(Object) method returns true, it tells PostSharp that the constraint should
be applied to that target code element. When the ValidateConstraint(Object) method returns false
PostSharp will not apply the constraint to the target code element.

Now, when the BusinessRulePatternValidation attribute is applied to a class that is not in the Models namespace of
your project, there will be no warning or error added to the Visual Studio Output window.
When the attribute is applied to a class in the Models namespace and that class doesn't pass the constraint's rules you
will continue to see the warning or error indicating this architectural failure.

Ignoring warnings
There will be situations where a constraint is generating a warning that is of no concern. In these exceptional circum-
stances, it is best if you remove the warning from the Visual Studio Output window.
To ignore these unnecessary warnings, find the target code that is responsible for generating the warning. Add the
IgnoreWarningAttribute attribute to the target code entering the MessageId of the warning that you want to
suppress.
The MessageId can be found in your constraint where you issue the Message.Write command. The Reason value
performs no function during the suppression of the warning. It exists so that you can provide clear communication as to
why the warning is being ignored.

Developing Custom Architectural Constraints

430

NOTE
The IgnoreWarningAttribute attribute will only suppress the issuance of Message.Write statements that are assigned
a SeverityType of Warning. If the SeverityType is set to Error the IgnoreWarningAttribute attribute will have no
suppression effect on that statement.

Importing Dependencies from the Target Object

431

PART 15

Testing and Debugging

CHAPTER 68

Debugging Run-Time Logic

Enhancing your code with aspects gives you a new dimension to your debugging experience. With PostSharp, patterns are
implemented in classes that are separate from the business logic. Most of the time, you will want to debug just the business
logic. But sometimes, you will want to debug the aspects: aspect code will now be skipped by default during step-into
sessions and in the call stack window.
This topic contains the following sections:

• Stepping into aspect code on page 435
• Showing aspects code in the call stack window on page 435
• Disabling debugger enhancements on page 436

Stepping into aspect code
Suppose you have a SayHello method intercepted by an Intercept aspect. You are about to step into the SayHello
method. By default, the debugger steps over the code of the Intercept aspect and then breaks in the beginning of the
SayHello method. When Step Into Aspects is enabled, the debugger will step into the Intercept aspect.

The Step Into Aspects feature is disabled by default. To turn it on, go to the menu PostSharp / Options, then to the
General tab and the Debugging section, and check the Step Into Aspects check box. Now you can step into aspects
using the Step Into (F11) command of the debugger.

Showing aspects code in the call stack window
By default, all the calls to the methods of the Intercept aspect are hidden behind one stack frame named [Aspect
Code]. Suppose you have the SayHello method intercepted by the Intercept aspect like in the example above. You are
inside the SayHello method. In the call stack, all the methods introduced by PostSharp are hidden.

Importing Dependencies from the Target Object

435

Sometimes you may need to see the real call stack that includes all intermediate method calls generated by PostSharp.
This is the purpose of the Show Aspects Code in Call Stack feature.
To turn it on, go to the menu PostSharp / Options, then to the General tab and the Debugging section, and check the
Show Aspects Code in Call Stack check box. Now, the call stack includes all the methods introduced by PostSharp.

Disabling debugger enhancements
PostSharp improves your debugging experience by installing extensions for the Visual Studio Debugger and by
enhancing PDB files during the build. In some use cases you may want to disable these PostSharp debugger extensions
and revert back to the default debugging behavior in Visual Studio (e.g. building for a new or unsupported target
framework, debugging code on unsupported devices, working around bugs, etc.).

To disable PostSharp debugger extensions:
1. Right-click on your solution in the Solution Explorer and then click Properties
2. On the PostSharp page of the displayed solution property pages dialog, select the check box Disable

debugging experience improvements.

Debugging Run-Time Logic

436

3. Confirm the change by clicking OK and then rebuild your solution.

NOTE
Debugging extensions are automatically disabled when you build your project using MSBuild from outside Visual
Studio.

CAUTION NOTE
If you build a solution with debugging extensions enabled, you must debug the solution with an instance of Visual
Studio where debugging extensions are enabled, otherwise your debugging experience will be frustrating.

