PostSharp 4.1

User Manual

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Introduction

11
11
13
15
15
17
17
21
21
22
23
25
26
27
28

31
33
33
36
36
37
48
51
53
59
61
61
63
67
74
75

77
79
79
82
84
88
93
%4
97
98

102

107

107

109

111

116

117

118

Table of Contents

Contracts

123
123
127
129
133
133
137
143
148
149
150
166
167

171
173
174
178
182
187
192
196
199
199
201
201
205
207
209

215
217
217
259
261
262
265
277
280
282
283
285
299
299
301
302
315
316
319
319
322
331

PART 1

Introduction

What Is PostSharp

CHAPTER 1
PostSharp Overview

This chapter gives a high-lever overview of PostSharp. It is composed of the following topics:
Topic Description

What Is PostSharp on page 7 This topic describes how PostSharp can help your development team to deliver
better software in less time.

PostSharp Components on page 11 This topic describes all components of PostSharp (Visual Studio extension,
NuGet packages).

How Does PostSharp Work on page 11 This topic gives a high-level understanding of how PostSharp integrates with
your build process.

Key Technologies on page 13 This topic positions PostSharp in the realm of metaprogramming, aspect-
oriented programming, static analysis and dynamic analysis.

1.1. What Is PostSharp

PostSharp is a 100%-compatible extension to the C# or VB languages that adds support for design patterns and thread
safety. Teams that use PostSharp are able to deliver features with fewer lines of code and fewer defects.

In conventional object-oriented programming, technical concerns like threading, INotifyPropertyChanged or logging
generally result in a large amount of boilerplate code. This boilerplate code is tangled with business code, and makes it
more difficult to understand and modify the business meaning of the source code.

Boilerplate code is in fact instances of source code patterns. As any pattern, their instances exhibit a great amount of
regularity and predictability. Any decent software developer would be able to explain to their colleague how to properly
implement INotifyPropertyChanged. These implementation guidelines would form some sort of algorithm, expressed in
natural language, that the colleague would execute. Most of the work would be repetitive and would only require a limited
amount of creativity.

Algorithmic work is exactly what machines are good at, so why not offload it the compiler? This is exactly what PostSharp
has been designed for. Traditional languages have concepts like classes, methods, fields, but they don't have any construct
to represent patterns like the implementation of INotifyPropertyChanged.

PostSharp adds support for patterns into the C# and VB languages, allowing developers to work more productively at a
higher level of abstraction and to avoid the bugs that stem from working with a large amount of technical details.

This section gives you an overview of the tools that PostSharp give you to automate the implementation and validation of
patterns in your code:

+ Standard patterns on page 8

» Thread safety patterns on page 8

» Implementation of custom patterns on page 9

« Validation of custom patterns on page 10

PostSharp Overview

Standard patterns

PostSharp provides implementations of some of the patterns that are the most commonly found in .NET code bases:

» INotifyPropertyChanged: see INotifyPropertyChanged on page 79.
» Parent/child relationships: see Parent/Child Relationships on page 93.

» Undo/redo: see Undo/Redo on page 107.

+ Code contracts: see Contracts on_page 123.

» Logging: see Walkthrough: Adding Detailed Tracing to a Code Base on page 133.

Example

The following code snippet illustrates an object model where INotifyPropertyChanged, undo/redo, code contracts,
aggregation and code contracts are all implemented using PostSharp ready-made attributes.

[NotifyPropertyChanged]
public class CustomerViewModel

{
[Required]
public Customer Customer { get; set; }

public string FullName { get { return this.Customer.FirstName + " " + this.Customer.LastName; } }

}

[NotifyPropertyChanged]
[Recordable]
public class Customer

{
public string FirstName { get; set; }

public string LastName { get; set; }

[Child]
public AdvisableCollection<Address> Addresses { get; set; }

[Url]
public string HomePage { get; set; }

[Log]
public void Save(DbConnection connection)

{
}

/...
}

[NotifyPropertyChanged]
[Recordable]
public class Address

{
[Parent]
public Customer Parent { get; private set; }

public string Linel { get; set; }
}
Thread safety patterns

Multi-threading is a great demonstration of the limitations of conventional object-oriented programming. Thread synchro-
nization is traditionally addressed at an absurdly low level of abstraction, resulting in excessive complexity and defects.

Yet, several design patterns exist to bring down the complexity of multi-threading. New programming languages have been
designed around these patterns: for instance Erlang over the Actor pattern and functional programming over the
Immutable pattern.

What Is PostSharp

PostSharp gives you the benefits of threading design patterns without leaving C# or VB.
PostSharp supports the following threading models and features:

* Immutable: see Immutable Threading Model on page 178.

» Freezable: see Freezable Threading Model on page 174.

» Actor: see Actor Threading Model on page 182.

Example
The following code snippet shows how a data transfer object can be made freezable, recursively but easily:

[Freezable]
public class Customer
{
public string Name { get; set; }
[Child]
public AdvisableCollection<Address> Addresses { get; set; }
}
[Freezable]
public class Address
{
[Parent]
public Customer Parent { get; private set; }
public string Linel { get; set; }
}
public class Program
{
public static void Main()
{
Customer customer = ReadCustomer("http://customers.org/11234");
// Prevent changes.
((IFreezable)customer).Freeze();
// The following line will cause an ObjectReadOnlyException.
customer.Addresses[0].Linel = "Here";
}
}

Implementation of custom patterns

The attributes that implement the standard and thread safety patterns are called aspects. This terms comes from the
paradigm of aspect-oriented programming (AOP). An aspect is a class that encapsulates behaviors that are injected into
another class, method, field, property or event. The process of injecting an aspect into another piece of code is called
weaving. PostSharp weaves aspects at build time; it is also named a build-time aspect weaver.

PostSharp Overview

PostSharp Aspect Framework is a pragmatic implementation of AOP concepts. All ready-made implementations of patterns
are built using PostSharp Aspect Framework. You can use the same technology to automate the implementation of your
own patterns.

Example

The following code snippet shows a simple [PrintException] aspect that writes an exception message to the console
before rethrowing it:

[Serializable]
class PrintExceptionAttribute : OnExceptionAspect

{

public override void OnException(MethodExecutionArgs args)

{
}

Console.WritelLine(args.Exception.Message);
}

In the next snippet, the [PrintException] aspect is applied to a method:

class Customer

{
public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException]
public void Store(string path)
{

}

File.WriteAllText(path, string.Format("{@} {1}", this.FirstName, this.LastName));

Validation of custom patterns

Not all patterns can be fully implemented by the compiler. Many patterns involve a lot of hand-written code. However, they
are still patterns because we want to follow the same conventions and approach when solving the same problem. In this
case, we have to validate the code against implementation guidelines of the pattern. This is typically achieved during code
reviews, but as any algorithmic work, it can be partially automated using the right tool. This is the job of the PostSharp
Architecture Framework.

PostSharp Architecture Framework also contains pre-built architectural constraints that help solving common design
problems. For instance, the InternalImplementAttribute constraint prevents an interface to be implemented in an

external assembly.

Example

Consider a form-processing application. There may be hundreds of forms, and each form can have dozens of business rules.
In order to reduce complexity, the team decides that all business rules will respect the same pattern. The team decides that
each class representing a business rule must contain a public nested class named Factory, and that this class must have an
[Export(IBusinessRuleFactory)] custom attribute and a default public constructor. The team wants all developers to
follow the convention. Therefore, the team decide to create an architectural constraint that will validate the code against
the project-specific Business Rule Factory pattern.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternvalidation : ScalarConstraint

{
public override void ValidateCode(object target)

{
var targetType = (Type)target;

10

How Does PostSharp Work

if (targetType.GetNestedType("Factory") == null)

{
Message.Write(targetType, SeverityType.Error, "2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType, targetType.Name);
}
/] ...

¥

[BusinessRulePatternBalidation]
public abstract BusinessRule

{
/...

¥

1.2. How Does PostSharp Work

On a conceptual level, you can think of PostSharp as an extension to the C# or VB compiler. Practically, Microsoft's
compilers themselves are not extensible, but the build process can be easily extended. That's exactly what PostSharp is
doing: it inserts itself in the build process and post-processes the output of the compiler.

This topic contains the following sections.

» MSBuild Integration on page 11

» MSIL Rewriting on page 11

MSBuild Integration

PostSharp integrates itself in the build process thanks to PostSharp.targets, which is imported into each project using Post-
Sharp by the NuGet installation script install.ps1. PostSharp.targets adds a few steps to the build process. The principal step
is the post-processing of the compiler's output by PostSharp itself.

MSIL Rewriting

PostSharp post-processes the compiler output by reading and disassembling the intermediate assembly, execute the
required transformations and validations, and rewriting the final assembly to disk.

Although this might sound magic or dangerous, PostSharp's MSIL technology is stable and mature, and has been used by
tens of thousands of projects since 2004. Other .NET products relying on MSIL transformation or analysis include Microsoft
Code Contracts, Microsoft Code Analysis, and Microsoft Code Coverage.

1.3. PostSharp Components

PostSharp is composed of the following components:

11

PostSharp Overview

Component Name

PostSharp Tools for Visual
Studio

PostSharp

PostSharp Common Pattern
Library

PostSharp Model Pattern
Library

PostSharp Model Pattern
Library (Controls)

12

Component Kind

Visual Studio Extension

NuGet Package

NuGet Package

NuGet Package

NuGet Package

Description

This is the user interface of PostSharp. It extends the Visual Studio
editor and provides a new menu, option pages, toolbox windows,
and smart tags. PostSharp Tools for Visual Studio must be
installed on each developer workstation but is not required on
build servers.

This is the core of PostSharp. It contains the PostSharp compiler,
the MSBuild integration (the PostSharp.targets file is added to your
projects upon installation of the PostSharp package), and the
facade library PostSharp.dll, which exposes features to developers:

« PostSharp Aspect Framework allows you to automate the
implementation of other code patterns and address code
repetitions that are specific to your own applications, or
simply that are not available off-the-shelf in a pattern

 PostSharp Architecture Framework allows you to
automate the validation of design pattern implemen-
tations, to enforce design intend, or simply to verify
coding guidelines. The framework allows you to create
constraint classes that encapsulate the validation logic
and that can be applied to code artifacts. The framework
provides tools to analyze the relationships between code
artifacts and have access to the AST of method bodies.

This package contains definitions and aspects that are shared by
other pattern libraries, including:

« Basic definitions for threading aspects.

This package contains the following features:

 NotifyPropertyChanged aspect: see INotifyProperty-

Key Technologies

Component Name Component Kind Description
PostSharp Threading Pattern NuGet Package This package contains all threading aspects and their
Library infrastructure, including:

« Thread dispatching aspects: see Dispatching a Method

PostSharp Diagnostics NuGet Package This package contains the logging aspect. See Walkthrough:
Pattern Library Adding Detailed Tracing to a Code Base on page 133 for details.

1.4. Key Technologies

PostSharp combines several technologies to leverage design pattern automation.

Metaprogramming

Metaprogramming is the writing of a program that analyzes and transforms itself or other programs. PostSharp internally
represents a .NET program as a mutable .NET object model, so PostSharp can be considered a metaprogramming tool for .
NET.

However, general metaprogramming (the ability to perform arbitrary modifications on a program) is a highly complex
discipline. Although it may seem easy to perform simple modifications on simple programs, it is actually much more
difficult to implement non-trivial transformations that work in all cases. Metaprogramming can result in a decrease in
productivity when used improperly and it is very difficult, for application developers who lack specific training in compilers
and metaprogramming, to use it properly.

Since general metaprogramming is too complex and too low level, we need a higher layer of abstraction that makes it
easier and safer to express program transformations. Essential qualities of this abstraction layer would include safe
composition of several transformations on the same declaration and restrictions on changing the program semantics.

Aspect-Oriented Programming fulfills these qualities as a disciplined approach to metaprogramming.

Aspect-Oriented Programming

PostSharp Aspect Framework is built on the principle of Aspect-Oriented Programming (AOP), a well-established
programming paradigm, orthogonal to (and non-competing with) object-oriented programming or functional
programming, that allows to modularize the implementation of some features that would otherwise cross-cut a large
number of classes and methods.

We can confidently say that PostSharp is the most advanced AOP framework for Microsoft .NET.

Static Program Analysis
Static program analysis is the analysis of a program without executing it.

There are two families of static analysis tools:

« Structural static analysis tools analyze the program's declarations and instructions, but do not attempt to
understand the run-time behavior of the program. Microsoft Code Analysis belongs to this category.

13

PostSharp Overview

» Behavioral static analysis tools are based on iterative techniques like abstract interpretation, model checking or
data-flow analysis. Behavioral static analysis is much more complex and time consuming. Microsoft Code
Contracts belong to this category.

PostSharp contains tools for structural static analysis only. These tools consist in complete access of the System.Reflection
model of the assembly being built, navigating through code relationships using the ReflectionSearch facility, and an
expression tree decompiler.

The most important use case for static analysis in PostSharp is when writing aspects, in order to determine how the target
program should be transformed. Any of the static analysis tools can be used to build aspects. This contrasts with other AOP
implementation like Aspect), which defines its own specific language (pointcut language) to select target declarations.

Aspects like NotifyPropertyChangedAttribute or threading models make advanced use of static analysis.

A secondary role for static analysis is architecture validation. This role is marketed as the PostSharp Architecture Framework,

Dynamic Program Analysis

Dynamic program analysis is the analysis of a program during its execution. Dynamic analysis is often used to detect issues
early, before they cause bigger damage. A typical example of dynamic analysis is the one that occurs when an object is cast
to a type: when the safety of the type conversion cannot be proved using static analysis, the type conversion must be
verified at runtime, and an InvalidCastException is thrown when an invalid cast is detected.

PostSharp uses dynamic analysis to check the program against threading models. Since many model properties cannot be
reliably verified at build time, they must be enforced at runtime. For instance, with the Synchronized threading model,

In PostSharp, dynamic analysis is achieved by adding instrumentation aspects to the program.

14

Getting Started: Selecting and Creating Aspects

CHAPTER 2

Getting Started with PostSharp

A PostSharp implementation project is typically composed of three phases, in which three roles typically interact differently
with the product. Each role requires different skills and knowledge. We have created a learning path for each of these roles.
Depending on your team's organization, you may be involved in one or more roles.

Topic Description
Getting Started: Selecting and Creating In the first phase, the team learns about the concepts and abilities of
Aspects on page 15 PostSharp, and identify how it could fit into the application's design and

architecture. The team selects the ready-made aspects that will be used in the
application and, when no ready-made aspects can be used, it creates custom
aspects or architecture rules.

People in this role are typically called architects, technical leads or senior
developers. They must acquire an extensive knowledge of PostSharp and their
decisions affect the whole team's productivity.

Getting Started: Installing and Deploying The next typical step is to deploy PostSharp into your development
PostSharp on page 17 infrastructure and configure licensing. PostSharp works mostly out of the box
for individual developers and small teams, but you may want some planning if

you are responsible for a complex solution.

Getting Started: Using Your team is finally ready to use PostSharp on a daily basis. At this point,

Aspects on page. 17 typically, the team already knows which aspects will be used and when and
how they will be used. As a developer who will use existing aspects, you don't
need to invest a large amount of effort to learn PostSharp upfront. However,
you will need to understand the aspects that have been selected by the team,

and how to apply them to a code base.

2.1. Getting Started: Selecting and Creating Aspects

The first step in the process of adopting PostSharp is typically to understand what the product can do for you and why you
should use (or not use) its features. This activity is typically part of the architecture role.

As you will see, PostSharp offers a set of pre-built aspects implementing some of the most common patterns. As an
architect, you will need to understand what these aspects can do for you and how they could fit and simplify your
architecture.

However, standard patterns are only the top of the iceberg. To cover your specific needs, PostSharp includes construction
kits that allow you to build you own pattern automation, namely the PostSharp Aspect Framework and the PostSharp
Architecture Framework. Determining the need for custom aspects or architecture validation rules is typically also a part of
the architecture role.

15

Getting Started with PostSharp

In a typical team, only a few people must be able to create custom aspects or architecture rules. These people must have a
deeper understanding of PostSharp than the developers who will only use existing aspects and rules. This is why this skill

set is included in the current section.

NOTE

When writing this section, we realized that the current documentation has some serious weaknesses regarding conceptual

and architectural materials. This is why we are also referring to other resources hosted on our web site.

Introduction

Understanding the principles behind PostSharp will give you a foundation to build on. All patterns and techniques used by

PostSharp relate back to this foundation.

Topic Articles

About PostSharp PostSharp Overview on page 7
Requirements and Compatibility on page 33

More About Design Pattern Automation Article: Design Pattern Automation'

More About Aspect-Oriented Programming Aspect-Oriented Programming in Microsoft NET?

Selecting pre-built pattern implementations

PostSharp offers a number of different pre-built patterns. The following documentation will outline how to use each of the

available patterns.

Topic Articles

General patterns Contracts on page 123

User interface patterns Understanding the NotifyPropertyChanged

Multi-threading White Paper: Threading Models for Object-Oriented

Diagnostics Logging on page 133

16

http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
http://www.postsharp.net/aop.net
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf
http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
http://www.postsharp.net/aop.net
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf

Getting Started: Installing and Deploying PostSharp

Creating automation for custom patterns

PostSharp's built-in patterns won't cover all scenarios in your codebase that can benefit from AOP. Learn how to build
custom patterns using the same foundational components as are used for the built-in patterns.

Topic Articles
Aspects Developing Custom Aspects on page 217
Architecture Validation Validating Architecture on page 319

2.2. Getting Started: Installing and Deploying PostSharp

This section describes how to deploy PostSharp in different situations. Read it if you are responsible to integrate process
into your build process.

Topic Articles

Deploying to the Development Environment Installing PostSharp Tools for Visual Studio on page 36

Deploying to the Build Infrastructure Using PostSharp on a Build Server on page 48

Deploying to Production or End-User Devices

Deploying to Large or Regulated Development License Audit on page 40
Environments

2.3. Getting Started: Using Aspects

Using aspects requires much less training than creating new ones. In typical large teams, only a few developers or architects
develop new aspects, while the rest of the team uses existing aspects. This section focuses on the skill set that you need to
acquire if you have to be able to use PostSharp aspects but don't need to create your own.

In this session, we also assume that PostSharp has been properly deployed into your development and build environments.

NOTE

You can of course learn PostSharp as much as you want. The role of this section is to provide a short list of articles to
minimize your learning curve and get you productive as quickly as possible, but this should not stop you from learning
and experimenting more.

17

Getting Started with PostSharp

This topic contains the following sections.

« Installing and upgrading PostSharp
» Working with pre-built patterns
» Working with Patterns

Installing and upgrading PostSharp

Every process has a starting point. Learn how to add PostSharp to your project so that you can get started with improving
your codebase.

Topic Articles

Install PostSharp to your machine

Add PostSharp to a project and keep it up-to-date Installing PostSharp Into a Project on page 36

Working with pre-built patterns

PostSharp offers a number of different pre-built patterns. You will need to learn those that will be used in your application.

Topic Articles

Diagnostics Logging.on page 133

Code Contracts Contracts on page 123

INotifyPropertyChanged INotifyPropertyChanged on page 79

Aggregatable Parent/Child Relationships on page 93

Disposable Walkthrough: Automatically Disposing Children
Objects on_page 98

Undo and Redo Undo/Redo on page 107

Threading Models Writing Thread-Safe Code with Threading

Deadlock Detection Detecting Deadlocks at Runtime on page 209
Dispatching Threads Dispatching a Method to the Ul Thread on page 207

Architecture Validation Restricting Interface Implementation on page 319

18

Getting Started: Using Aspects

Working with Patterns

The following resources are for all aspects. You can save a great amount of time in learning to master them.

Topic Articles
Adding aspects to several declarations Adding Aspects Declaratively Using Attributes on page 150
Resolving Errors Working with_Errors, Warnings, and_Messages on page.75

19

Getting Started with PostSharp

20

What's New in PostSharp 4.1

CHAPTER 3

What's New in PostSharp

PostSharp has been around since the early days of .NET 2.0 in 2004. Since the first version, many features have been added
to make PostSharp the most popular and by far the most powerful tool for aspect-oriented programming and design
pattern automation in .NET.

This chapter contains the following sections:

* What's New in PostSharp 4.1 on page 21

» What's New in PostSharp 4.0 on page 22

* What's New in PostSharp 3.1 on page 23

3.1. What's New in PostSharp 4.1

The focus of PostSharp 4.1 was to broaden the set of supported platforms for both PostSharp, with the addition of Xamarin
and Visual Studio 2015, and improvements in the support of Windows Phone and Windows Store.

PostSharp 4.1 includes the following improvements:

Support for Xamarin

Xamarin has become an inseparable part of the .NET ecosystem and was the number-one feature request of the PostSharp
community. PostSharp 4.1 makes it possible to build applications for iOS and Android using Xamarin.

Note that Xamarin applications must be built using Visual Studio. Xamarin Studio is not supported.
Threading Pattern Library: support for Windows Phone and Windows Store

Threading Pattern Library newly supports Windows Phone, Windows Store and Xamarin. This allows you to create thread-
safe applications for both Windows and Windows Phone (both Silverlight and WinRT) in the same way as for desktop
applications.

21

What's New in PostSharp

Support for Visual Studio 2015

PostSharp Tools for Visual Studio have been almost completely rewritten to take advantage of the new compiler family
"Roslyn" at the heart of Visual Studio 2015. New features include integration with the light bulb (instead of the smart tag),
live code diagnostics and a few refactorings.

PostSharp Assistant

PostSharp Assistant guides you when you are implementing various patterns from Pattern Libraries so that you don't miss
any detail. For instance, it would point at relevant documentation articles or at pieces of code that need to be fixed.

PostSharp Assistant is supported in Visual Studio 2015.

3.2. What's New in PostSharp 4.0

The principal focus of PostSharp 4 was to redesign the Threading Pattern Library from the ground up and make it a real
solution to write thread-safe code with C# and VB. Additionally, we've introduced the undo/redo feature into the Model
Pattern Library. To achieve these objectives properly, we had to implement a good old concept from UML and object-
oriented modeling: aggregation and composition. We introduced significant improvements in the PostSharp Aspect
Framework to support these new features.

PostSharp 4.0 includes the following improvements:

Aggregatable pattern

As it turns out, multiple patterns rely on the notion of parent-child relationships. These concepts are a part of the UML
specification, where it is known as aggregation, but even modern programming languages don't implement the notions.

Disposable pattern

Once we have a notion of parent-child relationship, it is easy to build an aspect that recursively disposes a whole object

Immutable threading model

The Immutable patterns made functional languages popular for its great usefulness in multi-threaded programs. Unfortu-
nately, the concept has traditionally been difficult to object-oriented programming. PostSharp 4.0 provides a pragmatic

22

What's New in PostSharp 3.1

Freezable threading model

Even a well-implemented Immutable pattern can be too strict for some object-oriented scenarios. In this case, the Freezable
patterns may be more suitable. Based on the Aggregatable pattern, the FreezableAttribute aspect makes it possible to

Synchronized threading model

A threading model library could not be complete without it, so we added the SynchronizedAttribute aspect. For details,

Redesign of reader-writer-synchronized, actor, and thread-unsafe threading models

We took the right way in PostSharp 3.0 with threading models, but the vision was not yet fully consistent and the
implementation was only partial. With PostSharp 3.2, we felt we had a better understanding of what we wanted to achieve,
and completely revisited our threading models. Based on the Aggregatable pattern, and based on a consistent object
model, the Threading Pattern Library is now much more powerful and consistent.

Recordable pattern (undo/redo)

The RecordableAttribute aspect, together with the Recorder class, make is possible to implement an undo/redo feature
at the domain level.

Dynamic location imports

To allow to import several fields and properties into a single aspect field (which was not possible using ImportMember-
Attribute, we added the IAdviceProvider interface and the ImportLocationAdviceInstance class.

Aspect repository

The new IAspectRepositoryService service exposes the list of all aspects added to the code model, both using custom
attributes or IAspectProvider, and offer a way to execute validation logic after all aspects have been discovered.

OnlnstanceConstructed advice

The OnInstanceConstructedAdvice custom attribute allows you to define an advice that is executed after the instance
constructor exits.

InitializeAspectinstance advice

The InitializeAspectInstanceAdvice custom attribute allows you to define an advice that is similar to Runtime-
InitializeInstance but passes information about the reason why the aspect is initialized (constructor, clone, deseral-
ization).

NotifyPropertyChanged optimization

Our NotifyPropertyChangedAttribute is four times faster at runtime on average.

3.3. What's New in PostSharp 3.1

PostSharp 3.1 builds on the vision of PostSharp 3.0, but makes it more convenient to use. It also catches up with the C#
compiler features, and add more flexible licensing options.

23

What's New in PostSharp

PostSharp 3.1 includes the following improvements:

Better support for iterator and async methods

When you applied an OnMethodBoundaryAspect to a method that was compiled into a state machine, whether an iterator or
an async method, the code generated by PostSharp would not be very useful: the aspect would just be applied to the
method that implements the state machine. An OnException advice had no chance to get ever fired.

Starting from PostSharp 3.1, onMethodBoundaryAspect understands that is being applied to a state machine, and works as
you would expect.

Improved configuration system

PostSharp 3.1 makes it easier to share configuration across several projects. For instance, you can now add aspects to all
projects of a solution in just a few clicks. This is not just a Ul tweak. This scenario has been made possible by significant
improvements in the PostSharp configuration system:

» Support for solution-level configuration files (SolutionName.pssin), and well-known configuration files (postsharp.

Build-time performance improvement

PostSharp can now optionally install itself in GAC and generate native images. This decreases build time of a fraction of a
second for each project: a substantial gain if you have a lot of projects.

Resolution of file and line of error messages

When previous versions of PostSharp had to report an error or a warning, it would include the name of the type and/or
method causing the message, but was unable to determine the file and line number. You can now double-click on an error
message in Visual Studio and you'll get to the relevant location for the error message.

Indentation in logging

For better log readability, PostSharp Diagnostics Pattern Library now automatically indents log entries when entering and
exiting methods.

Separate licensing of Pattern Libraries

PostSharp Pattern Libraries can now be purchased separately, so you don't have to buy the full PostSharp Ultimate if you
just want to use INotifyPropertyChanged. The licensing system has been modified to support this scenario.

24

What's New in PostSharp 3.0

3.4. What's New in PostSharp 3.0

The focus in PostSharp 3.0 was to deliver more value to customers with less initial learning. Instead of having to learn the
product before being able to build aspects, customers can now choose from a set of ready-made implementations of some
of the most popular design pattern, and apply them to their application from the Visual Studio code editor, using smart
tags and wizards. We also improved support for Windows Phone, Silverlight, Windows Store and Portable Class Library.