Importing Dependencies from the Target Object

437

Debugging Run-Time Logic

438

CHAPTER 69

Debugging Build-Time Logic

It may seem unusual to debug compile-time logic, but like any process, it is perfectly legal and even simple to debug the
build process!
Basically, what you will do is to attach a debugger to the PostSharp process. If you use the standard MSBuild targets for
PostSharp, define the constant PostSharpAttachDebugger=True.

The trick is easier to explain when you have compile-time logic (your aspect, for instance) and the transformed assembly in
different Visual Studio projects.
Suppose you have your aspects logic MyAspects.csproj and unit tests (i.e. the code to be transformed) in MyAspects.
Test.csproj. The easiest way to debug MyAspects.csproj is the following:

To debug the build-time logic of an aspect:
1. Open Visual Studio and load the solution containing MyAspects.csproj.

2. Open the Visual Studio Command Prompt and go to the directory containing MyAspects.Test.csproj.

3. Build MyAspects.csproj using Visual Studio as usual .

4. From the command prompt, type:
msbuild MyAspects.Test.csproj /T:Rebuild /P:PostSharpAttachDebugger=True

5. The build process will hit a break point. When it happens, attach the instance of MyAspects.csproj Visual Studio.

NOTE
Because of a bug in Visual Studio, you need to use the mixed debugging engine. To do that, check the option
Manually choose the debugging engines in the Visual Studio Just-In-Time Debugger and select both the
managed and the native engines.

6. Set up break points in your code and continue the program execution.

Importing Dependencies from the Target Object

439

Debugging Build-Time Logic

440

CHAPTER 70

Testing that an Aspect has been Applied

In the previous section, we have seen how to test the aspect behavior itself. Now, let's see how we can test that the aspect
has been applied to the expected set of targets. This can also be called testing the pointcut.

Why test that the aspect has been properly applied?
You may need to test whether an aspect has been applied to specific targets for one of the following reasons:

• The aspect is applied using non-trivial regular expressions with MulticastAttribute.

• The aspect is silently filtered out using CompileTimeValidate(MethodBase).

• The aspect is applied using an IAspectProvider.

Testing that the aspect behavior is exhibited
The most obvious way to test that the aspect has been applied to an element of code is to execute that code and
ensure that the code actually exhibits the aspect behavior. This approach does not differ from the one described in
section Testing Run-Time Logic on page 443.

Testing that the aspect custom attribute is present
You can check that an aspect has been applied to a target by reflecting the custom attributes present on this element of
code.
However, custom attributes representing aspects are stripped by default. If you want PostSharp to emit custom
attributes, follow instructions of section Reflecting Aspect Instances at Runtime on page 128.

NOTE
Aspects added by IAspectProvider are not represented by custom attributes, so their presence cannot be tested by
this approach.

Parsing the PostSharp symbol file
PostSharp generates a symbol file named bin\Debug\MyAssembly.psssym, where MyAssembly is the name of the
assembly. In theory, you could use this file to determine which elements of code have been modified by aspects in your
project.

CAUTION NOTE
The PostSharp symbol file format is undocumented and unsupported. It means that PostSharp support team cannot
answer questions related to this file format.

Importing Dependencies from the Target Object

441

Testing that an Aspect has been Applied

442

CHAPTER 71

Testing Run-Time Logic

When designing a test strategy for aspects, it is fundamental to understand that aspects cannot be used in isolation. They
are always used in the context of the code artifact to which it has been applied. Therefore, when writing an aspect, two
kinds of test artifacts must be written:

• Test target code to which the aspect will be applied.
• Test invocation code that invokes the target code and verifies that the combination of the aspect and the target

code exhibits the intended behavior.

Achieving large test coverage
As with other code, you have to test the aspect with input context that varies enough to produce a large code coverage.
In the case of aspects, the input context is composed of the following items:

• Arguments of the aspect itself, i.e. constructor arguments and property values. If the aspect behavior depends
on aspect arguments, high code coverage of the aspect requires varying aspect arguments.

• Target code can be considered as conceptually being a part of the input arguments of the aspect. For instance,
if an aspect contains logic that depends on the method being static or non-static, you should test the aspect
against both static and non-static methods.

• Arguments of the target code can affect the run-time behavior of the aspect. For instance, a buggy aspects may
incorrectly handle null arguments.