PostSharp 3.0 includes the following improvements:

Model Pattern Library

The NotifyPropertyChangedAttribute aspect is a ready-made implementation of the NotifyPropertyChanged design
pattern. The PostSharp.Patterns.Contracts namespace provides code contracts that can validate, at runtime, the value of
a parameter, a property, or a field.

Diagnostics Pattern Library

The LogAttribute and LogExceptionAttribute aspects provide a ready-made and high-performance implementation of a
tracing aspect. They are compatible with the most popular logging framework, including log4net, nlog, and Enterprise
Library.

Threading Pattern Library

PostSharp Threading Pattern Library invites you to raise the level of abstraction in which multi-threading is being
addressed. It provides three threading models: actors (Actor), reader-writer synchronized (ReaderWriterSynchronized-

Attribute) and thread unsafe (ThreadUnsafeAttribute). Additionally, BackgroundAttribute and DispatchedAttribute
allow you to easily dispatch a thread back and forth between a background and the Ul thread.

Smart tags and wizards in Visual Studio

Smart tags allow for better discoverability of ready-made aspects and pattern implementations. When the aspect requires
configuration, a wizard user interface collects the parameters and then generates the proper code.

Better platform support through Portable Class Libraries

Windows Phone, Windows Store and Silverlight are now first-class citizens. All features that are available for the .NET
Framework now also work with these platforms. All platforms are supported transparently through the portable class library.
To provide this feature, we had to develop the PortableFormatter, a portable serializer similar in function to the Binary-
Formatter. All you have to do is to replace [Serializable] with [PSerializable].

Unified deployment through NuGet and Visual Studio Gallery

Installation of PostSharp is now unified and built on top of Visual Studio Gallery and NuGet Package Manager.

Transparency to obfuscators

PostSharp no longer requires specific support from obfuscators, as it no longer uses strings to refer to metadata
declarations.

25

What's New in PostSharp

Deprecation of old platforms

Support for Silverlight 3, .NET Compact Framework, and Mono has been deprecated.

3.5. What's New in PostSharp 2.1

The objective of release 2.1 was to fix a number of 'gray points' of the version 2.0, which added friction to the adoption
path of PostSharp, or even prevented people from using the product.

PostSharp 2.1 includes the following improvements:

Build-time performance improvement

We traded our old text-based compilation engine to a brand new binary writer.

Support for NuGet and improved no-setup experience

Extension. However, because the setup program creates ngenned images, it still provides the faster experience.

Compatibility with obfuscators

PostSharp can now be used jointly, and without limitation of features, with some obfuscators. See [obfuscators] for details.

Extended reflection API

The class ReflectionSearch allows you to programmatically navigate the structure of an assembly: find custom attributes

of a given type, find children of a given type, find members of a given type, find methods referring a given type or
members, or find members accessed from a given method.

Architectural validation

Architecture Validation allows you annotate your code with constraints, which define the conditions in which your APl is
allowed to be used. Constraints are verified at build time and their violation generates a build warning and an error. See

Compatibility with Code Contracts

PostSharp 2.1 can be used jointly with Microsoft Code Contracts. Aspects and contracts can be applied to the same
method.

Support for Silverlight 5.0
Silverlight 5.0 is added to the list of supported platforms.

26

http://www.nuget.org/List/Packages/PostSharp
http://www.nuget.org/List/Packages/PostSharp

What's New in PostSharp 2.0

License server

The license server helps customer manage and deploy license keys. The license server is a simple ASP.NET application that
can be deployed easily on any Windows machine. Its use is optional.

3.6. What's New in PostSharp 2.0

PostSharp 1.0 and 1.5 made aspect-oriented programming (AOP) popular in the NET community. PostSharp 2.0 makes it
mainstream by enhancing convenience (Visual Studio Extension), reliability (dependency enforcement), run-time
performance (optimizer), and features (composite aspects, property- and event-level aspects).

PostSharp 2.0 includes the following improvements:

Visual Studio Extension

As developers start being comfortable with PostSharp and add more and more aspects to their code, two questions
become manifest: How can | know to which elements of code my aspect has been applied? How can | know which aspects
have been applied to the element of code | am looking at? Answering these two questions is precisely what the PostSharp
Extension for Visual Studio 2008 and 2010 has been designed for. It provides two new features to the IDE: an Aspect
Browser tool window, and new adornments of enhanced elements of code with clickable tooltip.

Composite aspects (advices and pointcuts)

Part of the success of PostSharp 1.5 was due to its ability to introduce aspects without appealing to barbaric terms such as
advices and pointcuts. So why to introduce them now? Because they make it easier to develop complex aspects. Thanks to
advices and pointcuts, you can implement complex patterns such as observability awareness (INotifyPropertyChanged) with
just a few lines of code. And just with PostSharp 1.5, you can still write your own aspects without knowing about advices
and pointcuts.

Adaptive code generation

PostSharp 2.0 generates much smarter, faster, and smaller code than before. Let's face it: PostSharp 1.5 was quite dumb. It
generated a lot of instructions that your aspects did not even need. PostSharp 2.0 analyzes your aspect to see which
features are actually being used at runtime, and generates only instructions that support these features. Result: you could
probably not write much faster code by hand.

Interception aspect for fields and properties

PostSharp 2.0 comes with a new kind of aspect that handles fields and properties: LocationInterceptionAspect (in
replacement of OnFieldAccessAspect). The aspect is much more usable than its predecessor; for instance, it is possible to
call the field or property getter from the setter.

27

What's New in PostSharp

Interception aspect for events

The new aspect kind EventInterceptionAspect allows an aspect to intercept all event semantics: add, remove, and fire.

Aspect dependencies

By enforcing aspect dependency rules, PostSharp ensures that aspects behave in a predictable and robust way, even when
multiple aspects are applied to the same element of code. This feature is important for large and complex projects, where
aspects may be written by different teams, or provided by numerous third-party vendors who don't know about each other.

Instance-scoped aspects

In PostSharp 1.5, all aspects had static scope, i.e. there was a single instance of the aspect for every element of code to
which they applied. It is now possible to define aspects that have instance lifetime. For instance, if the aspect is applied to
an instance field, a new instance of the aspect will be created for every instance of the type declaring the field. This is
named an instance-scoped aspect.

Support for new platforms

» Microsoft .NET Framework 4.0

» Microsoft Silverlight 3.0

» Microsoft Silverlight 4.0

» Microsoft Windows Phone 7 (Applications and Games)
» Microsoft .NET Compact Framework 3.5

* Novell Mono 2.6

Build performance improvements

Just starting the CLR and loading system assemblies takes considerable time, too much for an application (such as Post-
Sharp) that is typically started very frequently and whose running time is just a couple of seconds. To cope with this issue,
PostSharp now preferably runs as a background application

3.7. What's New in PostSharp 1.5

PostSharp 1.5 was published 3 years after the start of the project, and was the first release to be really production-ready.

PostSharp 1.5 includes the following improvements:

Aspect inheritance

It is now possible to put an aspect on an interface and have it implicitly applied to all classes implementing that interface.
The same works with classes, virtual or interface methods, and parameters of virtual or interface methods. Read more...

28

What's New in PostSharp 1.5

Reading assemblies without loading them in the CLR

In version 1.0, PostSharp required assemblies to be loaded in the CLR (i.e. in the application domain) to be able to read
them. This limitation belongs to the past. When PostSharp processes a Silverlight or a Compact Framework assembly, it is
never loaded by the CLR.

Lazy loading of assemblies

When PostSharp has to load a dependency assembly, it now reads only the metadata objects it really needs, resulting in a
huge performance improvement and much lower memory consumption.

Build-time performance improvement
The code has been carefully profiled and optimized for maximal performance.

Support for Mono

PostSharp is now truly cross-platform. Binaries compiled on the Microsoft platform can be executed under Novell Mono.
Both Windows and Linux are tested and supported. A NAnt task makes it easier to use PostSharp in these environments.

Support for Silverlight 2.0 and the Compact Framework 2.0

You can add aspects to your projects targeting Silverlight 2.0 or the Compact Framework 2.0.

Pluggable aspect serializer & partial trust

Previously, all aspects were serializers using the standard .NET binary formatter. It is now possible to choose another
serializer or implement your own, and enhance assemblies that be executed with partial trust.

29

PART 2

Deployment and
Configuration

Requirements and Compatibility

CHAPTER 4

Deployment

PostSharp has been designed for easy deployment in typical development environments. Over the years, source control and
build servers have become the norm, so we optimized PostSharp for this deployment scenario.

PostSharp is composed of the following components:

» PostSharp Tools for Visual Studio is the user interface of PostSharp. It extends the Visual Studio editor and
provides a new menu, option pages, and toolbox windows, and smart tags. PostSharp Tools for Visual Studio must
be installed on each developer workstation but is not required on build servers.

* PostSharp Compiler contains the build-time components and the run-time libraries. PostSharp Compiler is
distributed only as a NuGet package. It is typically included in the source repository or is restored before build
from the package repository.

 PostSharp Pattern Libraries provide ready-made implementations of the most common design patterns. They are
distributed as NuGet package and depend on the PostSharp package.

In most situations, PostSharp should work just fine without any advanced configuration. This chapter includes a detailed
description of all deployment and configuration scenarios

4.1. Requirements and Compatibility

You can use PostSharp to build applications that target a wide range of target devices. This article lists the requirements on
development, build and end-user devices.

This topic contains the following sections.

Requirements on development workstations and build servers

The following software components need to be installed before PostSharp can be used:

» Microsoft Visual Studio 2012 or 2013, 2015 except Express editions, but including Community Edition (Visual
Studio is not required on build servers).

* .NET Framework 4.5.

« Windows Vista SP2, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2003 SP2, Windows Server 2003
R2 SP2, Windows Server 2008 SP2, Windows Server 2008 R2 SP1, Windows Server 2012, Windows Server 2012 R2.

33

Deployment

» NuGet Package Manager 2.2 or later.

NOTE

The latest version of NuGet Package Manager will be installed automatically by PostSharp if NuGet 2.2 is not already
installed. This operation requires administrative privileges.

CAUTION NOTE

NuGet Package Manager needs to be configured manually in order to match the requirements of some corporate
environments, especially in situations with a large number of Visual Studio solutions. Please contact our technical support
if this is a concern for your team.

Requirements on end-user devices

The following table displays the versions of the target frameworks that are supported by the current release of PostSharp
and its components.

PostSharp Component .NET Silverlight Windows Phone = Windows Phone Windows Xamarin
Framework (Silverlight) (WinRT) (WinRT)

Aspect Framework 3.5SP1,4.0, 4,5 7,8 8.1 8, 8.1 3.8
45,46

Architecture Framework 3.5SP1,4.0, 4,5 7,8 8.1 8, 8.1 3.8
45,46

Diagnostics Pattern Library 40,4546 - - - - -

Model Pattern Library 40,45 46 - 8 8.1 8, 8.1 3.8
Threading Pattern Library 40,4546 - 8 8.1 8, 8.1 3.8
Threading Pattern Library - 4.0,45,46 - - - - -

Deadlock Detection

NOTE

PostSharp supports Portable Class Library projects that target frameworks shown in the table.

Compatibility with ASP.NET

There are two ways to develop web applications using Microsoft .NET:

» ASP.NET Application projects are very similar to other projects; they need to be built before they can be
executed. Since they are built using MSBuild, you can use PostSharp as with any other kind of project.

» ASP.NET Site projects are very specific: there is no MSBuild project file (a site is actually a directory), and these
projects must not be built. ASP.NET Site projects are not supported.

Additionally, ASP.NET "vNext", which has a different project system than MSBuild, are not supported.

34

Compatibility with Microsoft Code Analysis

Requirements and Compatibility

By default, PostSharp reconfigures the build process so that Code Analysis is executed on the assemblies as they were
before being enhanced by PostSharp. If you are using Code Analysis as an integrated part of Visual, no change of configu-

ration is required.

You request the Code Analysis to execute on the output of PostSharp by setting the ExecuteCodeAnalysisOnPostSharp-

Compatibility with Microsoft Code Contracts

PostSharp configures the build process so that Microsoft Code Contracts is executed before PostSharp. Additionally,
Microsoft Code Contracts' static analyzer will be executed synchronously (instead of asynchronously without PostSharp),

which will significantly impact the build performance.

Compatibility with Obfuscators

Starting from version 3, PostSharp generates assemblies that are theoretically compatible with all obfuscators.

CAUTION NOTE

PostSharp 3 generates constructs that are not emitted by Microsoft compilers (for instance methodof). These unusual
constructs may reveal bugs in third-party tools, because they are generally tested against the output of Microsoft

compilers.

Known Incompatibilities

PostSharp is not compatible with the following products or features:

Product or Feature Reason

Visual Studio 2010 Not Supported

ILMerge Bug in ILMerge

Edit-and-Continue Not Supported

Silverlight 3 or earlier No longer under Microsoft

mainstream support

Silverlight 4 No longer under Microsoft

mainstream support

.NET Compact Framework No support for PCL

.NET Framework 2.0 No longer under Microsoft

mainstream support

Windows Phone 7 No longer under Microsoft

mainstream support
Mono Not Supported
Visual Studio Express Microsoft's licensing policy

Delayed strong-name signing
on cloud build servers

ASP.NET Web Sites

No way to unregister verifi-
cation of strong names

Not built using MSBuild

Workaround

Use PostSharp 3.1.

Use another product (such as SmartAssembly).
Rebuild the project after edits

Use PostSharp 2.1 or Silverlight 5

Use PostSharp 3.1 or Silverlight 5

Use PostSharp 2.1 or Windows Phone 8
Target .NET Framework 3.5 or use PostSharp 3.1

Target Windows Phone 8 or use PostSharp 3.1

Compile on Windows using MSBuild
Use Visual Studio Community Edition

Use normal (non-delayed) strong-name signing or use build
servers where you have administrative access.

Convert the ASP.NET Web Site to an ASP.NET Web
Application.

35

Deployment

4.2. Installing PostSharp Tools for Visual Studio

PostSharp Tools for Visual Studio are PostSharp's user interface. Install them on a developer's computer, does not affect the

1. Download the file PostSharp-X.X.X.exe from http://www.postsharp.net/download.
2. Run the file PostSharp-X.X X.exe.
3. Start Visual Studio.

4. Complete the configuration wizard. You will be asked to enter a license key or to start the trial period. The wizard
may ask the permission to install NuGet Package Manager or to uninstall the user interface of PostSharp.

4.3. Installing PostSharp Into a Project

The compiler components of PostSharp are distributed as a NuGet package named simply PostSharp. If you want to use
PostSharp in a project, you simply have to add this NuGet package to the project.

This topic contains the following sections.

Adding PostSharp to a project

To add PostSharp to a project:
1. Open the Solution Explorer in Visual Studio.
2. Right-click on the project.
3. Click on Add PostSharp.

TIP

Remember that adding PostSharp to a project just means adding the PostSharp NuGet package. If you want to add Post-
Sharp to several projects in a solution, it may be easier to use NuGet to manage packages at solution level. You may need
to select the Include Prerelease option to install a prerelease version of PostSharp.

TIP

NuGet Package Manager can be configured using a file named nuget.config, which can be checked into source control and
can specify, among other settings, the location of the package repository (if it must be shared among several solutions, for
instance; or package sources (if packages must be pre-approved). See N,U,C-ie,t,CQ,rlﬁgl,J,ra,ti,o,n,,Eile,6 and NuGet Configuration
Settings’ for more information.

36

http://www.postsharp.net/download
http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings
http://docs.nuget.org/docs/reference/nuget-config-settings
http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings

Deploying License Keys

Including files in source control

After you add PostSharp to a project, you need to add the following files to source control:
 packages.config
* *psproj
e *pssin

Optionally, you can also include the packages folder in source control. Note that some people advise against this practice. If

Once you have all of these files include in your source code repository any other developer getting that source code from
the repository will have the required information to be able to build the application.

4.4. Deploying License Keys

This section explains how to install PostSharp license keys.

Whether you are using a free or commercial edition, PostSharp requires you to enter a license key before being able to
build a project.

This topic contains the following sections.

» Registering a license key using the user interface on page 37

 Installing the license key in source control on page 39

Registering a license key using the user interface
Registering a license key using the user interface is the prefered procedures for individual developers and small teams.

To register a license key using the user interface:
1. Open Visual Studio.

2. Click on menu PostSharp, then Options.
3. Open the License option page.
4

Click on the Register a license link.

37

Deployment

5. Click on Register a license.

/7
)X Select a license channel.

License Channel

<+ Register a license key
Done

You have a license key and want to register it for use on the current machine,

= Subscribe to a license server

You want to lease licenses from a corporate license server.

= Use PostSharp Express
Start using PostSharp Express free of charge.

< Previous | ‘

6. Paste the license key and click Next .

i,
)X Enter the license key.

License Channel Please paste the license key below:

- 74982~ L .
v i B A e Outes U5 B AR Bsaasem

Ve Aqpsme YABGTLI9ZUILZQWTGDSESQQBQATTONOP3

License Registration

Done

38

Deploying License Keys

7. Read the license agreement and check the option I agree. Click on Next.

7
\/X License Agreement

License Channel This is a license for the product PostSharp Ultimate. You are entering the agreement under

the terms of the Commercial License registered to Test.
License Key

Open License and Support Services Agreement
License Agreement
License Registration

Done

| understand that this software is subject to license audit.

[] Register the license for all accounts on this machine. ‘p'
Recommended for build servers.

< Previous | ‘

TIP
If you are registering the license key on a build server, also check the option Register these settings for all
accounts on this machine.

8. Click Next on the notice regarding license metering.

Installing the license key in source control
It is possible to install the license key in source control, so that these settings are automatically applied during the build.

To install the license the in source control:

1. Create a file named postsharp.config in the root directory of your source repository, or in any parent directory of
the Visual Studio project file (*.csproj or *.vbproj).

2. Add the following content to the postsharp.config file:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration”>
<LicenseValue="000-AAAAAAAAAAAAAAA" />
</Project>

In this code, 000-AAAAAAAAAAAAAAA must be replaced by the license key or the URL to the license server.

39

Deployment

4.4.1. License Audit

Although most software packages are protected with a license activation mechanism, we think that the practice is not
adequate for software development tools:

» Source code is sometimes compiled several years after it has been written, and there is no guarantee that the
license activation server will still be functional.

» Development teams want their tools to be included in the source control repository together with source code,
and want the license key to be deployed the same way.

Instead of license activation, PostSharp relies on asynchronous, fail-safe license audit. PostSharp audits the use of license
keys on each client machine and periodically reports it to our license servers. The mechanism does not require a permanent
network connection, and PostSharp will not fail if the license server is not available.

The licensing client will contact our licensing servers in the following cases:
* When a license is registered on a computer with the user interface.
» Once per week, for every user and every device using PostSharp.

No personally identifiable information is transmitted during this process except the license key. In case we suspect a rough
violation of the License Agreement, we reserve the right to contact the legitimate owner of this license.

TIP

If license audit is not acceptable in your industry, please contact us with a request to disable license audit. Our sales teams
will evaluate your request and answer with a license key containing an audit waiver. Global licenses and site licenses are
not subject to license audit by default. The use of the license server does not implicitly disable license audit. For more

4.4.2. Using PostSharp License Server

If the license audit is not acceptable in your company for regulatory or other reasons, you can consider using the PostSharp
License Server.

PostSharp License Server is a server application that customers can install into on their own premises to measure the
number of concurrent users of PostSharp. The application is based on ASP.NET and Microsoft SQL Server.

This topic contains the following sections.

 Disclaimer on page 40

Disclaimer
Using the license server is optional. Only a few enterprise customers chose to use it. Alternative approaches are:

» To acquire enough licenses for the whole team with some reserve margin.

40

Deploying License Keys

» To use a spreadsheet to keep track of who is using the software.

» To use other software audit products, although this approach is imperfect because PostSharp is not installed on
the developer's machine as a standalone and identificable application.

Design Principles

The license server manages leases of a license to a given user on a given machine (the “client”). Once the lease is provided
to the client, it is cached on the client. Upon client request, the server will return a license key and two dates: the lease end
date and the lease renewal date. The lengths of the lease and of the renewal period are configurable. The client will not
contact the license server before the renewal date, so the client can go offline during the duration of the lease. Then, a new
lease will be reserved for the client. If the client is not able to renew its lead from the server after the lease renewal date, the
client will still be able to use PostSharp until the end of the lease. Then, the use of PostSharp will be prevented. To avoid
loss of productivity due to lack of network connection or server outages, we recommend setting a large delay between the
lease renewal period and the lease period.

If the number of concurrent users exceeds the licensed number, the license administrator will receive an email, and
additional users will be allowed during a grace period. At the end of the grace period, only the licensed number of
concurrent users will be allowed. The duration of the grace period and the number of excess users depend on the kind of
license. By default, it is set to 30% of users and 30 days.

IMPORTANT NOTE

If you have subscribed to a license server, you will need periodic connections to the company network. The licensing client
will automatically try to renew a lease when it comes close to expiration and if the license server is available. Lease
duration and renewal settings can be configured by the administrator of the license server. A connection to the license
server is not necessary while the lease is valid.

Subscribing to the license server

If your company use PostSharp License Server, you can register using a similar procedure as for registering a license key:

To subscribe to a license server using the user interface:
1. Open Visual Studio.
2. Click on menu PostSharp, then Options.
3. Open the License option page.

41

Deployment

4. Click on the Subscribe to a license server link.

/7
)X Select a license channel.

o
<+ Register a license key

License Server You have a license key and want to register it for use on the current machine.

License Agreement
License Registration =+ Subscribe to a license server

Done You want to lease licenses from a corporate license server.

= Use PostSharp Express
Start using PostSharp Express free of charge.

| < Previous | ‘ Next > | | Cancel |

5. Paste the URL of the license server. You can click on the Open hyperlink to verify that the URL is correct and that
you have access to it. Click Next.

/7
)X Register the license server.

License Channel Enter the URL of the license server.

- [httpi//localhost/LicenseServer/

License Agreement Open the license server in a web browser,

After you click Next, this wizard will acquire a lease to test the connection with the license
server.

License Registration

Done

42

Deploying License Keys

6. Read the license agreement and check the option I accept. Click on Next.

/7
)X License Agreement

License Channel This is a license for the product PostSharp Ultimate. You are entering the agreement under
the terms of the Commercial License registered to Test.

License Server
Open License and Support Services Agreement

License Agreement

License Registration

Done

| understand that this software is subject to license audit.

[] Register the license for all accounts on this machine. '\Pp’
Recommended for build servers.

< Previous | ‘ Next = | | Cancel

TIP

If you are registering the license server on a build server, also check the option Register the license for all
accounts on this machine.

43

Deployment

7. You are done.

){ Register a license “

77
\/\ The license has been successfully registered.

Wiezrez Erenre The license has been successfully registered on your computer.
License Server
License Agreement

License Registration

Installing the license settings in source control

It is possible to subscribe to the license server using a file stored in source control by using the exact same mechanism as to
register a license key.

To install license settings in source control:

1. Create a file named postsharp.config in the root directory of your source repository, or in any parent directory of
the Visual Studio project file (*.csproj or *.vbproj).

2. Add the following content to the postsharp.config file:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration”x:xmlns="http://schemas.postsharp.org/1.0/configuratio
<LicenseValue="http://server/path"/>
</Project>

In this code, http.//server/path must be replaced by the URL to the license server.

4.4.3. Installing and Servicing PostSharp License Server

This topic covers PostSharp License Server from the point of view of the system administrator and license administrator.

We designed our license server to help our customers, not to enforce our license agreements. The application is not
obfuscated, it uses a clear SQL database and provides the ability to workaround issues by canceling leases or purging
tables.

This topic contains the following sections.

44

Deploying License Keys

System Requirements
PostSharp License Server is an ASP.NET 4.0 application backed by a Microsoft SQL database.
It requires:

» Windows Server 2003 or later with Internet Information Services installed.

» Microsoft SQL Server 2005 or later (any edition, including the Express edition).
If the license server can be configured with a sufficiently long lease renewal period, there is no need to deploy the
application and its database in high-availability conditions. You need to plan that the amount of time between the lease
renewal and the lease end is larger than the longest expected outage. Frequent backups are not critical unless usage

information is required for accounting purposes in case of pay-as-you-use licenses, where the Export Logs feature is
required.

CAUTION NOTE

Deploying the ASP.NET application to several machines is not supported because the lease algorithm uses application
locking instead of database locking.

Installing PostSharp License Server

The setup procedure is simple but must be performed manually.
To install PostSharp License Server, you will need administrative access on a Windows Server machine and the permission to
create a new database.

To install PostSharp License Server:

1. Download the latest version of PostSharp License Server from the PostSharp website. For version 3.1.44, the URL
is http://www.postsharp.net/downloads/postsharp-3.1/v3.1.44/SharpCraftersLicenseServer-3.1.44.zip. You can open

NOTE

It is not necessary that the version of PostSharp License Server exactly matches the version of PostSharp. You do
not have to upgrade PostSharp License Server as long as the license keys you want to use are compatible with
the server version.

2. Using Internet Information Services (IIS) Manager, configure a new web application whose root is the folder
containing the file web.config.

3. The application pool should be configured to use ASP.NET 4.0.

4. Configure the authentication mode of the web application: disable Anonymous Authentication, and enable
Windows Authentication.

5. Create an MS SQL database (the free MS SQL Express server is supported).

45

http://www.postsharp.net/downloads/

Deployment

Execute the script CreateTables.sql in the context of this database. The file is located in the zip archive of the
license server.

Set up security on this database so that the user account under which the ASP.NET application pool is running
(typically NETWORK SERVICE) can access the database.

Edit the file web.config:

a.

configuration/connectionStrings: Correct the connection string (server name and database name) to
match your settings.

configuration/system.net/mailSettings: Set the name of the SMTP server used to send warning
emails.

configuration/applicationSettings: this section contains several settings that are documented inside
the web.config file. The most important settings are the email addresses for shortage notifications and
the duration of leases duration and renewal delay.

configuration/system.web/authorization: Set up security of the whole application to restrict the
persons who are allowed to borrow a license. Optional.

configuration/location[@path="'Admin']/system.web/authorization: Specify who has access to the
administrative interface of the application. Optional.

Installing a license key

Before developers can start using the license server, you need to install a license key.

To install a license key into the license server:

46

Open the home page of the license server using a web browser.