Example: testing a caching aspect
The following example demonstrates how to test a caching aspect. High code coverage is achieved by varying the target
code and testing with null and non-null parameters.

using System;
using System.Threading.Tasks;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Samples
{

[TestClass]
publicclass TestCacheAspect
{

privatestaticint invocations;

// Instance method without parameters

[TestMethod]
publicvoid TestInstanceMethodWithoutParameter()
{

int call1 = this.InstanceMethodWithoutParameter();
int call2 = this.InstanceMethodWithoutParameter();

Assert.AreEqual(call1, call2);
}

[Cache]

Importing Dependencies from the Target Object

443

privateint InstanceMethodWithoutParameter()
{

return invocations++;
}

// Static method without parameters

[TestMethod]
publicvoid TestStaticMethodWithoutParameter()
{

int call1 = StaticMethodWithoutParameter();
int call2 = StaticMethodWithoutParameter();

Assert.AreEqual(call1, call2);
}

[Cache]
privatestaticint StaticMethodWithoutParameter()
{

return invocations++;
}

// Instance method with parameters

[TestMethod]
publicvoid TestInstanceMethodWithParameter()
{

int call1a = this.InstanceMethodWithParameter("foo");
int call2a = this.InstanceMethodWithParameter(null);
int call1b = this.InstanceMethodWithParameter("foo");
int call2b = this.InstanceMethodWithParameter(null);

Assert.AreEqual(call1a, call1b);
Assert.AreEqual(call2a, call2b);
Assert.AreNotEqual(call1a, call2a);

}

[Cache]
privateint InstanceMethodWithParameter(string param)
{

return invocations++;
}

[TestMethod]
publicvoid TestInstanceTaskMethodWithParameters()
{

int invocationsOld = invocations;

int call11a = this.InstanceTaskMethodWithParameters(1, 1).Result;
int call11b = this.InstanceTaskMethodWithParameters(1, 1).Result;

Assert.AreEqual(call11a, call11b);
Assert.AreEqual(1, invocations - invocationsOld);

}

#region InstanceTaskMethodWithParameters

[Cache]
private Task<int> InstanceTaskMethodWithParameters(int a, int b)
{

return Task.Run(() =>
{

invocations++;
return a + b;

});
}

#endregion
}

}

Testing Run-Time Logic

444

CHAPTER 72

Testing Build-Time Logic

Testing build-time logic of aspects has specific challenges:
• Aspects can emit errors and warnings, which cannot be tested using a run-time testing framework. We need a

mechanism to test error messages themselves.
• When a project contains a large number of test cases (which are all compiled at the same time), it is difficult to

isolate one specific case when the debugger is attached to the build process (see Debugging Build-Time
Logic on page 439). We need a mechanism to run the build process on a single test case.

Therefore, we built a test framework specifically for the purpose of testing aspects.
This topic contains the following sections:

• Creating an aspect unit test project on page 445
• Executing a single test on page 446
• Executing all tests from a directory on page 446
• Executing all tests in the project directory on page 446
• Test that messages are emitted on page 446
• Allow unsafe code on page 446
• Creating a reference assembly on page 446

Creating an aspect unit test project
To create an aspect unit test project:

1. Create a console project and add all required references to it.
2. Add PostSharp to this project
3. Edit the project file using a text editor. The project file must import PostSharp.BuildTests.targets before

Microsoft.CSharp.targets (download50). File PostSharp.targets also needs to be included (which is the case if the
PostSharp NuGet package is added to the project).

4. Implement each test case as a standalone file having its own Program class and Main method. To avoid naming
conflicts, every file should have a distinct namespace.

A test is considered successful in the following situations:
• the test compiles using the C# or VB compiler, and
• the test compiles using PostSharp without any unexpected message (see below), and
• the output exe is valid according to PEVERIFY, and

• the output exe executes successfully and returns the exit code 0,

This default behavior can be altered by test directives, as described below.

50. http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets

Importing Dependencies from the Target Object

445

http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets
http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets

Executing a single test
Execute the following line from the command prompt:

msbuild /t:TestOne /p:Source=MyFile.cs

Executing all tests from a directory
Execute the following line from the command prompt:

msbuild /t:Test /p:SourceDir=MyDirectory

Executing all tests in the project directory
Execute the following line from the command prompt:

msbuild /t:Test

Test that messages are emitted
If the test is expected to emit a message (error, warning, information), insert the text @ExpectedMessage(PS0001) in the
test file as a comment line.
If this directive is present, the test will be valid if and only if all expected messages, and no other, have been emitted.