Click on the link Install a new license.

Paste the license key and click on button Add.

calhost.

U Favorites | 8 Add License — SharpCrafter

SharpCrafters License Server

License key:

G Local intranet | Protected Mode: G fi v Riex -

Deploying License Keys

Testing the license server

If you have installed the license server at the address http://localhost/PostSharpLicenseServer, you can test it opening the
URL http://localhost/PostSharpLicenseServer/Lease.ashx?product=PostSharp30&user=me&machine=other using Firefox or
Chrome. If the license acquisition was successful, the browser will display the license key and the duration of the lease. You
can also then see the resulting allocation on the home page http;//localhost/PostSharpLicenseServer, and cancel the lease.

Displaying license usage

PostSharp License Server makes it easy to know how many people are currently using the product, and to display historical
data.

Overview of installed license keys and current number of leases

SharpCrafien Lx =
£ httpi//localhost/SharpCrstersLicensebenell/ | B[4 X fing. o -
i Favarites | @ SharpCrarers License Senver Fii =40 B - (% mh v Bagew Sefetyw Tock= @
SharpCrafters License Server
{ SHARPCRAFTERS
s NN SHATohe o posean:

Licenses Installed

Licenseld Product License Type Max Number of Users Current Number Of Users

19606 Postsharp20 Commercial 50 a4 Detall History

Install a new license

& Loalirtranet | Protected Made OSF v R0 v
Detail of leases
Lease Detain — =
| htzpiocalhost SharpCrefterslicenselerveZl /Adming Details aspaTid= 19606 -] 42| x Bing o o-
i Favorites | @ Lease Detmls — SharpCrafters License Server Bl =5 E) v [s v Pagev Safetyv Tookw v

SharpCrafters License Server

THE CREATERE OF POSTEHARP

S‘.{EHAHPCRAFES'

Current leases on license 19606

Back

User Authenticated User Machine Start Time (UTC) End Time (UTC)

GARY.TURNER CONTOSONGARY.TURNER DESKTOP-f2a1 2011-01-27 0700:00 2011-03-13 070000 Cancel
WIM.MARTINEZ CONTOSONWMMARTINEZ DESKTOP-5a2f 2011-02-21 07:00:00 2011-03-14 0700:00 Cancel
WILLIAMDAVIS CONTOSOVWILLIAM.DAVIS DESKTOP-1f18 2011-02-21 07:00:00 2011-03-14 07:00:00 Cancel
DAVID.RAHM CONTOSOADAVID.RAHM DESKTOP-t4b2 2011-03-03 07:00:00 2011-03-14 07:00:00 Cance|
BOBBIESHERMAN CONTOSONBOBBIESHERMAN DESKTOP-73d3 2011-03-03 07:00:00 2011-03-14 070000 Cancel
TEREMY. THOMPSON CONTOSOVEREMY. THOMPSON DESKTOP-6465 2011-03-03 0700:00 2011-03-14 070000 Cancel
HUBERT.NUNMNALLY CONTOSOAHUBERT.NUNMALLY DESKTOP-e995 2011-03-03 07:00:00 2011-03-14 07:00:00 Cancel

i Localintranet | Protected Made: 57 v RI0% v

47

Deployment

History of license usage. The figure demonstrates a 30-day, +30% grace period.

[vpoimccstanshasts

y Favorites | @ hitpy/localhaet/SharpCrafterst icensel Fi =) B v 7 s v Bagew Sefetyw Tookw e

SharpCrafters License Server

TGRS OF POSTEHARF

‘&”&HAHPCHAFI‘EHS

License 19606: 90-Days Usage History Back

30 days | 90 days | 180 days | 365 days

& Localirtranet | Protected Made G3F v R0x -

Canceling leases

You can cancel a lease from the lease list by clicking on the Cancel hyperlink. Note that canceling a lease on the server does
not cancel the lease on the client. It is not possible to cancel leases on the client.

Maintenance

The license server is designed to keep a history of all leases. Therefore, it can grow indefinitely, depending on the number
of users and lease duration. It is safe to delete all records from the Lease table at any time, unless these records are

necessary for accounting purposes.

Using SQL Agent, you can schedule a job that purges old records of the Lease table:

DELETE FROM [dbo].[Leases] WHERE EndTime < DATEADD(day, -90, GETDATE());

4.5. Using PostSharp on a Build Server

PostSharp has been designed for frictionless use on build servers. PostSharp build-time components are deployed as NuGet
packages, and are integrated with MSBuild. No component needs to be installed or configured on the build server, and no

Installing a License on the Build Server

The License Agreement specifies that build servers don't need their own license. PostSharp will not attempt to enforce
licensing if it detects that it runs in unattended mode. PostSharp uses several heuristics to detect whether it is running
unattended. These heuristics include the use of Environment.UserInteractive, checking Process.SessionId (from

Windows Vista, all processes running in session 0 are unattended), or checking the parent process.

48

Using PostSharp on a Build Server

If this check does not work for any reason, you may use the license key of any licensed user for the build server. This will not
be considered a license infringement. However, it is better to report the issue to our technical support so that we can fix the
detection algorithms.

4.5.1. Restoring Packages at Build Time

NuGet Package Manager has the ability to restore packages from their repository during the build. This allows teams to
avoid storing NuGet packages in source repository.

You can restore the PostSharp package at build time as long as the package is restored before MSBuild is invoked to build
the project.

The reason is that PostSharp modifies the project file (csproj or vbproj, typically) to include the file PostSharp.targets. This file
is required during the build, otherwise PostSharp is not inserted in the build process, and simply does not work. Because of
the design of MSBuild, PostSharp.targets must be present when the build starts, so it cannot be restored from the package
repository during the same build. The build that triggers the package restore will fail, and subsequent builds will succeed.

This behavior is acceptable on developer workstations. However, on build servers, you must ensure that the packages are
restored before the project is built.

NuGet 2.7 and Later

To restore the PostSharp package at build time, add a preliminary step before building the Visual Studio solutions or
projects. This step should execute the following command:

NuGet.exe restore MySolution.sln

In this command, where MySolution.sln is the solution for which packages have to be restored.

Please look at the NuGet Command-Line Reference® for details.

NuGet 2.0 to 2.6

To restore the PostSharp package at build time, add a preliminary step before building the Visual Studio solutions or
projects. This step should execute the following command for every packages.config file in your solution (typically, for every
project):

NuGet.exe install packages.config -OutputDirectory SolutionDirectory\packages

In this command, where SolutionDirectory\packages is the directory where the NuGet packages should be installed.

Please look at the NuGet Command-Line Reference® for details.

TIP

You can use PowerShell or MSBuild to execute the nuget install command to all packages.config files in your source
repository.

49

http://docs.nuget.org/docs/reference/command-line-reference
http://docs.nuget.org/docs/reference/command-line-reference
http://docs.nuget.org/docs/reference/command-line-reference
http://docs.nuget.org/docs/reference/command-line-reference

Deployment

4.5.2. Using PostSharp with Visual Studio Online

When hosting your source code on Visual Studio Online, adding PostSharp to the codebase is no different than for any
other build server situation.

Visual Studio Online offers an online build server environment. Once configured the build server will retrieve your source
code and compile the application for you. As part of this build process you will want any PostSharp aspects to be added in
the same way that it occurs on your local development machine. To do this you will have to ensure that your codebase

Once you are able to successfully run the build you will want to review the build logs and verify the artifacts that were
created by that build. Here's how you can verify that your build included your PostSharp aspects.
Verifying Visual Studio Online Builds

1. To review the build logs, open the successful build.

All build definitions

Completed

v @ PostSharpWiiting Sample_20141024.2
¢ Open pWriting.Sample_20141024.1

Open drop :O|T

Open
@ Retain indefinitely

Set build quality to *

X Delete

2. Select the Diagnostics tab.

Summary log Diagnostics

Download drop as zip F‘.Et' X <No quality assigned> =

50

http://msdn.microsoft.com/en-us/library/ms181716.aspx
http://msdn.microsoft.com/en-us/library/ms181716.aspx

Upgrading from a Previous Version of PostSharp

3. Ensure that the installation of PostSharp and any PostSharp patterns libraries that you used.

Pull sources from Git repo ~

Cloning repository "https://postsharpwriting.visualstudic.com/Del

20 object(s) were downloaded with a total size of 0.01 MB.

Checking out branch refs/heads/master.

Setting the source get version of the build to LG:refs/heads/mast:
Associate the changesets that occurred since the last goed build ~
Try

Compile, Test and Publish

Run optional script before MSBuild

Run MSBuild ~
Cilightrail\Services\Mms\BuildProvisioner\Tools\nuget.exe re

stalling 'PostSharp 4.0.34",

Installing 'PostSharp.Patterns.Common 4.0.34".
Installing 'PostSharp.Patterns.Diagnostics 4.0.34",
Installing 'PostSharp.Patterns.Threading 4.0.34",
Successfully installed *PostSharp.Patterns.Threading 4.0.34".
Successfully installed "PostSharp.Patterns.Diagnostics 4.0.34'.
Successfully installed ‘PostSharp.Patterns.Common 4.0.34".
Successfully installed "PostSharp 4.0.34"
C:\Program Files (x86)\MSBuild\12.0\bin\amd&4\MS5Build.exe
/p:SkiplnvalidConfigurations=true /m /p:OutDir="C:\a\bin\\" /
/di:WorkflowCentralLogger,"C:\lightrail\Services\Mms\BuildPr
utDirectoryltems,GetTargetPath: TFSUr = httpsy//postsharpwriti
b832-ccde35abi7 73, vstis:///Build/Build/4" /p:BuildLabel="Pos

If you see entries like these in your build log you know that the build process correctly downloaded the PostSharp
components.

If you do not see any entries for the downloading of the PostSharp components you will want to ensure that the
packages.config file is correctly included in your source code repository and that the PostSharp dependencies are
referenced in the appropriate projects.

4.6. Upgrading from a Previous Version of PostSharp

This section explains how to upgrade from a previous version of PostSharp.

This topic contains the following sections.

version of PostSharp.

Upgrading PostSharp Tools for Visual Studio

After you install PostSharp Tools for Visual Studio, you will still be able to open solutions that use older versions of Post-
Sharp.

PostSharp Tools for Visual Studio are backward compatible with older versions of PostSharp. However, several versions of
the extension cannot coexist. Therefore, installing a new version of PostSharp Tools will uninstall the previous version.

51

Deployment

the installation package.

CAUTION NOTE

Upgrading PostSharp Tools for Visual Studio does not implicitly upgrade your source code.

Upgrading solutions from PostSharp 3 or later

CAUTION NOTE

Before you upgrade your project to a different major release of PostSharp, check that the new version still supports your
version Visual Studio and the target framework of your application. Check the release notes for an accurate compatibility
list of the specific version you are installing.

You can use several versions of PostSharp side-by-side on the same machine. However, it is recommended that you use the
same version in all projects of the same solution.

To upgrade a solution from PostSharp 3 or later:
1. Open the Solution Explorer in Visual Studio.

Right-click on the solution.

Click on Manage NuGet Packages for Solution.

Find the PostSharp package and click on Update.

2
3
4. Click on Updates.
5
6. Select all projects, click OK.
7

Repeat the operation for all PostSharp.Patterns.* packages.

Upgrading large repositories

If your source contains a large number of solutions, upgrading manually using NuGet may be too labor intensive. In this
situation, it is better to use our upgrade PowerShell script.

To upgrade a large number of solutions with the PowerShell script:
1. Download the following Git repository: https://github.com/sharpcrafters/PostSharp.Utilities. You can download it

manually from the web page or execute the following command:

git clone https://github.com/sharpcrafters/PostSharp.Utilities.git

2. Follow instructions on in README.md.

CAUTION NOTE

This script does not support other platforms than the .NET Framework and does not support PostSharp Pattern Libraries.

Upgrading solutions from PostSharp 2

Every project can have only references to a single version of PostSharp. This applies both to direct and indirect references.
The PostSharp 3 or later compiler is not backward compatible with PostSharp 2, and PostSharp 3 will refuse to compile

52

http://www.postsharp.net/download
https://github.com/sharpcrafters/PostSharp.Utilities

Uninstalling PostSharp

projects that have a reference to PostSharp 2. Therefore, you will typically use a single version of PostSharp in every

solution.

You can upgrade projects from PostSharp 2 to PostSharp 3 by adding the PostSharp NuGet package to these projects.

To upgrade a solution from PostSharp 2:

1.

2
3.
4
5

Open the Solution Explorer in Visual Studio.
Right-click on the solution.

Click on Manage NuGet Packages for Solution.
Click on Online.

In the search box, type PostSharp. You may want to select the Select prereleases option (instead of the default
Stable Only) to install a pre-release version of PostSharp.

Find the PostSharp package and click on Install.
Select all projects, click OK.

Although PostSharp 3 or later is mostly backward compatible with PostSharp 2 at source-code level, you may need to
perform small adjustments to your source code:

Every occurrence of the _Assembly interface has been replaced by the Assembly classes. You may have to change
the signatures of some methods derived from AssemblyLevelAspect.

Aspects that target Silverlight, Windows Phone or Windows Store must be annotated with the PSerializable-
Attribute custom attribute.

PostSharp Toolkits 2.1 need to be uninstalled using NuGet. Instead, you can install PostSharp Pattern Libraries 3
from NuGet. Namespaces and some type names have been changed.

4.7. Uninstalling PostSharp

If you make the decision to remove PostSharp from your project we are sorry to see you leave.

There are two scenarios you may want to consider: removing PostSharp from individual projects or solutions, and removing
PostSharp from Visual Studio.

This topic contains the following sections.

Removing PostSharp from your projects and solutions

Here are some steps to follow to remove PostSharp from your project.

53

Deployment

CAUTION NOTE

As you'll see in these steps, removing the product from your project is not that difficult. However, replacing the aspects
that you were using will be a much more arduous task that will require a great deal of planning.

You will need to replace the aspects by hand-written source code that implement the same behaviors. Depending on how
intensively you used PostSharp, your codebase could significantly increase as a result of stopping using PostSharp. Other
products and frameworks that pretend to implement aspect-oriented programming actually only provide a small subset of
the features you are got used to with PostSharp.

Because every project will use aspects differently, and some will have custom aspects, we are unable to give procedural
advise on how to replace specific aspects.

To remove PostSharp from a project, you simply have to remove all PostSharp packages from it. The following procedure
demonstrates how to remove PostSharp for the whole solution.
Removing PostSharp with NuGet Packages Manager for Solution

1. Open the Package Manager for Solution windows

TOOLS TEST ARCHITECTURE POSTSHARP RESHARPER AMNALYZE WINDOW HELP
Windows Phone 8.1 -

Attach to Process... Cirl+ Alt+P

Connect to Database...

Connect to Server...

it %

o

™ Add SharePoint Connection... 5" /)

tFramework="netd45" />

targetFramework="net45" />

,3-'? Code Snippets Manager... Ctrl+ K, Ctrl+B r‘getFl‘amet-ior‘k:"net45" /)
Choose Toolbox lkems...

Connect to Windows Azure...

SQL Server ¥

Add-in Manager...

MuGet Package Manager L Package Manager Console
[Edensions and Updates... [::] Manage NuGet Packages for Solution...
Create GUID & Package Visualizer
PreEmptive Dotfuscator and Analytics £} Package Manager Settings
Spy++ (x04)
ek WCF Service Configuration Editor
External Tools...

Import and Export Settings...
Customize...
L} Options...

2. Select the All tab from the left side of the window.

PostSharpWriting.5ample.sin - Manage Nu

4 Installed packages |

¥ Online

b Updates

54

Uninstalling PostSharp

3. Find the PostSharp packages in the list and select one of the PostSharp Library packages. Click the Manage
button.

PostSharpWriting.Sample.sin - Manage NuGet Packages

4 Installed packages Sort by: Name: Ascending -
All PostSharp Common Pattern Library
_ e Ready-made implementation of the Aggregatable (parent-
I Online child) pattern
b Updates
P PostSharp Diagnostics Pattern Library Manage |
. An official PostSharp Pattern. Adds detailed 3

tracing to any method without medifying y...

PostSharp Threading Pattern Library
% Official threading aspects from the makers of PostSharp.
Implements locking models (thread unsafe, reader-writer syn...

PostSharp
. Eradicates boilerplate code and enables application developers
to automate design pattern implementation and deliver high...

NOTE

Start by selecting the PostSharp Library Packages and working in reverse dependency order. This will result in
the main PostSharp package being the last one that you select to remove.

4. Ensure that you uncheck all of the projects listed in the window and click OK.

Select Projects =

Install the package into the selected projects. Clear a selection to
uninstall the package from that project.
4 []lg]Solution 'PostSharpWriting.Sample'
[[£#] PostSharpWriting.Sample

QK | Cancel |

5. Repeat steps 3 and 4 for each of the PostSharp packages that show in the Packages Manager for Solution
window.

6. To verify that all of the PostSharp packages have been removed from your codebase, ensure that there are no
PostSharp packages listed in the Packages Manager for Solution window.

Once you have removed all of the PostSharp packages from your codebase it is most probable that your application will no
longer compile. Compilation errors will be registered where PostSharp aspect attributes exist in the codebase as well as
where custom aspects were written. You will need to remove these entries from your codebase to get it to compile again.

Simply deleting the offending code can accomplish this. You must remember that in the process of removing PostSharp
from your codebase these errors indicate locations where you are removing functionality from the codebase as well. If the
functionality that is being removed is required by the application you will need to determine how to provide that
functionality in the codebase going forward. This is the most difficult part of removing PostSharp from yoru codebase.

55

Deployment

Because aspects can be used in a multitude of different manners, and custom aspects can be created for any number of
different uses, there is no practical way to tell you how to replace the functionality being lost.

NOTE

You now have removed PostSharp from your codebase. At this point you are able to continue on your development effort
without making use of PostSharp.

If you would like to remove PostSharp from Visual Studio, proceed with the following steps.

Removing PostSharp from Visual Studio

Before you uninstall PostSharp Tools for Visual Studio, we suggest you remove the compiled images.

Removing Native Compiled Images
1. Open the Visual Studio Options dialog.

TOOLS = TEST ARCHITECTURE POSTSHARP RESHARPER
Windows Phone 8.1 L2
Attach to Process... Ctrl+Alt+P
Connect to Database...

Connect to Server...

Add SharePoint Connection...

ok - %

28 Connect to Windows Azure...

SQL Server 2
Code Snippets Manager... Ctrl+ K, Ctrl+B
Choose Toolbox Items...
Add-in Manager...
NuGet Package Manager »
[-3 Extensions and Updates..,
Create GUID
PreEmptive Dotfuscator and Analytics
Spy++ (x64)
& WCF Service Configuration Editor
External Tools...
Irmport and Export Settings...
Customize...
ol Options...

56

2. Expand the PostSharp node in the tree and select the Compiled Images node.

Cptions @Iﬂ‘
Search Options (Ctrl+E) b Installing compiled images of PostSharp can significantly improve build time.
B hidiizes T Co!'npwled images are installed separately for every version of PostSharp and can be
uninstalled at any time.
I- Performance Tools
b Database Tools Compiled images are installed for following versions of PostSharp:
I» F# Tools 32190
b HTML Designer I 40290
I MuGet Package Manager 40340
I> Office Tools
4 PostSharp
Editor L
Advanced i
License Ask to install compiled images during compilation
CHP
Error Reporting
Compiled Images i
I» ReSharper
I> SpecFlow
I SQL Server Tools il
[OK] [Cancel
&

3. Select an entry in the listbox and click Uninstall.

[E2R=s=)

Cptions
Search Options (Ctrl+E) r Installing compiled images of PostSharp can significantly improve build time.
b IntelliTrace n Comp\led images a_re installed separately for every version of PostSharp and can be
uninstalled at any time,
I Performance Tools
I Database Tools Compiled images are installed for following versions of PostSharp:
b FS Took
b HTML Designer I 40290
> MuGet Package Manager 40340
I> Office Tools
4 PostSharp
Editor L
Advanced r
License Ask to install compiled images during compilation
CEP
Error Reporting
Compiled Images i
I ReSharper
I> SpecFlow
I SQL Server Tools il
[OK J [Cancel]

Uninstalling PostSharp

4. Follow the wizard to uninstall the compiled images for the selection you made. There are no choices to be made,
simply click Next and Finish until the wizard is completed.

NOTE

You will need to perform the previous steps for each of the versions listed in the PostSharp Compiled Image

page in the Options dialog.

The next step is to remove PostSharp from Visual Studio.

Uninstalling the PostSharp Tools for Visual Studio

1.

Open the Extensions and Updates window.

57

Deployment

2. Select the All tab on the left of the window.

-
4 Installed

Controls

Samples
Templates
SDKs
Tools

b Online

b Updates (7)

3. Find the PostSharp entry in the middle of the window, select it and click the Uninstall button.

.
4 Installed Sort by: Name: Ascending -
AL @ Microsoft ASP.NET and Web Tools “
Controls Provides the latest Web Developer Tools for ASP.NET
Samples
Templates
<DK: Microsoft Visual Studio ASP.NET MVC 5 Scaffolding
Microsoft Visual Studic ASP.MNET MVC 5 Scaffolding
Tools
B Online

'e NuGet Package Manager for Visual Studio 2013
A collection of tools te automate the precess of downloading, installing,
upgrading, configuring, and removing packages from a VS Project.

PostShar

PostSharp boosts productivity, raises quality and

b Updates (7]

eradicates boilerplate. PostSharp is a leading tool for d...

4. Click 'Yes' to confirm that you want to uninstall the PostSharp extension.

Microsoft Visual Studio [

ii Are you sure you want to uninstall PostSharp?

NOTE

You will need to restart Visual Studio to complete uinstalling the PostSharp extension.

Finally, you can remove the temporary files created by PostSharp. These files would be recreated as necessary the next time
you run PostSharp.

Other than occupying disk space, there is no impact of not removing these files.

58

Deploying PostSharp to End-User Devices

Cleaning temporary files
1. Open Windows Explorer and navigate to C:\ProgramData\PostSharp.

@uv| » Computer » Boot Partition (C:) » Program

Organize = Include in library - Share with « Bu

NuGet * Name
NVIDLA
. 3042

NVIDIA Corporation

3129
Package Cache

3219
PostSharp

40.29

PreEmptive Solutions
4030

4.0.34
reqid.1991-06.com.microsoft
[l . i Roshyn
reqid.1995-08.com.techsmith —

Qualcomm Atheros

2. Select the C:\ProgramData\PostSharp folder and delete it.

4.8. Deploying PostSharp to End-User Devices

Although PostSharp is principally a compiler technology, it contains run-time libraries that need to be deployed along with
your application to end-user devices. These libraries are the ones included in the lib sub-directory of the NuGet packages
for the relevant target framework.

These run-time libraries can be distributed to end-users free of charge. However, the build-time parts of PostSharp cannot
be redistributed under the terms of the standard license agreement.

Besides including these run-time libraries, no other action or configuration is required.

59

Deployment

60

Configuring Projects in Visual Studio

CHAPTER 5
Configuration

For most use cases, PostSharp does not require any custom configuration. PostSharp gets its default configuration from
three sources:

» MSBuild integration. PostSharp gets most of its configuration settings directly from the parent MSBuild project.

* NuGet integration. Some PostSharp plug-ins delivered as NuGet packages may modify PostSharp configuration
files during installation.

» PostSharp Tools. When adding aspects and policies from Visual Studio, PostSharp may automatically modify
some configuration files.
Even if most configuration is correct by default, you may want to understand the configuration system to troubleshoot
configuration and installation issues, or simply to implement more advanced configuration scenarios.

PostSharp can be configured using the Visual Studio user interface, by editing MSBuild project files, or by editing PostSharp
configuration files.

5.1. Configuring Projects in Visual Studio

PostSharp accepts several configuration settings such as the version and processor architecture of the CLR that is used at
build time, the search path of dependencies, and whether some features are enabled.

Although the default configuration is appropriate for most situations, you may have to fine-tune some of them to cope with
particular cases.

Most common properties can be edited directly from Visual Studio using the PostSharp project property page.

This topic contains the following sections.

Opening PostSharp project properties tab

To open the PostSharp project property page in Visual Studio
1. Open the Solution Explorer.

2. Right-click on the project then select Properties at the bottom of the menu.

3. Select the PostSharp tab.

61

Configuration

The PostSharp property page in Visual Studio

SimpleContactManager 7 X
Application X i
Configuration: | Active (Debug) W Platform: | Active (Any CPU) W

Build
Build Events =

Disable Post Shamp forthis corfiguration: | Default (No) w
Debug

Additional search path for plugins and libraries {semicolon-separated list):
Resources
Services
Settings
Reference Paths Additional properties (semicolon-separated list. for instance: Name 1=Value 1:Name2=Value2):
Signing
Security
Publish Suppress wamings (semicolon-separated list):
Code Analysis

Code Contracts

Treat wamings as emors (semicolon-separated list, """ to escalate all wamings):

PostSharp

Optional Features
Architecture Validation | Default (Enabled) W

Advanced

CLR Version Default (4.0) Buid Host Default (Server) L

Processor Architecture | Default (cB6) v Optimization mode Default (Build Time) »

Understanding configuration settings

Note that all settings are dependent on the selected project configuration (for instance Debug) and platform (for instance

Any CPU).

Setting

Disable
PostSharp

Additional
search path

Additional
properties

Suppress
warnings

Treat
warnings as
errors

Architecture
Validation

CLR Version

62

Description

True if PostSharp should not execute in for the selected configuration and platform, otherwise False. This
setting maps to the MSBuild property SkipPostSharp.

A semicolon-separated list of directories where plug-ins and libraries have to be searched for. This property
can reference other MSBuild properties, for instance: . . \MyWeaver\bin\$(Configuration). All project
references are already added to the search path by default. This setting maps to the MSBuild property
PostSharpSearchPath.

A semicolon-separated list of property definition, for instance: Name1=Valuel;Name2=Value2. This property
can reference other MSBuild properties, for instance: RootNamespace=$(RootNamespace). Several properties

the MSBuild property PostSharpProperties

A semicolon-separated list of warning identifiers that must be ignored, or * if all warnings have to be
ignored. This setting maps to the MSBuild property PostSharpDisabledMessages.

A semicolon-separated list of warning identifiers that must be escalated into errors, or * if all warnings must
be treated as errors. This setting maps to the MSBuild property PostSharpEscalatedMessages.

Enabled if constraints must be validated, otherwise Disabled. The default value is Enabled. For details

The version of the CLR that hosts PostSharp. PostSharp currently only supports the CLR 4.0 so this setting is
disabled. This setting maps to the MSBuild property PostSharpTargetFrameworkVersion.

Configuring Projects Using MSBuild

Setting Description

Processor The processor architecture (x86 or x64) of the process hosting PostSharp. Since PostSharp needs to execute

Architecture the current project during build, the processor architecture of the PostSharp process must be compatible
with the target platform of the current project. The default value is x86, or x64 if the target platform of the
current project is x64. This setting maps to the MSBuild property PostSharpTargetProcessor.

Build Host ~ The kind of process hosting PostSharp, which influences the assembly loading mechanism, compatibility
and performance features. This setting maps to the MSBuild property PostSharpHost. For details, see

Optimization When set to Build Time, PostSharp will use a faster algorithm to generate the final assembly. When set to

Mode Size, PostSharp will use a slower algorithm that generates smaller assemblies. The default value is Build
Time by default, or Size when the C# or VB compiler is set to generate optimal code (typically, in release
builds). This settings maps to the MSBuild property PostSharpOptimizationMode.

5.2. Configuring Projects Using MSBuild

Most configuration settings of PostSharp can be set as MSBuild properties.

NOTE

The integration of PostSharp with MSBuild is implemented in files PostSharp.tasks and PostSharp.targets. These files define
some properties and items that are not documented here. They are considered implementation details and may change
without notice.

This topic contains the following sections.

Setting MSBuild properties with a text editor

To set a property that persistently applies to a specific project, but not to the whole solution, the best solution is to define it
directly inside the C# or VB project file (*.csproj or *.vbproj, respectively) using a text editor.
Adding a project-level MSBuild property using Visual Studio

1. Open the Solution Explorer, right-click on the project name, click on Unload project, then right-click again on
the same project and click on Edit.

2. Insert the following XML fragment just before the <Import /> elements:
<PropertyGroup>

<PropertyName>PropertyValue</PropertyName>
</PropertyGroup>

3. Save the file. If the project was open in Visual Studio, go to the Solution Explorer, right-click on the project name,
then click on Reload project.

63

Configuration

NOTE

Configuring several projects at a time

Instead of editing every project file, you can define shared settings in a file named PostSharp.Custom.targets and store in the
same directory as the project file or in any parent directory of the parent file (up to 7 levels from the project directory).

Files PostSharp.Custom.targets are loaded from the root directory to the project directory, so that files that are closer to the
project directory are loaded after and override files in parent directories.

Thanks to this mechanism, it is possible to define settings that apply to a large set of projects and control the grain of
settings.
Files PostSharp.Custom.targets are normal MSBuild project or targets files; they should have the following content:
<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<PropertyName>PropertyValue</PropertyName>

</PropertyGroup>
</Project>

Setting MSBuild properties from the command line

When an MSBuild property does not need to be set permanently, it is convenient to set is from the command prompt by
appending the flag /p:PropertyName=PropertyValue to the command line of msbuild.exe, for instance:

msbuild.exe /p:PostSharpHost=Native
List of properties

General Properties

The following properties are most commonly overwritten. They can also be edited in Visual Studio using the PostSharp
project property page.

Property Name Description

PostSharpSearchPath A semicolon-separated list of directories added to the PostSharp search
path. PostSharp will probe these directories when looking for an assembly
or an add-in. Note that several directories are automatically added to the
search path: the .NET Framework reference directory, the directories
containing the dependencies of your project and the directories added to
the reference path of your project (tab Reference Path in the Visual Studio
project properties dialog box).

64

http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx

Property Name
SkipPostSharp

PostSharpOptimizationMode

PostSharpDisabledMessages

PostSharpEscalatedMessages

PostSharpLicense

PostSharpProperties

PostSharpConstraintVerificationEnabled

Hosting Properties

Configuring Projects Using MSBuild

Description
True if PostSharp should not be executed.

When set to OptimizeForBuildTime, PostSharp will use a faster algorithm to
generate the final assembly. The other possible value is OptimizeForSize.
The default value of the PostSharpOptimizationMode property is
OptimizeForBuildTime by default and OptimizeForSize when the C# or VB
compiler is set to generate optimal code (typically, in release builds).

Comma-separated list of warnings and messages that should be ignored.

Comma-separated list of warnings that should be escalated to errors. Use *
to escalate all warnings.

License key or URL of the license server.

Additional properties passed to the PostSharp project, in format

Determines whether verification of architecture constraints is enabled. The
default value is True.

Because PostSharp not only reads, but also executes the assemblies it transforms, it must run under the proper version and
processor architecture of the CLR. Additionally, for each version and processor architecture. The following properties allow
to influence the choice of the PostSharp host process.

Property Name

PostSharpTargetFrameworkVersion

PostSharpTargetProcessor

PostSharpHost

Description

Version

of the CLR that hosts the PostSharp process. The only valid value is 4.0.

Processor architecture of the PostSharp hosting process. Valid values are x86 and
x64. Since PostSharp needs to execute the current project during build, the
processor architecture of the PostSharp process must be compatible with the target
platform of the current project. The default value is x86, or x64 if the target platform
of the current project is x64.

Kind of process hosting PostSharp. This setting is usually changed for
troubleshooting only. The following values are supported:

PipeServer means that PostSharp will run as a background process
invoked synchronously from MSBuild. Using the pipe server results in
lower build time, since PostSharp would otherwise have to be started
every time a project is built. The pipe server uses native code and the CLR
Hosting API to control the way assemblies are loaded in application
domains; the assembly loading algorithm is generally more accurate and
predictable than with the managed host.

Native uses the same native code as the pipe server, but the process runs
synchronously and terminates immediately after an assembly has been
processed. For this reason, it does not have the same build-time
performance as the pipe server, but it has exactly the same assembly
loading algorithm and is useful for diagnostics.

Managed is a purely managed application. The assembly loading
algorithm may be less reliable in some situations because PostSharp has
less control over it. Note that this host is no longer being tested and
officially supported.

65

Configuration

Property Name

PostSharpBuild

PostSharpHostConfigurationFile

Diagnostic Properties
Property Name

PostSharpAttachDebugger

PostSharpTrace

PostSharpUpdateCheckDisabled

PostSharpExpectedMessages

PostSharpIgnoreError

PostSharpFailOnUnexpectedMessage

Other Properties
Property Name

PostSharpProject

PostSharpUseHardLink

Description

Build configuration of PostSharp. Valid values are Release, Diag and Debug. Only
the Release build is distributed in the normal PostSharp packages.

A semicolon-separated list of configuration files containing assembly binding
redirections that should be taken into account by the PostSharp hosting process,
such as app.config or web.config.

Description

If this property is set to True, PostSharp will break before starting execution,
allowing you to attach a debugger to the PostSharp process. The default value is

A semicolon-separated list of trace categories to be enabled. The property is
effective only when PostSharp runs in diagnostic mode (see property
PostSharpBuild here above). Additionally, the MSBuild verbosity should be set to

True if the periodic update check mechanism should be disabled, False otherwise.

A semicolon-separated list of codes of expected messages. PostSharp will return a
failure code if any expected message was not emitted. This property is used in unit
tests of aspects, to ensure that the application of an aspect results in the expected
error message.

If this property is set to True, the PostSharp MSBuild task will succeed even if
PostSharp returns an error code, allowing the build process to continue. The
project or targets file can check the value of the ExitCode output property of the
PostSharp MSBuild task to take action.

This property should be used jointly with PostSharpExpectedMessages. If it set to
True, PostSharp will fail if any unexpected message was emitted, even if this
message was not an error. This property is used in unit tests of aspects, to ensure
that the application of an aspect did not result in other messages than expected.

Description

Location of the PostSharp project (*psproj) to be executed by
PostSharp, or the string None to specify that PostSharp should not
be invoked. If this property is defined, the standard detection
mechanism based on references to the PostSharp.dll is disabled.

Use hard links instead of file copies when creating the snapshot for
Visual Studio Code Analysis (FxCop). This property is True by
default.

ExecuteCodeAnalysisOnPostSharpOutput When set to True, executes Microsoft Code Analysis on the output

66

of PostSharp. By default, the analysis is done on the input of
PostSharp, i.e. on the output of the compiler. This property has no
effect when Microsoft Code Analysis is disabled for the current
build.

Working with PostSharp Configuration Files

Property Name Description

PostSharpCopyCodeAnalysisDependenciesDisabled When set to True, PostSharp will not copy the all dependencies of
the current project output into the obj\Debug\Before-PostSharp
directory, which contains the copy of the assembly on which
Microsoft Code Analysis is executed by default. This property has
no effect when Microsoft Code Analysis is disabled for the current
build or when the ExecuteCodeAnalysisOnPostSharpOutput

property has been set to True.

5.3. Working with PostSharp Configuration Files

PostSharp is designed as a modular post-compilation platform, whose functionality can be extended using plug-ins. For
instance, the Diagnostics Pattern Library is implemented as a plug-in. Although writing custom plug-ins is out of scope of
this documentation, you should be able, as a PostSharp user, to understand how plug-ins can be added to a project and
how they can be configured.

This topic contains the following sections.

PostSharp configuration files

The configuration system of PostSharp is based on configuration files.

By default, if you have a project named MyProject.csproj, PostSharp will try to load, from the same directory, a configu-
ration file, named MyProject.psproj. Configuration file is optional. Most projects don't need it.

For instance, the following code is the configuration file of a project using two plug-ins:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"”>
<PropertyName="LoggingBackend"Value="nlog"/>

<UsingFile="..\..\Build\bin\{$Configuration}\PostSharp.Patterns.Diagnostics.Weaver.d11l"/>
<UsingFile="..\..\Build\bin\{$Configuration}\PostSharp.Patterns.Diagnostics.Weaver.NLog.d11l" />

<Multicast>

<LogAttributexmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"AttributeTargetTy

</Multicast>

</Project>

The principal use cases for end-users are the following:

» Adding license keys. See the License on page 69 configuration element for details.

» Configuring properties. See the Property on page 69 configuration element for details.

* Including a plug-in. See the Using on page 69 configuration element for details.

details.

67

Configuration

Sharing configuration between projects

You will often want to share some configuration settings between several projects. A typical example is to add the license
key to all projects of your source code repository.

configuration element.

Well-known configuration files

PostSharp will automatically load a few well-known configuration files if they are present on the file system, in the following
order:

1. Any file named postsharp.config located in the directory containing the MSBuild project file (csproj or vbproj,
typically), or in any parent directory, up to the root. These files are loaded in ascending order, i.e. up from the root
directory to the project directory.

2. Any file named MySolution.pssln located in the same directory as the solution file MySolution.sln .

3. Any file named MyProject.psproj located in the same directory as the project file MyProject.csproj or My-
Project.vbproj .

For instance, the files may be loaded in the following order:
1. c:\src\BlueGray\postsharp.config
2. c:\src\BlueGray\FrontEnd\postsharp.config
3. c:\src\BlueGray\FrontEnd\BlueGray.FrontEnd.Web\postsharp.config
4

c:\src\BlueGray\Solutions\BlueGray.pssln assuming that the current solution file is c:\src\BlueGray\
Solutions\BlueGray.sln.

5. c:\src\BlueGray\FrontEnd\BlueGray.FrontEnd.Web\BlueGray.FrontEnd.Web.psproj assuming that the
current project file is c:\src\BlueGray\Solutions\BlueGray.sln.

Explicit configuration sharing

element to import a configuration file into another configuration file.

Order of processing of configuration files

Elements of configuration files are processed in the following order:
1. License on page 69 elements are loaded.

2. Property on page 69 elements are loaded. Properties are evaluated at this moment, unless they are marked for

~ (o)) (0] N w
wn
D
(@)
—,
(o]
>
=
o]
(0]
(@)
-]
©
Q
(o)
(D
{0))
O
(LN
(0]
3
(]
=)
=]
w0
QO
=
(0]
o)
QO
o
()
o

Extension elements are loaded, but they are not evaluated at this moment.

68

Working with PostSharp Configuration Files

8. Finally, services and other tasks are instantiated and the project is executed.

5.3.1. Configuration File Schema Reference

The basic format of a PostSharp configuration file is as follows:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:x="http://schemas.postsharp.org/1.0/configuration">
<!-- The following elements must appear in the proper order. -->
<LicenseValue="[<license-key>|<url>](;[<license-key>|<url>])*"/>

<SearchPathDirectory="<expression:string>(;<expression:string>)*"ReferenceDirectory="<expression:string>"Condition="<express
<SearchPathFile="<expression:string>(;<expression:string>)*"ReferenceDirectory="<expression:string>"Condition="<expression:t

<UsingFile="<expression:string>"ProjectName="<expression:string>"Condition="<expression:bool>"/>
<SectionTypelLocalName="<string>"Namespace="<string>"/>
<PropertyName="<string>"Value="<expression:string>"Overwrite="[true|false]"Sealed="[true|false]"Deferred="[true|false]"Condi

<ServiceTypeName="<string>"AssemblyFile="<string>"Condition="<expression:bool>"/>

<l-- The rest of the file contains extension elements defined using <SectionType /> elements.
PostSharp itself defines the following extension elements: -->
<Multicast>

<MyMulticastAspectMyAttributeName="<value>"xmlns="clr-namespace:<namespace>;assembly:<assembly>"x:Condition="<expression:t
</Multicast>

<LoggingProfilesxmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"x:Condition="<ex
<LoggingProfileName="<string>"OnEntryLevel="<LogLevel>"OnSuccessLevel="<LoglLevel>"OnExceptionLevel="<LogLevel>"OnEntryOpti

</LoggingProfiles>

</Project>

Schema elements

The configuration file includes these elements, described in detail in subsequent sections in this topic:

Project

This element is the root of the configuration file.

License

This element allows to load one or more license keys.

69

Configuration

Attribute Type Description

Value string Required. A semicolon-separated list of license keys, or an URL to the license server.

SearchPath

This element adds a file or a directory to the list of paths in which PostSharp searches for assemblies and plug-ins.

Attribute Type Description

File string Optional (either File or Directory is required). A semicolon-separated list of files that
expression must be added to the path.

Directory string Optional (either File or Directory is required). A semicolon-separated list of directories
expression that must be added to the path.

ReferenceDirectory string Optional. The directory from which relative paths in File or Directory are resolved.
expression

Condition boolean Optional. true if the element is considered, false if it must be ignored.
expression

Using

This element imports another configuration file into the current project.

Attribute Type Description

File string Required. Name of the file to be imported. Unless the name is qualified by a relative or absolute
expression path, the file will be searched for using the search path. In this case, a file with extension
psplugin or dll will be searched.

ProjectName string Optional. In case that a single dll includes several configurations, specifies which configuration
should be loaded.

Condition boolean Optional. true if the element is considered, false if it must be ignored.
expression

SectionType

This element defines custom sections for the current project. Custom sections can appear under the Project element under
all system-defined elements.

Attribute Type Description
LocalName string Required. The local name of the XML element representing the custom section.

Namespace string Required. The namespace of the XML element representing the custom section.

Property

This element defines a property for the current project.

Attribute Type Description

Name string Required. The property name.

Value string Required. The value that is assigned to the property.
expression

70

Working with PostSharp Configuration Files

Attribute Type Description

Overwrite boolean Optional. true if the element will overwrite any previously-defined property of the same name,
otherwise false. The default value is true.

Sealed boolean Optional. true if an attempt to overwrite this property should result in an error, otherwise false. The
default value is false.

Deferred boolean Optional. true if the expression in the Value attribute should be dynamically evaluated every time
the property value is requested, or false if the expression should be set at the time the property is
defined. The default value is false.

Condition boolean Optional. true if the element is considered, false if it must be ignored.
expression

Service
This element registers a service to the service locator for the current project.

Attribute Type Description

TypeName string Required. The full type name implementing the service. This class must have a public parame-
terless constructor and implement the IService interface.

AssemblyFile string Optional. The path of the assembly defining the service class. If the attribute is not provided, the
expression type will be searched for in the assembly being currently processed by PostSharp.

Condition boolean Optional. true if the element is considered, false if it must be ignored.
expression

Multicast

This element can be used to add aspects, policies or constraints to a project without adding the the C# project as custom
attributes. Adding elements to this section is equivalent to adding them to source code at assembly level.

The Multicast section is convenient to add aspect to several projects from a single file.

5.3.2. Well-Known PostSharp Properties

The following table lists the PostSharp properties that may be set from the MSBuild project. The second column specifies
the name of the MSBuild property that influences the value of the PostSharp property, if any.

Property Name MSBuild Property Name Description
Configuration Configuration Build configuration (typically Debug or Release).
Platform Platform Target processor architecture (typically AnyCPU, x86 or x64).

MSBuildProjectFullPath MSBuildProjectFullPath Full path of the C# or VB project being built.

IgnoredAssemblies Comma-separated list of assembly short names (without
extension) that should be ignored by the dependency
scanning algorithm. Add an assembly to this list if it is
obfuscated, or contains native code, and causes PostSharp
to fail.

71

Configuration

Property Name MSBuild Property Name Description
ReferenceDirectory MSBuildProjectDirectory Directory with respect to which relative paths are resolved.
SearchPath PostSharpSearchPath Comma-separated list of directories containing reference

assemblies and plug-ins.

TargetFrameworkIdentifier TargetFrameworkIdentifier Identifier of the target framework of the current project (i.e.
the framework on which the application will run). For
instance .NETFramework or Silverlight.

TargetFrameworkVersion TargetFrameworkVersion Version of the target framework of the current project (i.e.
the framework on which the application will run). For
instance v4.e.

TargetFrameworkProfile TargetFrameworkProfile Profile of the target framework of the current project (i.e.
the framework on which the application will run). For
instance WindowsPhone.

Other properties are recognized but are of little interest for end-users. For a complete list of properties, see PostSharp.
targets.

Using custom properties

By defining your own PostSharp properties, you can pass information from the build environment to aspects, or to any code
running in PostSharp. Custom PostSharp properties behave exactly as other PostSharp properties, so they can be defined
and read using the same procedures.

5.3.3. Including CLR Objects in Configuration

PostSharp includes a basic facility to describe CLR objects using XML. This facility is used to implement the

sections.

The facility is consciously limited in features. It was only design to provide the same features as custom attributes in
programming languages.

This topic contains the following sections.

 Basic rules on page 72

Basic rules

The basic rules apply to XML serialized objects:

» The local name of the XML element must exactly match the type name of the CLR type. An exception to this rule is
that the Attribute prefix can be omitted.

» The XML namespace of the element must be in the form clr-namespace:namespace;assembly:assembly where
namespace is the namespace of the CLR type and assembly is the name of the assembly declaring the type.

* The type must have a public parameterless constructor.

* Names of XML attributes must exactly match the name of a public field or property of the CLR type.

72

Working with PostSharp Configuration Files

Formatting of attributes
Values of XML attributes, mapping to CLR fields and properties, must be formatted according to the rule relevant for each
type:
Type Formatting
Intrinsics. An intrinsic is any of the following types: bool, char, sbyte, byte, short, ushort, int, uint, long, ulong,
float, double or string. Conversion is done using the Convert class.
Arrays A semicolon-separated list of elements.

Enumerations A list of enumeration member names separated by characters | or +. Names in the list are combined using
the + operator.

Types An assembly-qualified type name.

Object Fields and properties of type Object are not supported.

Specific rules for the Multicast section

* The class must derive from MulticastAttribute.

» The AttributePriority property may not be defined. This attribute is added automatically according to the
order of the XML element in the section.

5.3.4. Using Expressions in Configuration Files

Many attributes of the configuration schema accept expressions, which are dynamically evaluated. Expressions in the Post-
Sharp configuration system work similarly as in XSLT. Substrings enclosed by curled brackets, for instance {$property}, are

interpreted as XPath expressions.

For instance, the following code contains two XPath expressions:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">
<PropertyName="LoggingEnabled"Value="{has-plugin('PostSharp.Patterns.Diagnostics"')}"Deferred="true"/>
<Multicast>
<WhenCondition="{$LoggingEnabled}">
<d:Log/>
</When>
</Multicast>
</Project>

NOTE

In the context of PostSharp configuration files, XPath expressions cannot refer to XML elements or attributes, but only to
variables, functions, operators and constants.

73

http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx

Configuration

Accessing properties

PostSharp properties are mapped to XPath variables.

For instance, the expression {$LoggingEnabled} evaluates o the value of the LoggingEnabled property.

Using operators and functions

You can use any XPath function and operators.

Function Description
has-plugin(name) Evaluates to true if the given plug-in is loaded, otherwise false.
environment(variable) Returns the value of an environment variable.

Mixing expressions and literal strings

An attribute value can contain both text and expressions. This is illustrated in the following example:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">

<PropertyName="A"Value="A"/> <!-- Evaluates to A -->

<PropertyName="B"Value="B;{$A}"/> <!-- Evaluates to B;A -->

<PropertyName="C"Value="C;{$B};{$A}"/> <!-- Evaluates to C;B;A;A -->
</Project>

5.4. Accessing Configuration from Source Code

Even if most configuration settings are consumed by PostSharp or its add-in, it is sometimes useful to access configuration
elements from user code. The PostSharp.dll library gives access to both configuration properties and extension configu-
ration elements.

This topic contains the following sections.

Accessing properties

You can read the value of any PostSharp property by including it in an XPath expression and evaluating it using the
EvaluateExpression(String) method of PostSharpEnvironmentCurrentProject:

string value = PostSharpEnvironment.CurrentProject.EvaluateExpression("{$PropertyName}")

Accessing custom sections

You can get a list of custom sections of a given name and namespace by calling the GetExtensionElements(String,
String) method of PostSharpEnvironmentCurrentProject:

74

http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx

Working with Errors, Warnings, and Messages

IEnumerable<ProjectExtensionElement> elements =
PostSharpEnvironment.CurrentProject.GetExtensionElements("MyElement", "uri:MyNamespace");

5.5. Working with Errors, Warnings, and Messages

As any compiler, PostSharp can emit messages, warnings, and errors, commonly referred to asmessage. Custom code
running at build time (typically the implementation of CompileTimeValidate or of a custom constraint) can use PostSharp

messaging facility to emit their own messages.

In this section:

TIP

PostSharp 2.1 contains an experimental feature that adds file and line information to errors and warnings. The feature
requires Visual Studio. In must be enabled manually in the PostSharp tab of Visual Studio options.

5.5.1. Ignoring and Escalating Warnings

As with conventional compilers, warnings emitted by PostSharp, as well as those emitted by custom code running at build
time in PostSharp, can be ignored (in that case they will not be displayed) or escalated into errors.

Warnings can be ignored either globally, using a project-wide setting, or locally for a given element of code. Warnings can
be escalated only globally.

Ignoring or escalating warnings globally

There are several ways to ignore or escalate a warning for a complete project:

* By using the DisablePostSharpMessageAttribute or EscalatePostSharpMessageAttribute custom attribute at
assembly level. This approach is considered obsolete.

NOTE

The value * can be used to escalate all warnings into errors.

Ignoring warnings locally

Most warnings are related to a specific element of code. To disable a specific warning for a specific element of code, add
the IgnoreWarningAttribute custom attribute to that element of code, or to any enclosing element of code (for instance,

adding the attribute to a type will make it effective for all members of this type).

75

Configuration

To ignore warnings emitted by constraints, it is preferable to use the IgnoreConstraintWarningAttribute custom attribute.
Indeed, this attribute is conditional to the compilation symbol POSTSHARP_CONSTRAINTS, so it will be ignored by the
compiler unless constraint verification is enabled for the current project and build configuration.

You can create your own custom attribute derived from IgnoreWarningAttribute and make it conditional to a compilation
symbol by using the ConditionalAttribute custom attribute.

5.5.2. Emitting Errors, Warnings, and Messages

Custom code running in PostSharp at build time can use the messaging facility to emit its own messages, warnings, and
errors. These messages will appear in the MSBuild output and/or in Visual Studio. User-emitted warnings can be ignored or
escalated using the same mechanism as for system messages.

Emitting messages

If you just have a few messages to emit, you may simply use one of the overloads of the Write method of the Message
class.

All messages must have a severity SeverityType, a message number (used as a reference when ignoring or escalating
messages), and a message text. Additionally, and preferably, messages may have a location (MessagelLocation).

NOTE

To benefit from the possibility to ignore messages locally, you should always use provide a relevant location with your
messages. Previous API overloads, which did not require a message location, are considered obsolete.

TIP

Do not use string.Format to format your messages. Instead, pass message arguments to the messaging facility, which
will format some argument types, for instance reflection objects, in a more readable way.

Emitting messages using a message source

If you want the text of all messages to be stored in a single location, you have to emit messages through a MessageSource.
Typically, you would create a singleton instance of MessageSource for each component, and associate each instance with a
message dispenser. A message dispenser is a custom-written class implementing the IMessageDispenser interface. The
MessageDispenser provides a convenient abstract implementation.

NOTE

Although it is tempting to use a ResourceManager as the back-end of a message dispenser, comes with a non-negligible
performance penalty because of the cost of instantiating the ResourceManager.

76

PART 3

Standard Patterns

Walkthrough: Automatically Implementing INotifyPropertyChanged

CHAPTER 6

INotifyPropertyChanged

Binding objects to the Ul is a large and tedious task. You must implement INotifyPropertyChanged on every property that
needs to be bound. You need to ensure that the underlying property setter correctly raises events so that the View knows
that changes have occurred. The larger your codebase, the more work there is. You can partially eliminate all of this
repetitive code by pushing some of the functionality to a base class that each Model class inherits from. It still doesn't
eliminate all of the repetition though.

PostSharp can completely eliminate all of that repetition for you. All you have to do is make use of the Model Pattern
Library's NotifyPropertyChangedAttribute aspect.

In this chapter

Topic Description

Walkthrough: Automatically Implementing INotifyProperty- This section shows how to automatically implement the

Changed on page 79 INotifyPropertyChanged aspect in a class thanks to the
NotifyPropertyChangedAttribute aspect.

Walkthrough: Working with Properties that Depend on This section describes how to handle dependencies that

Other Objects on page 82 cross several objects, as when a view-model object is
dependent on properties of a model object.

Customizing the NotifyPropertyChanged Aspect on page 84 This section documents how to cope with the cases that
cannot be automatically handled by the
NotifyPropertyChangedAttribute aspect.

Understanding the NotifyPropertyChanged This section describes the principles and concepts on which

Aspect on page 88 the NotifyPropertyChangedAttribute aspect relies.

6.1. Walkthrough: Automatically Implementing
INotifyPropertyChanged

This section shows how to make your class automatically implements the INotifyPropertyChanged interface Notify-
PropertyChangedAttribute aspect.