Allow unsafe code
To enable unsafe code and disable verification by PEVERIFY, insert the text @Unsafe in the test file as a comment line.

Creating a reference assembly
In case that a test requires a dependency assembly (typically, for tests that require two assemblies, for instance testing
aspect inheritance that crosses assembly boundaries), you can create a second file named MyTest.Dependency.cs, if the
first file is named MyTest.cs. This will create an assembly MyTest.Dependency.dll, and main test will have a reference to
this assembly.

Testing Build-Time Logic

446

PART 16

Hacking

CHAPTER 73

Executing Code Just After the Assembly is
Loaded

Visual Basic has a concept of module. The module is a special class that gets initialized immediately when the assembly is
loaded. This feature is implemented by the CLR, but is not exposed to the C# language. The ModuleInitializerAttribute
attribute allows you to have module initializers in C#.

To add a module initializer to your project:
• Create a public or internal method that has no parameter and no return value. The type declaring the method

cannot have generic parameters.
• Add the ModuleInitializerAttribute attribute to this method.

You can add several module initializers a project. Module initializers will be executed in the order you specified in the
attribute constructor.

Importing Dependencies from the Target Object

449

	Table of Contents
	Introduction
	Quick Examples
	Why Use PostSharp
	Which Problems Does PostSharp Solves
	Benefits of Pattern-Aware Compiler Extensions
	Benefits of PostSharp vs Alternatives

	How Does PostSharp Work
	Key Technologies

	How to Learn PostSharp
	Architecture Role: Selecting and Creating Aspects
	Deployment Role: Installing and Deploying PostSharp
	Developer Role: Using Aspects

	What's New
	What's New in PostSharp 5.0
	Breaking Changes in PostSharp 5.0

	What's New in PostSharp 4.3
	What's New in PostSharp 4.2
	What's New in PostSharp 4.1
	What's New in PostSharp 4.0
	What's New in PostSharp 3.1
	What's New in PostSharp 3.0
	What's New in PostSharp 2.1
	What's New in PostSharp 2.0
	What's New in PostSharp 1.5

	Deployment and Configuration
	Deployment
	Requirements and Compatibility
	PostSharp Components
	Installing PostSharp Tools for Visual Studio
	Installing PostSharp Tools for Visual Studio Silently
	Installing PostSharp Into a Project
	Installing PostSharp without NuGet
	Using PostSharp on a Build Server
	Restoring Packages at Build Time
	Using PostSharp with Visual Studio Online

	Upgrading from a Previous Version of PostSharp
	Uninstalling PostSharp
	Deploying PostSharp to End-User Devices
	Executing PostSharp from the Command Line

	Licensing
	Deploying License Keys
	License Audit
	Limitations of PostSharp Essentials
	Sharing Source Code With Unlicensed Teams
	Installing and Servicing PostSharp License Server
	Using PostSharp License Server

	Configuration
	Configuring Projects in Visual Studio
	Configuring Projects Using MSBuild
	Working with PostSharp Configuration Files
	Configuration File Schema Reference
	Well-Known PostSharp Properties
	Including CLR Objects in Configuration
	Using Expressions in Configuration Files

	Accessing Configuration from Source Code
	Working with Errors, Warnings, and Messages
	Ignoring and Escalating Warnings
	Emitting Errors, Warnings, and Messages

	Resolution of assembly binding redirections
	Reducing Build Time
	Enabling Solution-Wide Build
	Using IncrediBuild and PostSharp Together

	Adding Aspects to Code
	Adding Aspects Declaratively Using Attributes
	Adding Aspects to a Single Declaration
	Adding Aspects to Multiple Declarations
	Understanding Attribute Multicasting