Let's start with a simple class that has two simple properties and one composite property:

public class CustomerForEditing

{
public string FirstName { get; set; }

public string LastName { get; set; }
public string FullName

{
get { return string.Format("{@} {1}", this.FirstName, this.LastName);}

79

INotifyPropertyChanged

}
This topic contains the following sections.

Adding the NotifyPropertyChanged aspect with the Ul

To add INotifyPropertyChanged aspect with the Ul:

1. Put the caret on the class name and expand the Smart Tag. From the list select "Implement INotifyProperty-
Changed".

public class CustomerForEditing
{ o-
public st
public st ™
public st w« Addlogging
public st “_ Apply threading model

}
=, Implement INotifyPropertyChanged

Add architecture constraint

2. If you haven't previously added the Model Pattern Library to the current project, PostSharp will inform you that it
will be doing this as well as adding an attribute to the target class.

)%// Summary

The following actions will be performed:

Pr=s Install package PostSharp.Patterns.Model to project WpfApplication.
Completed . . -
Add custom attribute [NotifyPropertyChanged] te CustomerForEditing.

80

Walkthrough: Automatically Implementing INotifyPropertyChanged

3. PostSharp will download the Model Pattern Library and add the attribute.

&
)X Please wait while the operation is in progress.

Summary Install package PostSharp.Patterns.Model te project WpfApplicationl.

e —

Completed

| < Previous | ‘ Mext > || Cancel |

4. Once the download, installation and configuration of the Model Pattern Library and the addition of the attribute
has finished you can close the wizard and look at the changes that were made to your codebase.

/
)X The operation has successfully completed

Summary The project has been successfully medified.

Progress

Completed

< Previous | ‘ Finish || Cancel

81

INotifyPropertyChanged

5. You'll notice that the code you added NotifyPropertyChangedAttribute to has only been slightly modified.
PostSharp has added a NotifyPropertyChangedAttribute attribute to the class. This class level attribute will add
the implementation of NotifyPropertyChangedAttribute to the class as well as the plumbing code in each
property that makes it work.

[NotifyPropertyChanged]
public class CustomerForEditing

{
public string FirstName { get; set; }
public string LastName { get; set; }
public string FullName
{
get { return string.Format("{@} {1}", this.FirstName, this.LastName); }
}
}
NOTE

This example has added NotifyPropertyChangedAttribute to one class. If you need to implement Notify-
PropertyChangedAttribute to many different classes in your codebase you will want to read about using aspect

By using the Model Pattern Library to add NotifyPropertyChangedAttribute to your Model classes you are able to
eliminate all of the repetitive boilerplate coding tasks and code from the codebase.

Adding the NotifyPropertyChanged aspect manually

The wizard does nothing more than installing a NuGet package and adding a custom attribute. You can achieve the same

manually.

To add INotifyPropertyChanged aspect manually:
1. Use NuGet Package Manager to add the PostSharp.Patterns.Model package to your project.

2. Import the PostSharp.Patterns.Model namespace into your file.

3. Add the [NotifyPropertyChanged] custom attribute to the class.

6.2. Walkthrough: Working with Properties that Depend on
Other Objects

It's very common for the properties of one class to be dependent on the properties of another class. For example, a view-
model layer will often contain a reference to a model object, and public properties which are in turn forwarded to the
underlying properties of this referenced object. In this scenario the view-model component’s properties have a dependency
on the referenced model's properties. Subsequently the referenced model may also have properties which depend on the
properties of other objects.

PostSharp’s Model Pattern Library easily handles transitive dependencies. Simply add the NotifyPropertyChanged-
Attribute class attribute to each class in the dependency chain. This will ensure that property change notifications are

propagated up and down the dependency chain. The Model Pattern Library takes care of the rest and will even handle
circular dependencies.

82

Walkthrough: Working with Properties that Depend on Other Objects

In the following set of steps, the CustomerModel class is used as a dependency of a CustomerViewModel class containing
FirstName and LastName properties both of which directly map to properties of the CustomerModel class, and a public read
only property called FullName, which is calculated based on the value of the underlying customer’s FirstName and Last-
Name properties.

1.

3.

Add the CustomerModel class to your project ensuring that the NotifyPropertyChangedAttribute attribute is
included:

[NotifyPropertyChanged]
public class CustomerModel

{
public string FirstName { get; set; }
public string LastName { get; set; }
public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }

}

Setup a view-model class which contains a reference to a CustomerModel object, add properties to get/set the
name related fields. References to properties of the CustomersForEditing object should be in the form of this.
field.Property (or this.Property.Property), otherwise PostSharp won't be able to discover the dependencies
from your source code.

class CustomerViewModel

{
CustomerModel model;
public CustomerViewModel(CustomerModel m)
{
this.model = m;
}
public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}
public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}
}

Add the FullName property and use the same rule as described in the previous step to reference dependent
properties:

class CustomerViewModel

{
CustomerModel model;
public CustomerViewModel(CustomerModel m)
{
this.model = m;
}
public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}
public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}
public string FullName { get {
return string.Format("{@} {1}", this.model.FirstName, this.model.LastName);
Y3
}

83

INotifyPropertyChanged

4. Add the NotifyPropertyChangedAttribute attribute to the class:

[NotifyPropertyChanged]
class CustomerViewModel

{
CustomerModel model;
public CustomerViewModel(CustomerModel m)
{
this.model = m;
}
public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}
public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}
public string FullName { get {
return string.Format("{@} {1}", this.model.FirstName, this.model.LastName);
Y}
}

You now have a view-model class which can be used to bridge a view (e.g. an application’s user interface) with the
underlying data, and calls to get/set will be propagated across the chain of dependencies.

NOTE

using the this.field.Property form.

6.3. Customizing the NotifyPropertyChanged Aspect

Postsharp includes a number of attributes for customizing the Model Pattern’s behaviour and for handling special
dependencies.

This topic contains the following sections.

* Handling Dependencies on Pure Methods on page 87

Ignoring Changes to Properties

Use the IgnoreAutoChangeNotificationAttribute class attribute to prevent an OnPropertyChanged event from being
invoked when setting a property. For example, the CustomerModel class contains a Country property amongst others:

[NotifyPropertyChanged]

public class CustomerModel

{
public string FirstName { get; set; }
public string LastName { get; set; }

public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }
public string Country { get; set;}

84

Customizing the NotifyPropertyChanged Aspect

To prevent a property notification from being invoked when the Country’s value is set, simply place the IgnoreAuto-

ChangeNotificationAttribute attribute above the property:

[NotifyPropertyChanged]
public class CustomerModel

{
public
public
public
public
public

string FirstName { get; set; }
string LastName { get; set; }
string Phone { get; set; }
string Mobile { get; set; }
string Email { get; set; }

[IgnoreAutoChangeNotification]

public

Handling Virtual Calls, References, and Delegates in a Get Accessor

string Country { get; set;}

If a get accessor calls a virtual method from its class or a delegate, or references a property of another object (without using
canonical form this.field.Property), PostSharp will generate an error because it cannot resolve such a dependency at
build time. To suppress this error, you can add the [SafeForDependencyAnalysisAttribute] custom attribute to the
property accessor (or in any method used by the property accessor). This custom attribute instructs PostSharp that the
property accessor is “safe” — in other words, it contains only dependencies in the canonical form this.field.Property.

For example, say CustomerModel contains a virtual method called ValidateCountry() which is used by the get accessor of
its Country property:

[NotifyPropertyChanged]
public class CustomerModel

{

// Details skipped.

protected virtual bool ValidateCountry(string s)

if (s!=null)
return true;

else

return false;

public string Country

{
get

{

if(this.validateCountry(value))
return value;

else

return null;

}
set;
}
}

In this situation the property relies on a virtual method which PostSharp cannot resolve at build time, so the SafeFor-
DependencyAnalysisAttribute attribute can be placed on the Country property suppress this error:

[NotifyPropertyChanged]
public class CustomerModel

{

// Details skipped.

public virtual bool Test(string s)

if (s!=null)
return true;

85

INotifyPropertyChanged

else
return false;

}

[SafeForDependencyAnalysisAttribute]
public string Country

{
get

{
if(this.test(value) == true)
return value;
else
return null;

}

set;
¥
}

NOTE

By using SafeForDependencyAnalysisAttribute, you are taking the responsibility that your code only has dependencies
that are given either in the canonical form of this.field.Property either explicitly using the on construct (see the next
section). If you are using this custom attribute but have non-canonical dependencies, some property changes may not be
detected in which case no notification will be generated.

Handling Local Variables

Properties may depend on a property of another object, and sometimes this object must be stored in a local variable. Post-
Sharp is not able to analyze chains of dependencies in properties that are dependent on a property of a local variable.

For example, consider the following version of CustomerModel which contains properties for primary and secondary contact
phone numbers, each of which is of type Contact, as well a string property called ValidPhoneNumber which attempts to
return a non-null phone number:

public class Contact

{
}

[NotifyPropertyChanged]
public class CustomerModel

{

public string Phone {get; set;}

public Contact PrimaryContact{get; set;}
public Contact SecondaryContact{get; set;}

public string ValidPhoneNumber
{
Contact contact = null;
if(PrimaryContact != null)
contact = PrimaryContact;
else
contact = SecondaryContact;

if(contact != null)
return contact.Phone;
else
return null;

}
}

In this situation the local variable contact cannot be analyzed, so the dependency must be explicitly specified using the
DependsOn method:

86

Customizing the NotifyPropertyChanged Aspect

[NotifyPropertyChanged]

public class CustomerModel

{
public Contact PrimaryContact{get; set;}
public Contact SecondaryContact{get; set;}

[SafeForDependencyAnalysis]
public string ValidPhoneNumber
{
Depends.On(this.PrimaryContact.Phone, this.SecondaryContact.Phone);
Contact contact = null;
if(PrimaryContact != null)
contact = PrimaryContact;
else
contact = SecondaryContact;

if(contact != null)
return contact.Phone;
else
return null;

NOTE

The SafeForDependencyAnalysisAttribute attribute is still required in order to suppress the error about the dependency
on a local variable.

Handling Dependencies on Pure Methods

Often times an object will depend on a method which is solely dependent on its input parameters to produce an output (e.
g. a static method). Consider the following variation to CustomerModel where the ValidPhoneNumber property logic has

been moved into a static method called GetvalidPhoneNumber () which exists in a separate helper class called Contact-
Helper:

public class ContactHelper
{
[Pure]
public static string GetValidPhoneNumber(string firstPhoneNumber, string secondPhoneNumber)
{
if(firstPhoneNumber != null)
return firstPhoneNumber;
else if (secondPhoneNumber != null)
return secondPhoneNumber;
else
return null;
}
}

[NotifyPropertyChanged]

public class CustomerModel

{
public Contact PrimaryContact{get; set;}
public Contact SecondaryContact{get; set;}

public string ValidPhoneNumber
{
get {
return ContactHelper.GetValidPhoneNumber(this.PrimaryContact.Phone, this.SecondaryContact.Phone);
¥
}
}

Since GetValidPhoneNumber () is a standalone method of another class, it is not analyzed. Therefore the PureAttribute
attribute needs to be applied to this method to acknowledge this dependency.

87

INotifyPropertyChanged

6.4. Understanding the NotifyPropertyChanged Aspect

This section describes the principles and algorithm on which the NotifyPropertyChangedAttribute aspect is based. It
helps developers and architects to understand the behavior and limitation of the aspect.

This topic contains the following sections.

Implementation of the INotifyPropertyChanged interface

The NotifyPropertyChangedAttribute aspect introduces the INotifyPropertyChanged interface to the target class unless
the target class already implements the interface. Additionally, the aspect also introduces the OnPropertyChanged(String)
method. The aspect always introduces this method as protected and virtual, so it can be overridden in derived classes.

If the target class already implements the INotifyPropertyChanged interface, the aspect requires the class to expose the
OnPropertyChanged(String) method.

The aspect uses the OnPropertyChanged(String) to raise the PropertyChanged event. Thanks to this method, the aspect is
able to raise the event even when the INotifyPropertyChanged is not implemented by the aspect. This mechanism also
allows user code to raise notifications that are not automatically handled by the NotifyPropertyChangedAttribute aspect.

Instrumentation of fields

Although most implementations the INotifyPropertyChanged interface rely on instrumenting the property setter, this
strategy has severe limitations: it is unable to handle composite properties, which return a value based on several other fields
or properties. Composite properties have no setter, rendering this strategy unusable.

Instead, the NotifyPropertyChangedAttribute aspect instruments all write operations to fields (for instance a FullName
property appending FirstName and LastName). It analyzes dependencies between fields and properties and raises a change
notification for any property affected by a change in this specific field.

All methods, and not just property setters, can make a change to a field and therefore cause the PropertyChanged event to
be raised. Property setters do not have any specific status in the NotifyPropertyChangedAttribute implementation.

Analysis of field-property dependencies

In order to adequately raise the PropertyChanged event, the NotifyPropertyChangedAttribute aspect needs to know
which properties are affected by a change of a class field. The field-property dependency map is created at build time by
analyzing the source code: the analyzer reads the getter of all properties and check for field references. The map is then
serialized inside the assembly and used at runtime to raise relevant events when a field has changed.

Dependencies on fields of the current object
Consider the following code snippet:

[NotifyPropertyChanged]
class Invoice

{
private decimal _amount;
private decimal _tax;

public decimal Amount { get { return this._amount; } set { this._amount = value; } }
public decimal Tax { get { return this._tax; } set { this._tax = value; } }

88

Understanding the NotifyPropertyChanged Aspect

public void Set(decimal amount, decimal tax)

{

this._amount = amount;
this._tax = tax;

}

public decimal Total { get { return this._amount + this._tax; } }
}

The result of the analysis for the code snippet above would be the map { _amount => (Amount, Total), _tax => (
Tax, Total) }. Whenever the _amount field is changed, the PropertyChanged event will be raised for properties Amount
and Total.

Automatic properties are processed as hand-written properties; in this case, the implicit backing field is taken into account
for the dependency analysis.

Recursive analysis of the call graph

Field references are not only looked for in the getter, but in any method invoked from the getter, and recursively.

Consider the following code snippet:

[NotifyPropertyChanged]
class Invoice

{
private decimal _amount;
private decimal _exchangeRate;

public decimal Amount { get { return this._amount; } set { this._amount = value; } }
public decimal ExchangeRate { get { return this._exchangeRate; } set { this._exchangeRate = value; } }

private decimal Convert(decimal amount)

{
return amount * this.ExchangeRate;

}

public int AmountBase { get { return this.Convert(this.Amount); } }

}

In the code snippet above, the analyzer starts from the getter of the AmountBase property, follows the call to the Amount
property getter, then call to the AmountBase method and recursively follows the ExchangeRate property getter. Therefore,
the resulting property map remains { _amount => (Amount, AmountBase), _exchangeRate => (ExchangeRate,
AmountBase) }.

Dependencies on properties of external objects

The NotifyPropertyChangedAttribute aspect does not just handle dependencies between a property and a field of the
same class. It also handles dependencies on properties of properties or properties of fields, and recursively. That is, it
supports expressions of the form _f.P1.P2.P3 where _f is a field or property and P1, P2 and P3 are properties.

Consider the following code snippet:

[NotifyPropertyChanged]
class InvoiceModel

{
private decimal _amount;
private decimal _tax;
public decimal Amount { get { return this._amount; } set { this._amount = value; } }
public decimal Tax { get { return this._tax; } set { this._tax = value; } }
}

[NotifyPropertyChanged]
class InvoiceViewModel

89

INotifyPropertyChanged

{

InvoiceModel _model;
public InvoiceModel Model { get { return this._model; } }
public decimal Total { get { return this._model.Amount + this.Model.Tax; } }

}

In the example above, the InvoiceViewModel.Total property is dependent on properties Amount and Tax of the _model
field. Therefore, changes in the InvoiceModel._amount field will trigger a change notification for the InvoiceModel.Amount
and InvoiceViewModel.Total properties.

The NotifyPropertyChangedAttribute aspect automatically subscribes to the PropertyChanged event of the child object,
and unsubscribes whenever the value of the field in the parent object (_model in our example) is modified. However, the
parent object does not unsubscribe upon disposal because the NotifyPropertyChangedAttribute makes no assumption
that the IDisposable interface has been implemented. Therefore, the implementation of the INotifyPropertyChanged of
the external object must hold weak references to clients of the PropertyChanged event.

Recursive dependencies to external objects are handled thanks to an auxiliary interface named INotifyChildProperty-
Changed. This interface is implemented by the NotifyPropertyChangedAttribute aspect. It is considered an implemen-
tation detail and cannot be implemented manually. Classes that do not implement the INotifyChildPropertyChanged
interface can only participate as terminal dependencies, i.e. they can be leaves but not intermediate nodes.

Limitations

The design goal of the NotifyPropertyChangedAttribute aspect is to be able to handle the majority of use cases in real-
world source code while requiring only an acceptable amount of compilation time. The dependency analysis algorithm
imposes several limitations:

« Calls to virtual methods (other than through the base keyword), abstract methods, interface methods or delegates
are not supported.

 Calls to static methods or methods of external classes are not supported unless they are decorated with the Pure-
Attribute custom attribute, or unless the method is a property getter in a supported dependency chain.

» Valuations of properties of local variables or method return values are not supported. Only properties of fields or
properties are supported.

Raising notifications

Simplistic implementations of the INotifyPropertyChanged interface signal a change notification immediately after a
property has been changed. However, this strategy may cause subtle errors in client code.

Consider the following code:

[NotifyPropertyChanged]

class Invoice

{
public decimal Amount { get; private set; }
public decimal Tax { get; private set; }
public decimal Total { get; private set; }

public void Set(decimal amount, decimal tax)
{

/* 1 */ this.Amount = amount;

/* 2 */ this.Tax = tax;

/* 3 */ this.Total = amount + tax;

}

90

Understanding the NotifyPropertyChanged Aspect

As a class invariant, the assumption Total == Amount + Tax should always be true.

However, suppose that the PropertyChanged event is raised immediately after the Amount property is set at line 1 of the
Set method. Clearly, for a client subscribing to this event, the class invariant would be broken at this specific moment.

Therefore, it is not safe to raise change notifications immediately after a change has been achieved. It is necessary to wait
until the object can be safely observed by external code, when all class invariants are valid again (i.e. when the object state
is consistent). A common best practice in object-oriented programming is to ensure that class invariants are valid before
the control flow goes back from the current object to the caller. Typically, it means that a private or protected method can
exit with an inconsistent object state, but public and internal methods must guarantee that the object state is consistent
upon exit.

The NotifyPropertyChangedAttribute aspect relies on this best practice and raises the property change notifications just
before the control flow exists the current object, that is, just before the last public or internal method in the call stack for
the current object exits.

Besides avoiding to expose invalid object state, this strategy also avoids the same property to be notified for change several
times during the execution of a single public method, which a potentially great positive performance impact.

To solve this problem, NotifyPropertyChangedAttribute aspect uses the following strategy:

1. Instead of causing immediate change notifications, field changes are buffered into a thread-local storage named
the accumulator .

2. Calls to public and methods are instrumented so the aspect can detect when the control flow exits the object. At
this moment, the accumulator is flushed and all change notifications are triggered.

It is possible to flush the accumulator at any time by invoking the NotifyPropertyChangedServicesRaiseEvents-
Immediate(Object) method.

You can suspend and resume notifications using the NotifyPropertyChangedServicesSuspendEvents and Notify-

PropertyChangedServicesResumeEvents methods.

Remarks

The NotifyPropertyChangedAttribute aspect never evaluates property getters at runtime. This decision is deliberate and

aims at avoiding possible side-effects (lazy-initialization, logging, etc.). Therefore, it is possible that the algorithms emit false
positives, i.e. change notifications for properties whose values did not actually change.

The algorithm heuristically detects dependency cycles. If a cycle is detected, an exception is thrown instead of allowing for
an infinite update cycle.

All notifications are invoked on the thread on which the change is being made. The accumulator that buffers the changes is
a thread-local storage.

91

INotifyPropertyChanged

92

Understanding the NotifyPropertyChanged Aspect

CHAPTER 7/

Parent/Child Relationships

The parent-child relationship is a foundational concept of object oriented design. There are three kinds of object
relationships in the UML specification:

» Aggregation is the parent-child (also named whole-part) relationship. It is implemented in PostSharp by the

» Composition is an aggregation relationship where the parent controls the lifetime their children. It is implemented
in PostSharp by the DisposableAttribute aspect pattern, which relies on the AggregatableAttribute aspect. For

» Association is a simple reference between two objects.

Despite its importance, C# and VB have no keyword to represent aggregation. All C# and VB object references correspond
to an association. Therefore, most applications and frameworks tend to re-implement the aggregation relationship,
resulting in boilerplate code and defects. For instance, Ul frameworks such as WinForms and WPF rely on a parent-child
structure.

PostSharp implements the Aggregatable pattern thanks to the AggregatableAttribute aspect, together with the Child-
Attribute, ReferenceAttribute and ParentAttribute custom attributes.

The Aggregatable pattern is used by other PostSharp aspects, including all threading models (ThreadAwareAttribute),
DisposableAttribute and RecordableAttribute. You can also use the aspect to automatically implement a parent-child
relationship in your own code.

In this chapter

Section Description

Walkthrough: Annotating an Object Model for Parent-Child This section shows how to prepare a class so that it can

Relationships_ on page 94 participate in a parent-child relationship.

Walkthrough: Enumerating Child Objects on page 97 This section describes how to enumerate the children of an
object thanks to the visitor pattern.

Walkthrough: Automatically Disposing Children This section shows how to automatically implement the

Objects on page 98 IDisposable interface so that children objects are disposed

when the parent object is disposed.

Working With Collections on page 102 This section covers advanced topics related to collections in
aggregatable object models.

93

Parent/Child Relationships

7.1. Walkthrough: Annotating an Object Model for Parent-
Child Relationships

PostSharp provides several custom attributes that you can apply to your object model to describe the parent-child
relationships in a natural and concise way. The AggregatableAttribute aspect is applied to the object model classes, and
the properties are marked with ChildAttribute, ReferenceAttribute and ParentAttribute custom attributes. You can
also use AdvisableCollectionT and AdvisableDictionaryTKey, TValue classes to make your collection properties aware
of the Aggregatable pattern.

Below you can find a detailed walkthrough on how to add parent-child relationships implementation into existing object
models.

This topic contains the following sections.

Applying through the UI

When applying any of the threading model patterns using the wizard you may encounter the Relationships page.

5
Apply threading model @
W ' N ' '
P Select the kind of relationship represented by fields and properties.
Select Model You selected an aspect that requires your code to be annoted for parent-child relationships.
- . For each field or automatic of the class, determine if it represents a Child, a simple
Relationships Reference or a link back to the Parent.
Summary Member Child Reference Parent
Progress Customer
Completed ftems
I
| [< Previous 1 [Mext > |[Cancel |

This page provides you with the ability to establish the relationships between objects in an object tree. Simply select the
option desired for each complex object and the wizard will add these attributes for you.

NOTE

The wizard process will not address or change collections in the object parent-child relationships. You will need to change
collection types by hand.

94

Walkthrough: Annotating an Object Model for Parent-Child Relationships

Applying manually

To apply the Aggregatable to an object model:

1.

Add the AggregatableAttribute attribute to the parent and children classes. In the following examples, an
Invoice object owns several instances of the Invoiceline class, therefore both classes must be annotated with
AggregatableAttribute. However, the Invoice does not own the Customer to which it is associated, so the
Customer class does not need the custom attribute.

NOTE

It is not strictly necessary to add the AggregatableAttribute aspect to a class whose instances will be children
but not parents, unless you want to track the relationship to the parent using the IAggregatableParent
property or the ParentAttribute custom attribute in this class (see below).

[Aggregatable]
public class Invoice
{

public Invoice()

{

this.Lines = new List<InvoicelLine>();

}

public Customer Customer { get; set; }
public IList<InvoiceLine> Lines { get; set; }
public Address DeliveryAddress { get; set; }
}

[Aggregatable]
public class Invoiceline
{
private Product product;
public decimal Amount { get; set; }

}

[Aggregatable]
public class Address
{

}

95

Parent/Child Relationships

2. Annotate fields and automatic properties of all aggregatable classes with the ChildAttribute or Reference-
Attribute custom attribute. Fields or properties of a value type must not be annotated.

[Aggregatable]
public class Invoice

{

public Invoice()

{
}

this.Lines = new List<InvoicelLine>();

[Reference]
public Customer Customer { get; set; }

[Child]
public IList<InvoiceLine> Lines { get; private set; }

[Child]
public Address DeliveryAddress { get; set; }
}

[Aggregatable]
public class Invoiceline

{

[Reference]
private Product product;

public decimal Amount { get; set; }
}

[Aggregatable]
public class Address

{
}

3. Modify the code to use AdvisableCollectionT and AdvisableDictionaryTKey, TValue instead of standard .NET

collections for children fields. This change is necessary because all objects assigned to children fields/properties
must be aware of the Aggregatable pattern.

In our code example, we need to modify the constructor of the Invoice class and assign an Advisable-
CollectionT to the Lines field instead of a List.

public Invoice()

{
}

this.Lines = new AdvisableCollection<InvoicelLine>();

96

Walkthrough: Enumerating Child Objects

4. Optionally, add a field or property to link back from the child object to the parent, and add the ParentAttribute
to this field/property. PostSharp will automatically update this field or property to make sure it refers to the parent
object.

In this example, we are adding a ParentInvoice property to the InvoiceLine class to link back to the Invoice
class.

[Aggregatable]
public class Invoiceline

{
[Reference]
private Product product;

public decimal Amount { get; set; }

[Parent]
public Invoice ParentInvoice { get; private set; }

TIP

For better encapsulation, setters of parent properties should have private visibility. In case of parent fields, the
private visibility is preferred. User code should not manually set a parent field or property.

7.2. Walkthrough: Enumerating Child Objects

Both the ChildAttribute and ParentAttribute can be used to declare parent-child relationships for other patterns such
as Undo/Redo (RecordableAttribute) or threading models (ImmutableAttribute, FreezableAttribute, ..).

You can also use the Aggregatable pattern from your own code. The functionalities of this pattern are exposed by the
IAggregatable interface, which all aggregatable object automatically implement. This interface allows you to execute a

Visitor method against all child objects of a parent.

In the following example, we see how to implement recursive validation for an object model. We will assume that the
Invoiceline and Address line implement an Ivalidatable interface.

97

Parent/Child Relationships

To enumerate all child objects of a parent:

1.

Cast the parent object to the IAggregatable interface.

var invoice = new Invoice();
IAggregatable aggregatable = (IAggregatable) invoice;

NOTE

The IAggregatable interface will be injected into the Invoice class after compilation. Tools that are not aware of
PostSharp may incorrectly report that the Invoice class does not implement the IAggregatable interface.
Instead of using the cast operator, you can also use the CastSourceType, TargetType(SourceType) method.

This method is faster and safer than the cast operator because it is verified and compiled by PostSharp at build
time.

NOTE

If you are attempting to access IAggregatable members on either AdvisableCollectionT or Advisable-
DictionaryTKey, TValue you will not be able to use the cast operator or the CastSourceType, Target-
Type(SourceType) method. Instead, you will have to use the QueryInterfaceT(Object, Boolean) extension
method.

Invoke the VisitChildren(ChildVisitor, ChildVisitorOptions) method and pass a delegate to the method to be
executed.

var invoice = new Invoice();

IAggregatable aggregatable = invoice.QueryInterface<IAggregatable>();
int errors = 0;

bool isValid = aggregatable.VisitChildren((child, childInfo) =>

{
var validatable = child as IValidatable;
if (validatable != null)
{
if (!validatable.Validate())
errors++;
}
return true;
s
NOTE

The visitor must return a true to continue the enumeration and false to stop the enumeration.

7.3. Walkthrough: Automatically Disposing Children Objects

When you are working with hierarchies of objects, you sometimes run into situations where you need to properly dispose of
an object. Not only will you need to dispose of that object, but you likely will need to walk the object tree and recursively
dispose children of that object. To do this, we typically implement the IDisposable pattern and manually code the steps
required to shut down the desired objects, and call the Dispose method on other children objects. This cascading of

disposals takes a lot of effort and it is prone to mistakes and omissions.

98

Walkthrough: Automatically Disposing Children Objects

The DisposableAttribute aspect relies on the AggregatableAttribue aspect and, as a result, is able to make use of the
VisitChildren(ChildVisitor, ChildVisitorOptions) method to cascade disposals through child objects.

This topic contains the following sections.

Disposing of object graphs

Adding Disposable to an object
1. On the top level object add the DisposableAttribute.

[Disposable]
public class HomeMadelLogger

{
private TextWriter _textWriter;
private Stream _stream;
private MessageFormatter _formatter;

public HomeMadelLogger(MessageFormatter formatter)

{

_formatter = formatter;
_stream = new FileStream("our.log", FileMode.Append);
_textWriter = new StreamWriter(_stream);

}

public void Debug(string message)

{

_textWriter.WriteLine(_formatter.Format(message));

}
}

At this point the IDisposable interface will be implemented on the HomeMadeLogger class. Now any code making
use of HomeMadeLogger is able to execute the HomeMadelLogger.Dispose() method.

99

Parent/Child Relationships

2. ldentify the fields and properties that represents references to child objects. To do this, add the ChildAttribute
to the fields and properties that expose those child objects, and the ParentAttribute to fields and properties
that represent plain references. In the case of the HomeMadeLogger there are two objects, the _stream and the
_textWriter fields, which should also be disposed when the HomeMadeLogger is disposed.

[Disposable]
public class HomeMadeLogger

{
[Child]
private TextWriter _textWriter;
[Child]
private Stream _stream;
[Reference]
private MessageFormatter _formatter;

public HomeMadelLogger(MessageFormatter formatter)

{
_formatter = formatter;
_stream = new FileStream("our.log", FileMode.Append);
_textWriter = new StreamWriter(_stream);

}

public void Debug(string message)

{

_textWriter.WriteLine(_formatter.Format(message));

}
}

The _stream and _textWriter child objects will now have their Dispose() method called automatically when the
HomeMadeLogger is disposed. Since both the _stream and _textWriter objects are framework types that already
implement IDisposable, adding the DisposableAttribute aspect to those object types is not necessary.

NOTE

Fields that are marked as children but are assigned to a object that does not implement IDisposable (either manually or
through DisposableAttribute) will simply be ignored during disposal.

Disposing of child collections

Child objects that need to be disposed of don't always exist in a one-to-one relationship with the parent object. It's
common to see collections of child objects that need disposal as well. In that case you need to dispose of each entry in a

collection.

Adding Disposable to collections
1. Use a collection type that supports the IAggregatable interface. We do this by making use of Advisable-
CollectionT or AdvisableDictionaryTKey, TValue class.

[Disposable]
public class HomeMadelLogger

[Child]
public AdvisableCollection<Context> LoggingContexts { get; set; }

100

Walkthrough: Automatically Disposing Children Objects

2. To make the LoggingContexts collection automatically dispose when the HomeMadeLogger object disposes you
need to ensure that the Contexct class has the DisposableAttribute aspect on it.

[Disposable]
public class Context

{
}

/]

With that, the HomeMadeLogging class and all of the child objects in the LoggingContexts collection are hooked together
and they will all be disposed of in an orderly fashion when an instance of the HomeMadeLogging object is disposed.
Customizing the Dispose logic

There will be times when you have objects that need custom disposal logic. At the same time you may want to implement a
parent child relationship and make use of the DisposableAttribute.

To add your own logic to the Dispose method:
1. Create a method with exactly the following signature:

protected virtual void Dispose(bool disposing)

2. Include a call to base.Dispose(disposing).

3. Include your own logic.
In the following example, we are customizing the Dispose pattern to expose the IsDispose property:

[Disposable]
public class MessageFormatter : Formatter

{

[Child]
MessageSink sink;

public bool IsDisposed { get; private set; }
protected virtual void Dispose(bool disposing)
t base.Dispose(disposing);

this.IsDisposed = true;

}
}

Once you have done this, PostSharp will properly run your custom Dispose logic as well as running any of the parent and
child implementations of the DisposableAttribute that exist for the object.

CAUTION NOTE

The DisposableAttribute aspect does not automatically dispose the object when it is garbage collected. That is, the
aspect does not implement a destructor. If you need a destructor, you have to do it manually and invoke the Dispose.

101

Parent/Child Relationships

7.4. Working With Collections

It would not be possible to implement the Aggregatable pattern without support for collection classes. However, collections
of the .NET base class libraries cannot be reliably extended to support the Aggregatable pattern. Therefore, code that
implements the Aggregatable pattern must rely on collection classes defined by PostSharp, namely AdvisableCollectionT,

AdvisableDictionaryTKey, TValue and AdvisableKeyedCollectionTKey, TItem.

This topic contains the following sections.

Understanding the need for specific collections

In the following example, an Invoice entity is composed of one instance of the Invoice class and several instances of the
InvoiceLine class. The relationship between the Invoice and InvoiceLine classes is implemented using a collection.

[Aggregatable]
public class Invoice
{
public Invoice()
{
this.Lines = new List<InvoiceLine>();
}
[Child]
public IList<InvoiceLine> Lines { get; private set; }
}
[Aggregatable]
public class Invoiceline
{
}

When we add a new element to the Lines collection, we also need to update the parent-child relationship between the
corresponding invoice and invoice line. It is not possible to do this with the standard ListT class, so we need to build a
specialized aggregatable collection class instead. However, we may later decide to apply another pattern to our object
model, such as a threading model or undo/redo. This new pattern would in turn require support from the collection class.
Creating new collection classes for each pattern (and potentially for each pattern combination) is clearly unmanageable.

Instead of providing a new collection class for each specific behavior we need to inject, PostSharp introduces the concept of
advisable collections. Advisable collections are collection classes into which PostSharp can inject behavior dynamically, at
runtime, according to the field to which they are assigned. Advisable collections are a way to make the collection "inherit"
the pattern of the parent class

Let's modify our previous example to work correctly with the Aggregatable aspect.

[Aggregatable]
public class Invoice
{
public Invoice()
{
this.Lines = new AdvisableCollection<InvoicelLine>();
}
[Child]

public IList<InvoiceLine> Lines { get; private set; }

102

Working With Collections

¥

[Aggregatable]
public class Invoiceline

{
}

As you can see, the only change we made is using AdvisableCollectionT class instead of ListT. The Aggregatable aspect
applied to the Invoice class detects that the child property is an advisable collection and applies dynamic Aggregatable

advice to the collection instance at runtime. This turns our collection of invoice lines into an aggregatable collection. If we
apply another aspect to the Invoice class later, it can add new behaviors to this collection in the same way.

Replacing standard collections with advisable collections

The PostSharp.Patterns.Collections namespace defines advisable collection classes that are highly compatible with the
collection types of the .NET base class libraries.

The following table shows how advisable collections map to standard collections.

Advisable collection Replacement for

AdvisableCollectionT Array, ListT, CollectionT, ObservableCollectionT
AdvisableDictionaryTKey, TValue DictionaryTKey, TValue
AdvisableKeyedCollectionTKey, TItem KeyedCollectionTKey, TItem

CAUTION NOTE

Interfaces IReadOnlyListT and IReadOnlyCollectionT are not implemented.

Casting advisable collections

Patterns such as Aggregatable, Recordable or Threading Models dynamically inject advices into advisable collections. These
advice typically expose an interface, respectively IAggregatable, IRecordable and IThreadAware. Because interfaces are

introduced at run-time and not at build-time, you cannot use the normal type casting constructs to access the interface
members.

Instead of a normal cast, you can use the QueryInterfaceT(Object, Boolean) extension method to access interfaces

implemented by the given instance. This method will return the proper interface implementation irrespective how the
interface is implemented: directly in the source code, introduced by PostSharp aspect at build time, or added dynamically at
run time.

The following code snippet gets the IAggregatable interface of the Lines collection in the example above:

IAggregatable aggregatable = invoice.lLines.QueryInterface<IAggregatable>();

By default, the QueryInterfaceT(Object, Boolean) method throws InvalidCastException if the given instance doesn't
implement the queried interface. You can also safely check whether the interface is implemented by passing false as a
method argument.

if (collection.QueryInterface<IAggregatable>(false) != null)

{
}

103

Parent/Child Relationships

Controlling the status of collections in the parent-child relationship

Collections play a special role in implementing the parent-child relationships between classes. Collections are often
instruments instead of first-class entities of the object model. When enumerating children of a class, one generally wants to
avoid the collections themselves to be returned, but only items of these collections. Additionally, the Parent property of a
child object should typically refer to the parent entity and not to the collection that contains the child.

Consider the following example:

[Aggregatable]
public class Invoice

{

public Invoice()

{

this.Lines = new AdvisableCollection<InvoiceLine>();

}

[Child]
public IList<InvoiceLine> Lines { get; private set; }

}

[Aggregatable]
public class Invoiceline

{
[Parent]

public Invoice Invoice { get; private set; }

}

The Invoice class contains a collection of InvoiceLine instances. We want each item of the Lines collection to be a child
of the Invoice instance. However, the collection itself should not be considered a child of the Invoice. Additionally, we
want the InvoicelLine.Invoice property to be set to the Invoice, not to the collection.

To implement this behavior, PostSharp needs to give a different status to collections than to other entities. This concept is
named a parent surrogate, because the collection acts as a surrogate (or proxy) between the parent and its children.

Any aggregatable object can act as a parent surrogate, but only collections act as parent surrogates by default. You can
override the default behavior by setting the ChildAttributeIsParentSurrogate property.

In the next example, the Lines collection will be treated as a first-class entity.

[Aggregatable]
public class Invoice

{

public Invoice()

{

this.Lines = new AdvisableCollection<InvoiceLine>();

}

[Child(IsParentSurrogate = false)]
public IList<InvoiceLine> Lines { get; private set; }

}

[Aggregatable]
public class Invoiceline

{
[Parent]
public IList<InvoiceLine> Parent { get; private set; }

}

To cause a custom class to behave like a parent surrogate by default, set the IsParentSurrogate property of the
AggregatableAttribute applied on your class to true. In this case it's not allowed to override the value in the [Child]
attributes applied to individual properties.

104

Working With Collections

[AggregatableAttribute(IsParentSurrogate = false)]

Enumerating children and parent surrogates

The default behavior of the VisitChildren(Childvisitor, ChildVisitorOptions, Object) method is to skip the
surrogate collection itself and invoke the Childvisitor delegate on each item of the collection. In our first example, calling
the visitChildren(ChildVisitor, ChildVisitorOptions, Object) method on the Invoice instance will invoke the
visitor on the items of the Lines collection, but not on the collection instance itself.

You can customize this behavior by providing one or more flags for the ChildvisitorOptions parameter of the method.
The childvisitorOptions.IncludeParentSurrogates flag will cause the visitor to be additionally invoked on the instances
of the surrogate collections, while the ChildvisitorOptions.ExcludeIndirectChildren flag will exclude the items of such
collection from being visited.

Collections of references

As we showed earlier, when you annotate the collection property with the [Child] attribute, collection items become
children of the class instance.

In certain situations, you may want to have a collection of references. The collection itself is still marked with the [Child]
custom attribute because it would make sense from the point of view of other patterns (for instance, changes in the
collection must be recorded by the Recordable pattern). However, the collection items themselves must not be considered
children of the entity.

To implement this requirement, you can set the ChildAttributeItemsRelationship property to RelationshipKind.
Reference.

In the example below, the RelatedOrders collection is a child and therefore its changes are being recorded by the
Recordable aspect. However, collection items are not children of the parent entity, because related orders do not belong to
the invoice.

[Recordable]
public class Invoice

{

public Invoice()

{
this.Lines = new AdvisableCollection<InvoiceLine>();
this.RelatedOrders = new AdvisableCollection<Order>();

}

[Child]
public IList<InvoiceLine> Lines { get; private set; }

[Child(ItemsRelationship = RelationshipKind.Reference)]
public IList<Order> RelatedOrders { get; private set; }

105

Parent/Child Relationships

106

Making Your Model Recordable

CHAPTER 8

Undo/Redo

Most business application users are familiar with applications that have the ability to undo and redo changes that they have
made. It's not common to see this functionality in custom built applications because it is quite difficult to do. Despite this
difficulty, undo/redo is consistently mentioned on the top of users' wish list.

The RecordableAttribute aspect makes it much easier to add undo/redo to your application by automatically appending
changes done on your object model to a Recorder that you can them bind to your user interface. Unlike other approaches
to undo/redo, the RecordableAttribute aspect only requires minimal changes to your source code.

In this chapter

Section Description

Making Your Model Recordable on page 107 The first step is to make your model classes This section
shows how to add the RecordableAttribute aspect to the

model classes to enable the undo/redo functionality.

Adding Undo/Redo to the User Interface on page 109 This section describes how to expose the undo/redo
functionality to the application's users.

Customizing Undo/Redo Operation Names on page 111 This section shows how to group changes into logical
operations and give them a name that is meaningful to the

application's users.

Assigning Recorders Manually on page 116 This section explains how to customize the assignment of
recordable objects to recorders.

Adding_ Callbacks on.Undo and Redo on page 117 This section shows how to execute custom logic when
undo/redo operations occur in a recordable object.

Understanding the Recordable Aspect on page 118 This section describes the concepts and architecture of the
RecordableAttribute aspect.

8.1. Making Your Model Recordable

To make an object usable for undo/redo operations, you will need to add the RecordableAttribute aspect to the class.
This aspect instruments changes to fields and record them into a Recorder. The aspect also instruments public methods to
group field changes into logical operations.

This topic contains the following sections.

» Making a class recordable using the Ul on page 108

107

Undo/Redo

Making a class recordable using the Ul

To make a class recordable using the Ul:

1. First place the caret on the name of the object that you want to make recordable. The smart tag will appear below
the object name. Expand it and select "Add another aspect...”

[NotifyPropertyChanged]

Oreferences

public class Person

{ a-
Oreferences
public st

Oreferences

pUbliC st Apply threading model... }
Oreferences Add another aspect...
public int Age { get; set; }

Add architecture constraint...

S

Add logging...

AR AR

2. In the Add Another Aspect wizard expand the Model section, select "Enable undo/redo", and click Next.

V/
)X Select an aspect

© Architcture

Summary @ Model

Progress

Completed Auto-dispose children
Allow the class to participate in parent-child relationships; implement the
lAggregatable interface,

Enable undo/redo
Allow the class to record changes and to participate in undo/redo
operations.

Implement |EditableObject
Implement the |EditableObject interface and allow changes in objects to be
canceled when the parent Ul transaction is canceled.

Make aggregatable
Enable the class to be a part of a parent-child relationship and implement
the IAggregatable interface,

If you have not added a reference to the threading model assembly the Apply Threading Model wizard will
download it from Nuget and add the reference.

108

Adding Undo/Redo to the User Interface

3. Once the wizard has completed the object will now be flagged as recordable.

[NotifyPropertyChanged]
[Recordable]
public class Person

{
public string FirstName { get; set; }

public string LastName { get; set; }
public int Age { get; set; }
}

By adding the RecordableAttribute aspect to the Person class all of the properties that are primitive types will
be recorded when they change.

Making a class recordable manually

To make the class recordable manually:
1. Install the PostSharp.Patterns.Model package using NuGet.

2. Add the RecordableAttribute to the class.

Working with object graphs and collections

In the example above, the Invoice class just had a few fields of a primitive type (int, string, ...). In real-world application,
objects are not isolated entities, but are parts of larger structures named object graphs.

The RecordableAttribute aspect needs to understand the parent-child structure of your object graphs. It relies on the
AggregatableAttribute aspect for this purpose.

Therefore, when adding the RecordableAttribute aspect to a class, you need to complete a few more steps:
« Annotate fields with the ChildAttribute, ReferenceAttribute or ParentAttribute custom attribute.

» Replace arrays and collections with instances of the AdvisableCollectionT and AdvisableDictionaryTKey,
Tvalue classes.

8.2. Adding Undo/Redo to the User Interface

The Undo/Redo functionality that you added to your codebase needs to be made available to the users. Users will want to
have the ability to move forwards and backwards through the operations that they too and have been recorded.

This topic contains the following sections.

Using the ready-made WPF controls

PostSharp includes two button controls UndoButton and RedoButton that you can add to your application.

109

Undo/Redo

To add Undo/Redo to a WPF window:
1. Install the PostSharp.Patterns.Model.Controls package using NuGet.

2. Add the following namespace declaration to the root element of your XAML file:
xmlns:model="clr-namespace:PostSharp.Patterns.Model.Controls;assembly=PostSharp.Patterns.Model.Controls"

3. To add Undo and Redo buttons to the user interface, include the following two lines of Xaml.

<model:UndoButton HorizontalAlignment="Left" Margin="22,24,0,0" VerticalAlignment="Top" />
<model:RedoButton HorizontalAlignment="Left" Margin="64,24,0,0" VerticalAlignment="Top"/>

)
Classic INotifyPropertyChanged Example

Tom FirstName LastName Age

Dick Tom Jones 80

Harry | | | Dick Tracey 40
Harry Hill 60

Type here

The TextBox says ‘Type here'

Add person

Next example|

Your users are now able to make a changes in the user interface and Undo and/or Redo those changes at any
point that they want.

Clearing the initial history

If we were to open the Customer management screen you would notice that the Undo button has a number of actions
listed under it.

@] €]
setfige

setLastName

setFirstName

sethge
setlastMame
setFirstName
setAge

setlastName

setFirsthame

Those actions are listing the changes that were taken when the different Person instances were loaded and their properties

were set. Most users will only want to see actions that they have manually taken in the screen. As such, you will need to
manually interact with the Recorder to ensure that the Undo button list is empty when the window opens.

To provide an empty list of recorded actions when the windows is initially opened, open the ViewModelMain class and find
the constructor. Add the following as the last line in the constructor:

RecordingServices.DefaultRecorder.Clear();

110

Customizing Undo/Redo Operation Names

The Recorder class is accessed through the RecordingServicesDefaultRecorder property. This property contains the
current Recorder instance that is being used by the RecordableAttribute aspect. The Recorder class has two collections,
UndoOperations and RedoOperations, which contain all of the past operations that can be undone and redone. The Clear
method removes all operations from both of those collections.

Now when you open the Customer management screen both the Undo and Redo buttons will show no history. This is the
simplest type of Undo/Redo implementation that you can do. It will record each property change operation separately in

Creating custom undo/redo controls

If the buttons provided by PostSharp don't meet your requirements, you can create your own controls for WPF, Windows
Phone or WinRT.

Custom controls will typically provide a front-end to the global Recorder exposed on the RecordingServicesDefault-
Recorder property, and we provide a view for the UndoOperations and RedoOperations collections. Controls typically use
the RecorderuUndo and RecorderRedo methods.

8.3. Customizing Undo/Redo Operation Names

The example of previous sections displays the list of operations appearing in the two Ul buttons. That list of operations
references the setters on the different individual properties in a very technical manner, for instance the operation of setting
the first name is named set_FirstName, according to the name of the property in source code.

End users will want to see the operations described in meaningful business terms, not technical ones. This article will show
you how to explicitly name the recording operations that will take place in your code.

This topic contains the following sections.

Understanding the default operation naming mechanism

From the end user's perspective, the undo/redo feature exposes a flat list of operations that can be undone or redone.
From a system perspective, an operation is composed of changes to individual fields and collections. For instance, moving a
picture on a design surface is seen as a single operation Move by the user, but it is composed of two changes in fields x

andy.

Let's see this in a code example:

[Recordable]
public class Picture

{

private double x, y;

public double X
{

get { return x; }
set { x = value; }

}

public double Y
{

111

Undo/Redo

get { return y; }
set { y = value; }
}

public void Move(double x, double y)
{
this.X
this.Y

X5
Y5

¥

public static class Program

{

public static void Main()

{

var picture = new Picture();

picture.Move(10, 10);

// 1 undo operation at this point: Move.
picture.X = 20;

// 2 undo operations at this point: set_X, Move.
picture.Y = 20;

// 3 undo operations at this point: set_Y, set_X, Move.
}
}

By default, the RecordableAttribute aspect will automatically open a new operation for any public method, unless the
current Recorder already has an open operation. Therefore, invoking the Move method results in a single operation, even if
it modifies two fields. Note that the Move method invokes the setters of public properties X and Y, which are themselves
public methods, but they do not open new operations since they run from within the Move method. However, when
properties X and Y are accessed from outside of the Picture class, new operations are created for the set_X and set_Y
methods.

Setting operation names declaratively

By default, the name of an operation is set to the name of the method. There are various ways to customize this name, and
the easiest is to add a RecordingScopeAttribute custom attribute to the public method.

In the following example, we're declaring a different name for the Move method:

[Recordable]
public class Picture

{

private double x, y;

[RecordingScope("Moving the picture")]
public void Move(double x, double y)
{
this.x
this.y

X5
Y

}
}

With that RecordingScopeAttribute added, the recorded operation will now have a name of Moving the picture instead of
just Move.

112

Customizing Undo/Redo Operation Names

Setting operation names dynamically

Setting the operation name declaratively is convenient but relatively rigid. When more flexibility is needed, you can use the
RecorderOpenScope(String, RecordingScopeOption) method to control the creation and naming of scopes.

In the following example, we will modify the Move method to include the target position in the operation description.

To dynamically name an operation:

1. Add the [RecordingScope(RecordingScopeOption.Skip)] custom attribute to the method, so that the method
does not automatically define a new operation. Exclude from the Recorder the method which contains the block
of code that you wish to encapsulate in a recording.

[RecordingScope(RecordingScopeOption.Skip)]
public void Move(double x, double y)

NOTE

This step is not required if you are starting the operation from a non-recordable object.

2. Invoke the OpenScope(String, RecordingScopeOption) method and wrap the code you want to record in a
using block.

[Recordable]
public class Picture

{

private double x, y;

[RecordingScope(RecordingScopeOption.Skip)]
public void Move(double x, double y)

{
string scopeName = string.Format("Moving to ({0}, {1})", x, y);
using (RecordingScope scope = RecordingServices.DefaultRecorder.OpenScope(scopeName))
{
this.x = x;
this.y = y;
}
¥
}
NOTE

If you do not to add this custom attribute to the method, the RecordableAttribute aspect will automatically
create a new scope to execute the method, and your call of the OpenScope(String, RecordingScopeOption)
method will be ignored.

Using the OperationFormatter class

Explicitly declaring the name for every operation would be a large and tedious task. It is possible to write your own naming
engine and apply that set of naming rules across the entire application. To achieve this, derive your own implementation
from the OperationFormatter class. to the

In the following example, we will create a custom formatter that reads the operation name from the DisplayNameAttribute
custom attribute and display the value to which a property has been set.

113

Undo/Redo

To create and register a custom OperationFormatter:
1. Create a new class and inherit from the OperationFormatter class.

public class MyOperationFormatter : OperationFormatter
{
}

2. Create a constructor for the new formatter class.

public class MyOperationFormatter : OperationFormatter

{
public MyOperationFormatter(OperationFormatter next) : base(next)
{
¥

}

114

Customizing Undo/Redo Operation Names

3. Next you need to override the FormatOperationDescriptor(IOperationDescriptor) method and write your
custom logic for generating a custom operation name.

class MyOperationFormatter : OperationFormatter

{
public MyOperationFormatter(OperationFormatter next) : base(next)
{
}
protected override string FormatOperationDescriptor(IOperationDescriptor operation)
{
if (operation.OperationKind != OperationKind.Method)
return null;
var descriptor = (MethodExecutionOperationDescriptor) operation;
if (descriptor.Method.IsSpecialName && descriptor.Method.Name.StartsWith("set_"))
// We have a property setter.
var property = descriptor.Method.DeclaringType.GetProperty(
descriptor.Method.Name.Substring(4),
BindingFlags.Instance|BindingFlags.Public|BindingFlags.NonPublic);
var attributes =
(DisplayNameAttribute[]) property.GetCustomAttributes(typeof(DisplayNameAttribute), false);
if (attributes.Length > 0)
return string.Format("Set {0} to {1}", attributes[@].DisplayName, descriptor.Arguments[@] ?? "null
}
else
// We have another method.
var attributes = (DisplayNameAttribute[])
descriptor.Method.GetCustomAttributes(typeof(DisplayNameAttribute), false);
if (attributes.Length > 0)
return attributes[@].DisplayName;
}
return null;
}
}
NOTE

Formatters create a chain of responsibility. If one formatter is unable to provide a name it will ask the next
formatter in the chain to attempt to provide a name. To make the hand-off occur the FormatOperation-
Descriptor(IOperationDescriptor) method needs to return null. If it returns anything else the chain is
broken and the returned value is used as a name.

4. Finally, you need to add your custom name formatter into the chain of responsibility.

RecordingServices.OperationFormatter = new MyOperationFormatter(RecordingServices.OperationFormatter);

Because the RecordingServices is making use of a chain of responsibility, you are able to insert as many custom
name formatters as you want. You are also able to determine their order of execution based on the order that you
insert them into the chain of responsibility.