	Adding Aspects to Derived Classes and Methods
	Understanding Aspect Inheritance

	Overriding and Removing Aspect Instances
	Reflecting Aspect Instances at Runtime

	Adding Aspects Using XML
	Adding Aspects Programmatically using IAspectProvider

	Logging
	Adding Detailed Logging to your Solution
	Customizing the Appearance of Log Records
	Implementing a Custom Formatter
	Adding Custom Log Records Manually
	Enabling and Disabling Logging At Run Time
	Configuring specific logging frameworks
	Logging to the system console
	Logging to log4net
	Logging to NLog
	Logging to Serilog
	Logging to ETW
	Logging to Common.Logging
	Logging to Loupe

	Adding Audit to your Solution
	Implementing an Adapter to a Custom Logging Framework
	Upgrading from PostSharp Diagnostics 4.3
	Licensing of PostSharp Diagnostics

	Contracts
	Adding Contracts to Code
	Creating Custom Contracts
	Localizing Contract Errors

	INotifyPropertyChanged
	Implementing INotifyPropertyChanged
	Working with Properties that Depend on Other Objects
	Implementing INotifyPropertyChanging
	Handling Corner Cases
	Integrating with UI Frameworks
	Caliburn.Micro
	MVVM Light

	Understanding the NotifyPropertyChanged Aspect
	Suppressing False Positives

	Weak Event
	XAML
	Command
	Dependency Property
	Attached Property

	Parent/Child, Visitor and Disposable
	Annotating an Object Model for Parent/Child Relationships (Aggregatable)
	Rule-Based Annotation

	Enumerating Child Objects (Visitor)
	Automatically Disposing Children Objects (Disposable)
	Working With Child Collections

	Undo/Redo
	Making Your Model Recordable
	Adding Undo/Redo to the User Interface
	Customizing Undo/Redo Operation Names
	Assigning Recorders Manually
	Adding Callbacks on Undo and Redo
	Understanding the Recordable Aspect

	Caching
	Caching Method Return Values
	Removing Items From the Cache
	Working with Cache Dependencies
	Customizing Cache Keys
	Caching Back-Ends
	Using In-Memory Cache
	Using Redis Cache

	Synchronizing Local In-Memory Caches for Multiple Servers
	Caching Special Types with Value Adapters

	Multithreading
	Writing Thread-Safe Code with Threading Models
	Immutable Threading Model
	Freezable Threading Model
	Thread Affine Threading Model
	Synchronized Threading Model
	Reader/Writer Synchronized Threading Model
	Actor Threading Model
	Thread-Unsafe Threading Model
	Making a Whole Project or Solution Thread Safe
	Opting In and Out From Thread Safety
	Compatibility of Threading Models
	Enabling and Disabling Runtime Verification
	Run-Time Performance of Threading Model

	Dispatching a Method to Background
	Dispatching a Method to the UI Thread
	Detecting Deadlocks at Runtime

	Developing Custom Aspects
	Developing Simple Aspects
	Injecting Behaviors Before and After Method Execution
	Handling Exceptions
	Intercepting Methods
	Intercepting Properties and Fields
	Intercepting Events
	Introducing Custom Attributes
	Introducing Managed Resources
	Semantic Advising of Iterator and Async Methods

	Understanding Aspect Lifetime and Scope
	Initializing Aspects
	Coping with Custom Object Serializers

	Validating Aspect Usage
	Developing Composite Aspects
	Adding Behaviors to Existing Members
	Introducing Interfaces, Methods, Properties and Events
	Accessing Members of the Target Class
	Adding Aspects Dynamically

	Coping with Several Aspects on the Same Target
	Ordering Advices

	Understanding Aspect Serialization
	Customizing Aspect Appearance in Visual Studio
	Customizing Aspect Description in Tooltips
	Estimating Code Savings
	Pushing Information to PostSharp Tools Programmatically

	Consuming Dependencies from an Aspect
	Using a Global Composition Container
	Using a Global Service Locator
	Using Dynamic Dependency Resolution
	Using Contextual Dependency Resolution
	Importing Dependencies from the Target Object

	Validating Architecture
	Restricting Interface Implementation
	Controlling Component Visibility Beyond Private and Internal
	Developing Custom Architectural Constraints

	Testing and Debugging
	Debugging Run-Time Logic
	Debugging Build-Time Logic
	Testing that an Aspect has been Applied
	Testing Run-Time Logic
	Testing Build-Time Logic

	Hacking
	Executing Code Just After the Assembly is Loaded