115

Undo/Redo

8.4. Assigning Recorders Manually

By default, all recordable objects are attached to the global Recorder exposed on the RecordingServicesDefaultRecorder

property. There is nothing you have to do to make this happen. There may be circumstances where you want to create and
assign your own recorder to the undo/redo process. There are two different ways that you can accomplish this.

This topic contains the following sections.

Overriding the default RecorderProvider

By default, the RecordableAttribute aspect attaches an object to a Recorder as soon as its constructor exits. To determine
which Recorder should be used, the aspect uses the RecordingServicesRecorderProvider service. By default, this service
always serves the global instance that is also exposed on the RecordingServicesDefaultRecorder property.

You can override this automatic assignment to inject your own RecorderProvider to into the process.

To use a custom RecorderProvider:

1. Create a class inherited from the RecorderProvider class.

public class MyProvider : RecorderProvider
{
}

2. Implement the chaining constructor. The RecorderProvider that you inherited from requires a RecorderProvider

as a constructor parameter. This constructor parameter facilitates the chain of responsibility for providers that can
be run when a Recorder is requested. To keep the chain of responsibility intact your custom RecorderProvider

will need to accept a RecorderProvider in it's constructor and pass that to the base constructor.

public class MyProvider : RecorderProvider

{

public MyProvider(RecorderProvider next) : base (next)
{
}

}

3. Override the GetRecorderlmpl(Object) method.

public class MyProvider : RecorderProvider

{

public MyProvider(RecorderProvider next) : base(next)

{
}

public Recorder GetRecorderImpl(object obj)
{

//where you will write code to create a new Recorder instance
throw new NotImplementedException();

}
}

4. Insert an instance of your custom RecorderProvider class into the chain of responsibility by assigning it to the
RecordingServicesRecorderProvider.

RecordingServices.RecorderProvider = new MyProvider(RecordingServices.RecorderProvider);

116

Adding Callbacks on Undo and Redo

NOTE

RecorderProvider is a chain of responsibility. As such, if a GetRecorderimpl(Object) method returns null then the chain
will move on to the next RecorderProvider and attempt to get a Recorder to use.

By overriding the default RecorderProvider you are able to assign a custom Recorder across the entire application.

Attaching a recorder manually

The second way that you can add a Recorder to objects is to manually assign them when, and where, they are needed.

To manually assign a Recorder to an object:
1. Set the RecordableAttributeAutoRecord property to false for that class.

[Recordable(AutoRecord = false)]
public class Invoice

{

}

NOTE

By disabling AutoRecord you are telling the RecordingServices that this object should not be included in
recordings unless the recording is explicitly declared in your code.

2. Create a new instance of a Recorder and attach the object to it using the Attach(Object) method.

var invoice = new Invoice();

var recorder = new Recorder();
recorder.Attach(invoice);

You can then use the Detach(0Object) method to remove the Recorder from the object in question.

NOTE

An object must always have the same Recorder as its parent has unless the parent has no Recorder assigned. Because of
this, whenever a Recorder is assigned to an object, all of the child objects will have that same Recorder assigned to them.
However, if you detatch a child object from it's parent the child object's assigned Recorder will not be detached. For more

8.5. Adding Callbacks on Undo and Redo

You may run into situations where you will want to execute some code before or after an object is being modified by an
Undo or Redo operation. This capability is provided through the IRecordableCallback interface.

In the following example, we will show how to integrate the RecordableAttribute aspect with a custom implementation of
INotifyPropertyChanged (the standard NotifyPropertyChangedAttribute aspect is already integrated with the
RecordableAttribute aspect so you don't need to worry).

[Recordable]
public class Invoice : INotifyPropertyChanged, IRecordableCallback

117

Undo/Redo

public void OnReplaying(ReplayKind kind, ReplayContext context)

{
}

public void OnReplayed(ReplayKind kind, ReplayContext context)

{
OnPropertyChanged("ShippingDate");

}

private DateTime _shippingDate;
public DateTime ShippingDate

{
get { return _shippingDate; }
set
{
_shippingDate = value;
OnPropertyChanged("ShippingDate");
}
¥

public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged(string propertyName = null)

{
var handler = PropertyChanged;

if (handler != null) handler(this, new PropertyChangedEventArgs(propertyName));
}
}

For more information, see the reference documentation for the IRecordableCallback interface.

8.6. Understanding the Recordable Aspect

This section describes how the RecordableAttribute aspect is implemented. It helps developers and architects to
understand the behavior and limitations of the aspect.

This topic contains the following sections.

Overview

When the RecordableAttribute aspect is applied to a class, the aspect records changes performed on instances of this
class. Changes are represented as instances of the Operation class. For instance the FieldOperationT class represents the
operation of changing the value to a field. All operations implement the Undo(ReplayContext) and Redo(ReplayContext)
methods. For instance, the FieldOperationT class stores both the new and old value so that the operation can be undone
and redone.

The changes are recorded into the Recorder object. The Recorder maintains two collections of operations: UndoOperations
and RedoOperations. The RecorderUndo method takes the last operation from the UndoOperations collection, invokes

118

Understanding the Recordable Aspect

OperationUndo(ReplayContext) for this operation, and moves the operation to the RedoOperations collection. The
RecorderUndo method works symmetrically.

It would not be safe, however, to allow users to undo changes in the object model back to any arbitrary point in history.
Users don't want to undo primitive changes to an object model, but to undo whole operations understood from a user's
perspective. This is why the UndoOperations and RedoOperations collections don't expose primitive changes on the object

model but logical operations.

By default, logical operations are automatically opened when calling a public or internal method of a recordable object, and
closed when the same method exits. The principal use case of scopes is to define user-friendly operation names.

There is typically a single instance of this class per application, but there could be many if needed (for instance in a multi-
document application). The default single instance is accessible from the RecordingServicesDefaultRecorder property. By
default, recordable objects are attached to the default recorder immediately after completion of the constructor. See

Scopes and Logical Operations

Scopes are a mechanism to aggregate several primitive operations into logical operations that make sense for the end-user.
Logical operations are represented by the CompositeOperation class.

In general, logical operations form a flat structure: the UndoOperations and RedoOperations collections are flat double
linked lists, and each CompositeOperation typically contains primitive operations such as a field value change.

Scopes define boundaries of logical operations. Scopes can be opened using the RecorderOpenScope (RecordingScope-
Option) method, which returns an object of type RecordingScope. This class implements the IDisposable interface,
making it convenient to define scopes with the using statement.

By default, the RecordableAttribute aspect encloses all instance public and internal methods with an implicit scope. That
is, by default, public and internal methods define boundaries of logical operations.

Unlike logical operations, scopes are generally nested. Scope nesting typically happens when a public method directly or
indirectly invokes another public method. In general, only the outermost scope results in creating a logical operation. This is
why, in general, logical operations form a flat structure.

Because they are visible to users, logical operations must be given a user-friendly name. PostSharp defines default names
that are not user-friendly. The responsibility of generating operation names is implemented by the OperationFormatter

class. You can provide your own OperationFormatter to generate operations names on demand, or you can set the name
explicitly in source code for each operation.

Scope names can be declaratively defined using the RecordingScopeAttribute custom attribute, or programmatically
using the RecorderOpenScope(String, RecordingScopeOption) method. To learn more about operation names, see

Atomic Operations

Atomic scopes are scopes whose changes are automatically rolled back when it does not complete successfully, typically
when an exception occurs. The rollback is implemented using the undo mechanism. Atomic scopes are a similar concept
than transactions, but multi-threading is not taken into account. Therefore, other threads may see changes that have not
been "committed"”, because the Recordable\ pattern does not have a notion of transaction isolation.

Atomic scopes cause composite operations to have a tree structure. However, the concept of atomic structure does not
surface to the users. Therefore, from a user's perspective, the UndoOperations and RedoOperations collections still present

linear lists of logical operations.

Scope defined declaratively using the RecordingScopeAttribute custom attribute, or programmatically using the
RecorderOpenScope (RecordingScopeOption) method.

119

Undo/Redo

Primitive Operations

The following table lists the primitive operations that are automatically appended to the Recorder object by the
RecordableAttribute aspect.

Class Description
FieldOperationT Represents the operation of setting a field to a different value.
CollectionOperationT Represents operations on collections.

DictionaryOperationTKey, TValue Represents operations on dictionaries.

RecorderOperation Represents the operation of attaching or detaching an object to or from a Recorder.

Additionally to these system-defined operations, it is possible to implement custom operations by deriving from the
Operation abstract class. You can then use the RecorderAddOperation(Operation) method to append the custom

operation to the Recorder.

Logical operations, which are presented to the end user, are typically represented as instances of the CompositeOperation
class.

Restore Points

Restore points act like bookmarks in the list of operations. They allow to undo or redo operations up to a specific point. You
can use the RecorderAddRestorePoint(String) method to create a restore point. The method returns an instance of the

RestorePoint class, which derives from the Operation class. Unlike other operations, you can safely remove a restore point
from the history thanks to the Remove method.

Implementing IEditableObject

You can use the EditableObjectAttribute custom attribute to automatically implement the IEditableObject interface.
The implementation is based on the RecordableAttribute aspect. It creates a RestorePoint when the BeginEdit method
is invoked, removes the restore point upon EndEdit, and undoes changes up to the restore point when CancelEdit is
called.

Because of this implementation strategy, it is possible than CancelEdit actually cancels changes done to other objects that

share the same Recorder.

Callback methods

The Recorder will invoke the OnReplaying(ReplayKind, ReplayContext) and OnReplayed(ReplayKind, ReplayContext)
methods of any recordable object implementing the IRecordableCallback interface, whenever the object is affected by an
undo or redo operation.

The order in which these methods are ordered on several objects is non-deterministic; in particular, the aggregation
structure is not respected.

It is not allowed, from a callback methods:

» to perform a change that would be recorded, e.g. to set a field that has not been waived from recording with the
NotRecordedAttribute custom attributes.

« to invoke methods Undo, Redo or AddRestorePoint of the Recorder class.

120

Understanding the Recordable Aspect

Memory consumption

The UndoOperations and RedoOperations collections hold strong references to all objects that have changes that can be
undone or redone. This means that these objects cannot be garbage-collected and will remain in memory.

You can define the maximal number of operations available for undo thanks to the RecorderMaximumOperationsCount
property.

121

Undo/Redo

122

Walkthrough: Adding Contracts to Code

CHAPTER 9
Contracts

Throwing exceptions upon detecting a bad or unexpected value is good programming practice called precondition checking.
However, writing the same checks over and over in different areas of the code base is tedious, error prone, and difficult to
maintain.

PostSharp Code Contracts have the following features and benefits:

» More readable. PostSharp Code Contracts are represented as custom attributes there is less code to read and
understand.

* Inherited. You can add a PostSharp Code Contract attribute to an interface method parameter and it will automat-
ically be enforced in all implementations of this method.

» Localizable. It's easy to display the error message in the user's language, even if you didn't design for this scenario
upfront.

In this chapter

Section Description

Walkthrough: Adding Contracts to Code on page 123 This section demonstrates how to add contracts to code
and how inheritance works.

Creating Custom Contracts on page 127 This section explains how to create your own contract
attributes.

Localizing.Contract Errors on page. 129 This section describes how to customize the texts of

exceptions that are thrown when a contract is violated.

9.1. Walkthrough: Adding Contracts to Code

This section describes how to add a contract to a field, property, or parameter.
This topic contains the following sections.

* Introduction on page 123

» Adding contracts using the Ul on page 125

» Adding contracts manually on page 127

+ Contract Inheritance on page 127

Introduction

Consider the following method which checks if a valid string has been passed in:

public class CustomerModel

{

public void SetFullName(string firstName, string lastName)

123

Contracts

{
if(firstName == null)
throw NullReferenceException();
if(lastName == null)
throw NullReferenceException();
this.FullName = firstName + lastName;
}
}

In this example, checks have been added to ensure that both parameters contain a valid string. A better solution is to place
the logic which performs this check into its own reusable class, especially such boilerplate logic is involved, and then reuse/
invoke this class whenever the check needs to be performed.

PostSharp’s Contract attributes do just that by moving such checks out of code and into parameter attributes. For example,
PostSharp’s RequiredAttribute contract could be used to simplify the example as follows:

public class CustomerModel

{
public void SetFullName([Required] string firstName, [Required] string lastName)
{
this.FullName = firstName + lastName;
}
}

In this example the RequiredAttribute attribute performs the check for null, thus eliminating the need to write the boiler
plate code for the check inline with other code.

A contract can also be used in a property as shown in the following example:

public class CustomerModel

{
[Required]
public FirstName

{
get;
set;

}

Using a contract in a property ensures that the value being passed into set is validated before the logic (if any) for set is
executed.

Similarly, a contract can be used directly on a field which will validate the value being assigned to the field:

public class CustomerModel

{
[Required]
private string mFirstName = “Not filled in yet”;
public void SetFirstName(string firstName)
{
mFirstName = firstName;
}
}

In this example, firstName will be validated by the Required contract before being assigned to mFirstName. Placing a
contract on a field provides the added benefit of validating the field regardless of where it's set from.

Note that PostSharp also includes a number of built-in contracts which range from checks for null values to testing for valid
phone numbers. You can also develop your own contracts with custom logic for your own types as described below.

There are two ways to add contracts:

124

Adding contracts using the Ul

Walkthrough: Adding Contracts to Code

PostSharp’s Visual Studio integration provides a smart tag popup which can be used to select and apply a contract to a
parameter, field, or property.

To add contract using the Ul:

1. Click on the parameter, field, or property for which the contract is to be applied. While hovering the mouse over
this item, a smart tag drop-down will appear:

public class CustomerModel

{

private strin

public wvoid 5

frars

{

b
thame

mFirstName = firstName;

}
}

“Not filled in yet™;

Name(string firstName)

2. Click on the smart tag drop-down to reveal the contracts available:

public class CustomerModel

{

private string mFirstName

public woid Set

{

mFirstName =

}
}

4
w

“Not filled in yet™;

Require a non-null and non-whitespace value

Add another aspect...

3. Select a contract from the list or select Add another aspect to display the aspect selection dialog:

/7
)X Select an aspect

Select Aspect

Summary
Progress

Completed

@ Contracts

Require a non-empty string
Throws an exception if the value is a null or empty string.

1 a Il and itespace value
Throws an exception if the value is null,

Require a non-null value
Throw an exception if the value is null.

Require a valid URL
Throw an exception if the value is not a URL starting with http, https, or ftp.
Mull strings are not validated.

Require a valid credit card number
Throw an exception if the value is not a valid credit card number. Null strings
are not validated.

Require a valid email address
Throw an exception if the value is not a valid email address. Null strings are
not validated.

< Previous Mext > | | Cancel

4. Select a contract and click Next.

125

Contracts

5. Confirm the addition of the contract and click Next:

)%// Summary

Select Aspect

Summary

Install package PostSharp.Patterns.Model to project Wpfapplication2,
Progress

The following actions will be performed:

Add custom attribute [NotEmpty] to WpfApplication2.CustomerModel. mFirstName.
Completed

6. Click Finish when the dialog indicates that the operation completed:

77
)X The operation has successfully completed

Select Aspect The project has been successfully modified.
Summary

Progress

Completed

< Previous | ‘ Finish || Cancel

The aspect has now been added in code:

126

Creating Custom Contracts

public class Customertodel

ing mFirstName = “Not filled in yet™;
public void SetFirstName(string firstName)

mFirstiame = firstName;
}
H

Adding contracts manually

To add contract manually:
1. Add the assembly: PostSharp.Patterns.Model to your project.

2. Add the namespace: PostSharp.Patterns.Contracts.

3. Add the attribute before the parameter name for example:

public void SetFullName([Required] string firstName, [Required] string lastName)

Contract Inheritance

PostSharp ensures that any contracts which have been applied to an abstract, virtual, or interface method are inherited
along with that method in derived classes, all without the need to re-specify the contract in the derived methods. This is
shown in the following example:

public interface ICustomerModel

{

void SetFullName([Required] string firstName, [Required] string lastName);

}

public class CustomerModel : ICustomerModel

¢ public void SetFullName(string firstName, string lastName)
{
¥

}

this.FullName = firstName + " " + lastName;

Here ICustomerModel.SetFullName method specifies that the firstName and lastName parameters are required using the
RequiredAttribute attribute. Since the CustomerModel.SetFullName method implements this method, these attributes
will also be applied to its parameters.

NOTE

If the derived class exists in a separate assembly, that assembly must be processed by PostSharp and must reference Post-
Sharp and PostSharp Model pattern assembly.

9.2. Creating Custom Contracts

Given the benefits that contracts provide over manually checking values and throwing exceptions in code, you will likely
want to implement your own contracts to perform your own custom checks and handle your own custom types.

127

Contracts

The following steps show how to implement a contract which throws an exception if a numeric parameter is zero:

To implement a contract throwing an exception if a numeric parameter is zero:
1. Use the following namespaces: PostSharp.Aspects and PostSharp.Reflection.

2. Derive a class from LocationContractAttribute and override the GetErrorMessage method:

public class NonZeroAttribute : LocationContractAttribute

{
public const string ErrorMessage = "NonZeroErrorMessage";
public NonZeroAttribute()
: base()
{
}
protected override string GetErrorMessage()
{
return "Value {2} must have a non-zero value.";
}
}
NOTE

The value returned by GetErrorMessage method can contain formatting placeholders. See the remarks section
for the LocationContractAttribute class for more information.

128

Localizing Contract Errors

3. Implement the ILocationValidationAspect interface in the new contract class which exposes the validate-
Value(T, String, LocationKind) method. Note that this interface must be implemented for each type that is to
be handled by the contract. In this example, the contract will handle both int and uint, so the interface is
implemented for both integer types. If additional integer types were to be handled by this class (e.g. 1long), then
additional implementations of ILocationValidationAspect would have to be added:

public class NonZeroAttribute : LocationContractAttribute, ILocationValidationAspect<int>, ILocationValidationAspect

t public const string ErrorMessage = "NonZeroErrorMessage";
public NonZeroAttribute()
: base()
{
}
protected override string GetErrorMessage()
{ return "Value {2} must have a non-zero value.";
¥
public Exception ValidateValue(int value, string name, LocationKind locationKind)
{
if (value == 0)
return this.CreateArgumentOutOfRangeException(value, name, locationKind);
else
return null;
¥
public Exception ValidateValue(uint value, string name, LocationKind locationKind)
{
if (value == 0)
return this.CreateArgumentOutOfRangeException(value, name, locationKind);
else
return null;
¥
}

The validatevValue(T, String, LocationKind) method takes in the value to test, the name of the parameter,

property or field, and the usage (i.e. whether it's a parameter, property, or field). The method must return an
exception if a check fails, or null or if no exception is to be raised.

With the contract now created it can be used. For example, the following methods which calculate the modulus between
two numbers, can use the contract defined above to ensure that neither of their input parameters are zero:

bool Mod([NonZero] int number, [NonZero] int dividend)

{
return ((number % dividend) == @);
}
bool Mod([NonZero] uint number, [NonZero] uint dividend)
{
return ((number % dividend) == @);
}

9.3. Localizing Contract Errors

You can customize all texts of exceptions raised by built-in contract. This allows you to localize error messages into different
languages.

129

Contracts

Contracts use the ContractLocalizedTextProvider class to obtain the text of an error message. This class follows a simple

chain of responsibilities pattern where each provider has a reference to the next provider in the chain. When a message is
queried, the provider either returns a message or passes control to the next provider in the chain.

Each message is identified by a string identifier and can refer to 4 basic arguments and additional arguments specific to a
message type. For general information about message arguments please see remarks section of LocationContract-

Attribute. For identifier of a particular message and its additional arguments, please see remarks section of contract
classes in PostSharp.Patterns.Contracts.

This topic contains the following sections.

» Localizing a built-in error message on page 130

 Localizing custom contracts on page 131

Localizing a built-in error message

Following steps illustrate how to override an error message of a given contract:

To override a contract error message:

1. Declare a class that derives from ContractLocalizedTextProvider and implement the chain constructor.

public class CzechContractlLocalizedTextProvider : ContractlLocalizedTextProvider

{
public CzechContractLocalizedTextProvider(ContractLocalizedTextProvider next)
: base(next)
{
}
}

130

Localizing Contract Errors

2. Implement the GetMessage(String) method. In the next code snippet, we show how to build a simple and
efficient dictionary-based implementation.

public class CzechContractlLocalizedTextProvider : ContractlLocalizedTextProvider

{
private readonly Dictionary<string, string> messages = new Dictionary<string, string>
{RegularkExpressionErrorMessage, "Hodnota {2} neodpovidd reguldrnimu vyrazu
s
public CzechContractLocalizedTextProvider(ContractLocalizedTextProvider next)
. base(next)
{
}
public override string GetMessage(string messageId)
{
if (string.IsNullOrEmpty(messageld))
throw new ArgumentNullException("messageId");
string message;
if (this.messages.TryGetValue(messageId, out message))
{
return message;
¥
else
// Fall back to the default provider.
return base.GetMessage(messageld);
}
}
}
NOTE

If you need to support several languages, you can make your implementation of the GetMessage(String)
method dependent on the value of the CultureInfoCurrentCulture property. You can optionally store your
error messages in a managed resource and use the ResourceManager class to access it and manage localization
issues. The design of PostSharp Code Contracts is agnostic to these decisions.

3. In the beginning of an application, create a new instance of the provider and set the current provider as it's
successor.

public static void Main()
{

ContractLocalizedTextProvider.Current = new CzechContractLocalizedTextProvider(ContractLocalizedTextProvider.Cur

/] ...

Localizing custom contracts

Once you have configured a text provider, you can use it to localize error messages of custom contracts. In the following

131

Contracts

To localize a custom contract:

1. Edit the code contract class (NonZeroAttribute in our case) and replace the implementation of the GetError-
Message method by a call to the GetMessage(String) method. Pass a unique message identifier to this method.

protected override string GetErrorMessage()

{
}

return ContractLocalizedTextProvider.Current.GetMessage("NonZeroErrorMessage");

2. Edit your implementation of the LocalizedTextProvider class and include the message for your custom contract:

private readonly Dictionary<string, string> messages = new Dictionary<string, string>

{
{RegularExpressionErrorMessage, "Hodnota {2} neodpovidad reguldrnimu vyrazu '{4}'."},
{"NonZeroErrorMessage", "Value {2} must have a non-zero value."}

¥

132

Walkthrough: Adding Detailed Tracing to a Code Base

CHAPTER 10

Logging

The Diagnostics Pattern Library enables you to configure where logging should be performed and to keep your log entries
in sync as you add, remove and refactor your codebase. Currently, the library provides a single aspect: LogAttribute.

In this chapter

Section Description

Walkthrough: Adding Detailed Tracing to a Code This article shows how to add detailed logging to your
Base on page 133 application.

Walkthrough: Tracing Parameter Values Upon This article describes how to log parameter values when a
Exception on page 143 method fails with an exception.

Walkthrough: Customizing Logging on page 137 This article shows how to customize the logging settings,

such as the severity level or whether parameter values
should be included.

Walkthrough: Changing the Logging Back-End on page 148 This article shows how to switch to a different back-end
after you have chosen a first one.

10.1. Walkthrough: Adding Detailed Tracing to a Code Base

When you're working with your codebase it's common to need to add logging either as a non-functional requirement or
simply to assist during the development process. In either situation you will want to include information about the
parameters passed to the method when it was called as well as the parameter values once the method call has completed.
This can be a tedious and brittle process. As you work and refactor methods the order and types of parameters may
change, parameters may be added and some maybe removed. Along with performing these refactorings you have to
remember to update the logging messages to keep them in sync. This is something that is easy to forget and once
forgotten the output of the logging is much less useful.

PostSharp offers a solution to all of these problems. The logging pattern library allows you to configure where logging
should be performed and the pattern library takes over the task of keeping your log entries in sync as you add, remove and
refactor your codebase. Let's take a look at how you can add trace logging for the start and completion of method calls.

To add trace logging for the start and completion of method calls:
1. Let's add logging to our Save method.

public void Save(string firstName, string lastName, string streetAddress, string city)

{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

133

Logging

2. Put the caret on the Save method name and expand the Smart Tag. From the list select "Add logging".

public class CustomerService

public veid Save(string firstName, string lastName, string streetAddress, string city)

i a-
war cust 0) i 'H
customer Execute method in the background ectaddress, city);
h X(Add architecture constraint...
¥ » Add logging...

3. The first option that you need to select is the Logging Profile. For this example we will take the default provided: it
logs the method enters and exits, and includes parameter values and return value. Select the "Default" profile and
click Next.

/
)X Select the level of detail.

Logging Level Select legging profile:

Select Back End Default

Summary Log on entry and exit.
Include method name, parameter value and return value.

Progress Exception log level: Waming.

Completed
Exceptions

Log on exception.

Include method name and parameter value,
Exception log level: Warning.

Mew legging profile...

< Previous | ‘ Mext >

134

Walkthrough: Adding Detailed Tracing to a Code Base

4. The next page of the wizard gives you the opportunity to choose the logging back-end that you want to use. For
this example select "System.Diagnostics.Trace" and click Next.

/7
>X Select the logging back end.

Logging Level Which back end should the log records be written to?

Summary System.Console
Logdhet
NLog
Enterprise Library

Progress

Completed

Each back end may require additional configuration, typically in file app.config.
Check the component documentation for details.

| < Previous | ‘ MNext > ||

5. The summary page gives you the opportunity to review the selections that you have made. If you notice that the
configuration is not what you wanted you can click the Previous button and adjust your selections. If the configu-
ration meets your needs click Next.

)}k// Summary

Logging Level The following actions will be performed:

Select Back End

Summary

Progress

Install package PostSharp.Patterns.Diagnostics to project Sharpcrafters.Crm.
Add custom attribute [Log] to Sharperafters.Crm.CustomerService. Save,

Set property 'LoggingBackend’ te ‘Trace' in configuration file 'Sharperafters.Crm'.
Completed

135

Logging

6. The progress page shows a progress bar and summary of what actions PostSharp is taking to add the selected
logging configuration to your codebase. It's at this point that PostSharp and the logging pattern library will be
downloaded from NuGet and added as references to your codebase.

&
)X Please wait while the operation is in progress.

Logging Level Install package PostSharp.Patterns.Diagnostics to project Sharperafters.Crm.

select Back End |

Summary

Completed

| < Previous | ‘ Mext > || Cancel |

7. Once the download, installation and configuration of PostSharp and the logging pattern library has finished you
can close the wizard and look at the changes that were made to your codebase.

/
)X The operation has successfully completed

Logging Level The project has been successfully medified.
Select Back End
Summary

Progress

Completed

< Previous | ‘ Finish || Cancel

136

Walkthrough: Customizing Logging

8. You'll notice that the code you added the logging to has changed slightly. PostSharp has added a LogAttribute
attribute to the method. Since we chose the default logging profile, there is no argument to the LogAttribute
attribute.

[Log]
public void Save(string firstName, string lastName, string streetAddress, string city)

{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

NOTE

This example has added a single attribute to one method. If you plan on adding this logging to many different

9. If you were to run this method the trace logging that you added would output a log message when entering the
method and an entry when leaving the method. Note that the parameter values are automatically included in the
log message.

CustomerService.Save(this = {Sharpcl-aftel-s.Crm.!
icey, "Dave', Y. 123 Main Street", “"Springfield">
Leaving: Shapprrafters Com Customenfepsnicre Sanelthisz = {Shavperafters . Crm.C|
erservice}, ('Dave'. "Johnson'. "123 Main Street". “"Springfield'>

Now that you have logging added to the Save method you are able to change the method's name as well as add and
remove parameters with the confidence that your log entries will be kept in sync with each of those changes. In

to your codebase and maintaining it becomes a very easy task.

10.2. Walkthrough: Customizing Logging

When adding logging to your codebase, you may need to set up logging options differently for different areas or layers in
your application. For example, exceptions in the service that cleans up old data in the database can be logged with a
"Warning" level, while exceptions in the customer-facing web service must be logged with the "Error" level.

PostSharp enables you to organize your logging options using Logging Profiles. Logging profiles are stored in the solution-
wide configuration file, and each profile specifies what information you want to be included in the log output. You apply a
given logging profile by providing its name as an argument for the LogAttribute attribute's constructor. Let's take a look
at how you can create your own logging profile and use it in your code.

137

Logging

To create a custom logging profile:
1. Let's add customized logging to our Save method.

public void Save(string firstName, string lastName, string streetAddress, string city)

{
var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

¥

2. Put the caret on the Save method name and expand the Smart Tag. From the list select "Add logging".

public class CustomersService

i
public void Save(string firstName, string lastName, string streetAddress, string city)
{ a-
var cust) X }H
customer »{ Execute method in the background eetAddress, city);
T »f Add architecture constraint...
¥ » Add legging...

3. The first page of the wizard is the logging profile selection dialogue. In this dialogue you can select one of the
predefined profiles, edit an existing profile or create a new one. For this example click on the “New logging
profile...” link to create a new logging profile.

/7
)X Select the level of detail.

Logging Level Select legging profile:

Select Back End

Default

Summary Log on entry and exit.

Include method name, parameter value and return value,
Progress Exception log level: Waming.
Completed
Exceptions

Log on exception,

Include method name and parameter value,
Exception log level: Waming.

MNew logging profile...

< Previous | ‘

138

Walkthrough: Customizing Logging

4. Provide a name for your newly created logging profile in the opened profile customization dialogue.

Profile name: [New profile

Write a log record:

(@) When the method enters and exits
() When the method enters

() When the method fails

Include in log message:
Parameters value
Return value

[] Parameters name
[] Parameters type

5. Choose when to write a new message to the log. You can select from one of these options: when entering and
exiting the method, only when entering the method, only when exception is thrown inside the method.

6. Choose what information to include in each log message. The available options are: parameter values, names, and
types, and return value of the method.

7. Finally, select the logging level to use for the exception log messages.

8. When you're done with customizing your new logging profile, click Save button.

Profile name: [New profild

Write a log record:

) When the method enters and exits
(@) When the method enters

) When the method fails

Include in log message:

Parameters value
Return value

Parameters name
[] Parameters type

Exception level: Warning

139

Logging

9. Back in the profile selection dialogue select your profile and click Next.

Y/
)X Select the level of detail.

Logging Level Select legging profile:

Select Back End

Default

Summary Leg on entry and exit,

Include method name, parameter value and return value,
Progress Exception log level: Waming.
Completed
Exceptions

Log on exception.

Include method name and parameter value,
Exception log level: Waming.

New profile

Log on entry and exit,

Include method name, parameter value and return value.
Exception log level: Warning.

MNew legging profile...

| < Previous | ‘ Mext > || Cancel |

10. The next page of the wizard gives you the opportunity to choose the logging back-end that you want to use. For
this example select "System.Diagnostics.Trace" and click Next.

/
)X Select the logging back end.

Logging Level Which back end should the leg records be written to?

Summary System.Console
Log4Met
NLog
Enterprise Library

Progress

Completed

Each back end may require additional configuration, typically in file app.config.
Check the component decumentation for details,

< Previous H Nest = ||

140

Walkthrough: Customizing Logging

11. The summary page gives you the opportunity to review the selections that you have made. If you notice that the
configuration is not what you wanted you can click the Previous button and adjust your selections. If the configu-
ration meets your needs click Next.

)%// Summary

Logging Level The following actions will be performed:
Select Back End

Summary

Progress

Install package PostSharp.Patterns.Diagnostics to project Sharpcrafters.Crm.

Add custom attribute [Log] to Sharperafters.Crm.Program.Save.

Set property 'LoggingBackend' to ‘Trace' in configuratien file 'Sharperafters.Crm'.
Completed

Save log profiles

Set property 'LoggingEnabled' to {has-plugin('PostSharp.Patterns.Diagnostics')]' in
configuration file 'Sharperafters. Crm.sin',

12. The progress page shows a progress bar and summary of what actions PostSharp is taking to add the selected
logging configuration to your codebase. It's at this point that PostSharp and the logging pattern library will be
downloaded from NuGet and added as references to your codebase.

77
)X Please wait while the operation is in progress.

Logging Level Install package PostSharp.Patterns.Diagnostics to project Sharpcrafters.Crm.

select BackEnd I

Summary

Completed

= Previous | ‘ MNext > || Cancel

141

Logging

142

13. Once the download, installation and configuration of PostSharp and the logging pattern library has finished you

can close the wizard and look at the changes that were made to your codebase.

Add logging n

7
)& The operation has successfully completed

Logging Level The project has been successfully modified.
Select Back End
Summary

Progress

Completed

< Previous Cancel

14. First of all, the code window with SolutionName.pssin file will be shown. This file stores all your custom logging

15.

profiles and other solution-level information.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration”xmlns:d="clr-namespace:PostSharp.Patterns.Diagnostics;
<PropertyName="LoggingEnabled"Value="{has-plugin('PostSharp.Patterns.Diagnostics"')}"Deferred="true"/>
<d:LoggingProfilesp:Condition="{$LoggingEnabled}">
<d:LoggingProfileName="New profile"OnEntryOptions="IncludeParameterValue | IncludeReturnValue | IncludeThisArgum
</d:LoggingProfiles>
</Project>

You'll also notice that the code you added the logging to has changed slightly. PostSharp has added a Log-
Attribute attribute to the method and the attribute has the name of your logging profile specified as an
argument.

[Log("New profile")]
public void Save(string firstName, string lastName, string streetAddress, string city)

{
var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);
}
NOTE

This example has added a single attribute to one method. If you plan on adding this logging to many different

Walkthrough: Tracing Parameter Values Upon Exception

16. If you were to run this method the trace logging that you added would output a log message according to the
options you've specified in your logging profile.

ﬂﬁk’—".’."."f—.’mrkm!l."ﬁmplﬁ.fSllarpcraﬂers.CnnSf arpcrafters.
.CustomerService.Save(this = {Shalpclaftela Crm. !

123 Main Street’ pringfield'>
amenlernice Cauelthis = ICharpenafters.Crm.C

123 Main Street'. "Spr 1ngf1eld "y

Now that you have logging added to the Save method you are able to change the method's name as well as add and
remove parameters with the confidence that your log entries will be kept in sync with each of those changes In

to your codebase and maintaining it becomes a very easy task.

10.3. Walkthrough: Tracing Parameter Values Upon Exception

When you're working with your codebase it's common to need to add logging of exceptions either as a non-functional
requirement or simply to assist during the development process. In either situation you will want to include information
about the parameters that were passed to the method where the exception is being caught and logged. This can be a
tedious and brittle process. As you work and refactor methods the order and types of parameters may change, parameters
may be added and some maybe removed. Along with performing these refactorings you have to remember to update the
exception logging messages to keep them in sync. This is something that is easy to forget and once forgotten the output of
the logging is much less useful.

PostSharp offers a solution to all of these problems. The logging pattern library allows you to configure where logging
should be performed and the pattern library takes over the task of keeping your log entries in sync as you add, remove and
refactor your codebase. Let's take a look at how you can add trace logging of exceptions that includes the parameter values
that were passed to the method that is being logged.

To add trace logging of exceptions that includes the parameter values:
1. Let's add logging to our DoStuff method.

public void DoStuff(int i, int x)
{

}

Console.WriteLine(i/x);

143

Logging

2. Put the caret on the DoStuff method name and expand the Smart Tag. From the list select "Add logging".

public wvoid Dostuff(int i, int x)
{ 2-
Console. oo
3 3 Execute method inthe background
»(Add architecture constraint...

» Add logging...

3. The first option that you need to select is the Logging Profile. Here we want to choose the "Exceptions" profile
and accept its default values. Click Next.

/7
)X Select the level of detail.

Logging Level Select legging profile:

Select Back End

Default
Summary Log on entry and exit.
Include method name, parameter value and return value,
Progress Exception leg level: Waming.
Completed

Exceptions

Log on exception.

Include method name and parameter value,
Exception log level: Waming.

MNew legging profile..

< Previous | ‘ Next >

144

Walkthrough: Tracing Parameter Values Upon Exception

4. The next page of the wizard gives you the opportunity to choose the logging back-end that you want to use. For
this example select "System.Diagnostics.Trace" and click Next.

/7
>X Select the logging back end.

Logging Level Which back end should the log records be written to?

Summary System.Console
Logdhet
NLog
Enterprise Library

Progress

Completed

Each back end may require additional configuration, typically in file app.config.
Check the component documentation for details.

| < Previous | ‘ MNext > ||

5. The summary page gives you the opportunity to review the selections that you have made. If you notice that the
configuration is not what you wanted you can click the Previous button and adjust your selections. If the configu-
ration meets your needs click Next.

)}k// Summary

Logging Level The following actions will be performed:

Select Back End

Summary

Progress

Install package PostSharp.Patterns.Diagnostics to project Sharpcrafters.Crmd,
Add custom attribute [LogException] to Sharpcrafters.Crmd.Program.DoStuff.

Set property 'LoggingBackend’ te ‘Trace' in configuration file 'Sharperafters.Crmd',
Completed

145

Logging

6. The progress page shows a progress bar and summary of what actions PostSharp is taking to add the selected
logging configuration to your codebase. It's at this point that PostSharp and the logging pattern library will be
downloaded from Nuget and added as references to your codebase.

&
)X Please wait while the operation is in progress.

Logging Level Install package PostSharp.Patterns.Diagnostics to project Sharperafters.Crmd.

select Back End |

Summary

Completed

| < Previous | ‘ Mext > || Cancel |

7. Once the download, installation and configuration of PostSharp and the logging pattern library has finished you
can close the wizard and look at the changes that were made to your codebase.

/
)X The operation has successfully completed

Logging Level The project has been successfully medified.
Select Back End
Summary

Progress

Completed

< Previous | ‘ Finish || Cancel

146

8.

10.

Walkthrough: Tracing Parameter Values Upon Exception

You'll notice that the code you added the logging to has changed slightly - PostSharp has added a Log-
ExceptionAttribute attribute to the method.

[LogException]
public void DoStuff(int i, int x)
{

}

Console.WriteLine(i/x);

NOTE

This example has added a single attribute to one method. If you plan on adding this logging to many different

If you were to run this method from a console application and pass in a value of zero for the second parameter it
would generate a DivideByZeroException. The trace logging that you added would output a log message plus
the exception's stack trace to the console. Note that the parameter values are automatically included in the log
message.

[N filez/ / /C:/working /samples/Sharpcrafters.Crm4/Sha

—
Errorifin exception occurred in Sharpcrafter rm4 . Progran,DoStuf f (208, B>: I’
System.DivideByZeroException: Attempted to de by zero. .

at Sharpcrafters.Crmd.Progran.DoStuff<{Int32 i, Int32 x> in c:“working“samples
“harperaf ters . Crmd\Sharperafters .Crmd\Program.cs:line 21

For those of you interested in what is happening behind the scenes we can decompile the method and observe
what PostSharp has done to our codebase. You'll notice two significant things when you look at the decompiled
code. First, PostSharp added in a try. . .catch block that wraps the entirety of the original methods contents. The

second thing you'll notice is that the catch block logs the exception and re-throws it. This ensures that your code
execution paths will remain unchanged after you've added the logging.

= public static void DoStuff(int i, int x)
i

try

{

Conscle.WriteLine(i / x);

catch (Exception arg)

{
<>z__LoggingImplementationDetails.WriteLine("Error|An exception occurred in Sharpcrafters.Crmd.Program.DoStuff({e}, {1}):\n{2}", i, x, arg);
throw;

¥
—1

Now that you have logging added to the DoStuff method you are able to change the method's name as well as add and
remove parameters with the confidence that your log entries will be kept in sync with each of those changes. In

adding logging to your codebase and maintaining it becomes a very easy task.

147

Logging

10.4. Walkthrough: Changing the Logging Back-End

This section describes how to change the logging back-end for a project or solution.

To change the logging back-end:

1. Remove the NuGet package containing the previous back-end implementation, if any.
2. Add the NuGet package containing the new back-end implementation, if any.

The following table shows the identifier of the back-ends and the package in which they are implemented:

Name NuGet Package Description

Console PostSharp.Patterns.Diagnostics Logging using ConsoleWritelLine(String)
Trace PostSharp.Patterns.Diagnostics Logging using Trace

Log4Net PostSharp.Patterns.Diagnostics.Log4Net

NLog PostSharp.Patterns.Diagnostics.NLog

3. If the new NuGet package contains several implementations, set the LoggingBackend property in the PostSharp

project file (MyProject.psproj) to the name of the chosen logging back-end. Below is an example of PostSharp
project file with the LoggingBackend set to "Trace".

<?xmlversion="1.0"encoding="utf-8"?>

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration”OverridesDefaultProject="false">
<PropertyName="LoggingBackend"Value="Trace"/>

</Project>

148

https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Log4Net/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.NLog/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.EnterpriseLibrary/

Walkthrough: Changing the Logging Back-End

CHAPTER 1

Adding Aspects to Code

An aspect has no effect until it is applied to some element of code. PostSharp provides multiple ways to add aspects to
your code.

Applying Aspects to Multiple Elements of Code Declaratively

In many situations, you want to apply the same aspect to many elements of code. For instance, you may need to add
tracing or performance monitoring to all public methods of a namespace. Since there may be hundreds of affected
methods, you don't want to add a custom attribute to all of them.

Thanks to an extension of semantics of custom attributes named “multicast custom attribute” (MulticastAttribute), it is
easy to apply an aspect to multiple elements of code using a single line of code.

Applying Aspects to Multiple Elements of Code Imperatively

If declarative features of MulticastAttribute are not sufficient for your case, you can select elements of code imperatively.
For instance, you can develop complex filters based on System.Reflection or read information from an XML file.

There are two ways you can implement imperative selection aspect targets:

Filtering Out Using CompileTimeValidate

To filter out elements of codes that have been selected by MulticastAttribute, you can implement the method Compile-
TimeValidate(Object) of your aspect and silently return false if the candidate target is not appropriate. .

For instance, the following aspect will apply only on security-critical methods.

using System;
using System.Reflection;
using PostSharp.Aspects;

namespace Samples2
{
[Serializable]
public sealed class TraceSecurityCriticalAttribute : OnMethodBoundaryAspect
{
// Select only security-critical methods.
public override bool CompileTimeValidate(MethodBase method)
{

}

return method.IsSecurityCritical;

public override void OnEntry(MethodExecutionArgs args)

{
}

Console.WriteLine("On Entry");

}

149

Adding Aspects to Code

Adding Aspect Instances Using |AspectProvider

If you have to implement more complex rules to select the target of aspects, you can create another aspect that will do
nothing else than adding aspect instances to your code. This aspect must implement the interface IAspectProvider and
will typically derive from AssemblylLevelAspect or TypelLevelAspect.

TIP

Use ReflectionSearch to perform complex queries over System.Reflection.

11.1. Adding Aspects Declaratively Using Attributes

In .NET, you normally need to write one line of code for any application of a target attribute. If a custom attribute applies to
all types of a namespace, you have to manually add the custom attribute to every single type.

By contrast, multicast custom attributes allow you to apply a custom attribute on multiple declarations from a single line of
code by using wildcards or regular expressions, or by filtering on some attributes. It makes it easy to apply an aspect to, say,
all public static methods of a namespace, with a single line of code.

Multicast attributes can be inherited: you can put it on an interface and ask it to apply to all classes implementing this
interface. Attribute inheritance also works for classes, virtual or interface methods, and parameters of virtual or interface
methods.

Custom attributes supporting multicasting needs to be derived from MulticastAttribute. All PostSharp aspects and
constraints are derived from this class.

NOTE

Multicasting of custom attribute is a feature of PostSharp. If you do not transform your assembly using PostSharp,
multicast attributes will behave as plain old custom attributes.

NOTE

This documentation often refers to this as “aspect” multicasting and inheritance. This is not totally accurate. Although this
feature has been developed to support aspects, you can use it for your own custom attributes, even if they are not
aspects. To use multicasting and inheritance for custom attributes that are not aspects, simply derive the attribute class
from MulticastAttribute instead of Attribute.

Attribute multicasting supports the following scenarios:

» Adding Aspects to a Single Declaration on page 151

» Adding Aspects to Multiple Declarations on page 151

» Adding Aspects to Derived Classes and Methods on page 153

» Overriding and Removing Aspect Instances on page 158

» Reflecting Aspect Instances at Runtime on page 161

150

Adding Aspects Declaratively Using Attributes

» Understanding Aspect Inheritance on page 165

11.1.1. Adding Aspects to a Single Declaration

Aspects in PostSharp are plain custom attributes. You can apply them to any element of code as usually.

In the following example, the Trace aspect is applied to two methods.

public class CustomerService

{

[Trace]
public Custom GetCustomer(int customerId)

{
}

// Details skipped.

[Trace]
public void MergeCustomers(Customer customerl, Customer customer2);

{
}

// Details skipped.

11.1.2. Adding Aspects to Multiple Declarations

Once have written an aspect we have to apply it to the application code so that it will be used. There are a number of ways
to do this so let's take a look at one of them: custom attribute multicasting. Other ways include XML Multicasting (see the

Applying to all members of a class

When we are trying to apply a method level aspect we can place an attribute to each of the methods.

[OurLoggingAspect]
public class CustomerServices

As our codebase grows this approach becomes tedious. We need to remember to add the attribute to all of the methods
on the class. If you have hundreds of classes, you may have thousands of methods you need to manually add the aspect
attribute to. It's an unsustainable proposition. Thankfully, there is a way to make this easier. Instead of applying your aspect
on each method you can add that attribute to the class and PostSharp will ensure that the aspect is applied to all of the
methods on that class.

151

Adding Aspects to Code

Applying an aspect to all types in a namespace

Even though we don't have to apply an aspect to all methods in all classes in our application, adding the aspect attribute to
every class could still be an overwhelming task. If we want to apply our aspect in a broad stroke we can make use of Post-
Sharp's MulticastAttribute.

The MulticastAttribute is a special attribute that will apply other attributes throughout your codebase. Here's how we
would use it.

1. Open the AssemblyInfo.cs, or create a new file GlobalAspects.cs if you prefer to keep things separate (the
name of this file does not matter).

2. Add an [assembly:] attribute that references the aspect you want applied.

3. Add the AttributeTargetTypes property to the aspects's constructor and define the namespace that you would
like the aspect applied to.

[assembly: OurLoggingAspect(AttributeTargetTypes="0OurCompany.OurApplication.Controllers.*")]

This one line of code is the equivalent of adding the aspect attribute to every class in the desired namespace.

NOTE

When setting the AttributeTargetTypes you can use wildcards (*) to indicate that all sub-namespaces should have the
aspect applied to them. It is also possible to indicate the targets of the aspect using regex. Add "regex:" as a prefix to
the pattern you wish to use for matching.

Excluding an aspect from some members

Multicasting an attribute can apply the aspect with a very broad brush. It is possible to use AttributeExclude to restrict
where the aspect is attached.

[assembly: OurLoggingAspect(AttributeTargetTypes="0OurCompany.OurApplication.Controllers.*", AttributePriority = 1)]
[assembly: OurLoggingAsepct(AttributeTargetMembers="Dispose"”, AttributeExclude = true, AttributePriority = 2)]

In the example above, the first multicast line indicates that the OurLoggingAspect should be attached to all methods in the
Controllers namespace. The second multicast line indicates that the OurLoggingAspect should not be applied to any
method named Dispose.

NOTE

Notice the AttributePriority property that is set in both of the multicast lines. Since there is no guarantee that the
compiler will apply the attributes in the order you have specified in the code, it is necessary to declare an order to ensure
processing is completed as desired.

In this case, the OurLoggingAspect will be applied to all methods in the Controllers namespace first. After that is
completed, the second multicast of OurLoggingAspect is performed which then excludes the aspect from methods named

Dispose.

152

Adding Aspects Declaratively Using Attributes

Filtering by class visibility

Now that you've been able to apply our aspect to all classes in a namespace and its sub-namespaces, you may be faced
with the need to restrict that broad stroke. For example, you may want to apply your aspect only to classes defined as being
public.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

2. Set the AttributeTargetTypeAttributes value to Public.

[assembly: OurLoggingAspect(AttributeTargetTypes="0OurCompany.OurApplication.Controllers.*",
AttributeTargetTypeAttributes = MulticastAttributes.Public)]

By combining AttributeTargetTypeAttributes values you are able to create many combinations that are appropriate for
your needs.

NOTE

When specifying attributes of target members or types, do not forget to provide all categories of flags, not only the
category on which you want to put a restriction.

Filtering by method modifiers

Filtering at a class level may not be granular enough for your needs. Aspects can be attached at the method level and you
will want to control filtering on these aspects as well. Let's look at an example of how to apply aspects only to methods
marked as virtual.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

2. Setthe AttributeTargetTypeAttributes value to VirtualVirtual.

[assembly: OurLoggingAspect(AttributeTargetTypes="0OurCompany.OurApplication.Controllers.*", AttributeTargetMemberAtt

Using this technique you can apply a method level aspect, or stop it from being applied, based on the existence or non-
existence of things like the static, abstract, and virtual keywords.

Programmatic filtering

There are situations where you will want to filter in a way that isn't based on class or method declarations. You may want to
apply an aspect only if a class inherits from a specific class or implements a certain interface. There needs to be a way for
you to accomplish this.

The easiest way is to override the CompileTimeValidate(Object) method of your aspect class, where you can perform your
custom filtering. This is the opt-out approach. Have the CompileTimeValidate(Object) method return false without

details.

11.1.3. Adding Aspects to Derived Classes and Methods

By default, aspects apply to the class or class member which your attribute has been applied to. However, PostSharp
provides the ability to specify aspect inheritance which can allow your attributes to be inherited in derived classes. This
feature, named aspect inheritance can be specified on types, methods, and parameters, but not on properties or events.

153

Adding Aspects to Code

NOTE

PostSharp Professional or higher edition is required for aspect inheritance.

This topic contains the following sections.

» Applying aspects to derived types on page 154

« Setting inheritance on a per-usage basis on page 155

» Applying aspects to overridden methods on page 155

Applying aspects to derived types

One way to implement aspect inheritance is to add a MulticastAttributeUsageAttribute custom attribute to your aspect
class. Aspects that apply to types are typically derived from TypeLevelAspect or InstanceLevelAspect.

The benefit of this approach is that the aspect will be automatically applied to all derived classes, eliminating the need to
manually setup attributes in the derived classes. Moreover, this logic lives in one place.

The following steps describe how to enable aspect inheritance on existing aspect, derived from TypeLevelAspect, which
applies a DataContractAttribute attribute to the base and all derived classes, and a DataMemberAttribute attribute to all
properties of the base class and those of derived classes:

How to enable aspect inheritance on existing aspect:

1. Create a TypeLevelAspect which implements IAspectProvider. In this example we start with the AutoData-

2. Decorate AutoDataContractAttribute with the MulticastAttribute, and set the Inheritance to Strict. Note
that MulticastInheritance.Strict and MulticastInheritance.Multicast have the same effect when applied
to type-level aspects.

[MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypelLevelAspect, IAspectProvider

{
// Details skipped.

}

3. Decorate your base class with AutoDataContractAttribute. The following snippet shows a base customer class
and a derived customer class:

[AutoDataContractAttribute]
class Document

{
public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }
}
class MultiPageArticle : Document
{
public List<ArticlePage> Pages { get; set; }
}

When the attribute is applied to the base class, the DataContractAttribute and DataMemberAttribute attributes will be

applied at compile time to both classes. If other derived classes were added, then these would be decorated automatically
as well.

154

Adding Aspects Declaratively Using Attributes

Setting inheritance on a per-usage basis

Specifying targets and attribute inheritance can also be done on a per-usage basis rather that hard-coding it into the
custom attribute. In the following snippet, we've removed the MulticastAttributeUsageAttribute attribute from Auto-

DataContractAttribute:

// MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypelLevelAspect, IAspectProvider

// Details skipped.
}

Now the inheritance mode can be specified directly on the AutoDataContractAttribute instance by setting the

AttributeInheritance property as shown here:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document

{
}

// Details skipped.

Applying aspects to overridden methods

The following example shows a custom attribute which when applied to a class, writes a message to the console window
whenever a method enters and exits:

[Serializable]
public sealed class TraceMethodAttribute : OnMethodBoundaryAspect

{

public override void OnEntry(MethodExecutionArgs args)

{
}

Console.WritelLine(string.Format("Entering {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));

public override void OnExit(MethodExecutionArgs args)

{
}

Console.WritelLine(string.Format("Leaving {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));

}

Specifying inheritance is simply a matter of adding the MulticastAttributeUsageAttribute attribute and specifying the
inheritance type, or to set the AttributeInheritance property on the custom attribute usage.

In the snippet below, we have added the TraceMethod aspect to a virtual method and used the AttributeInheritance
property to require the aspect to be automatically applied to all overriding methods:

class Document
// Details skipped.

// This method will be traced.
[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
public virtual void RenderHtml(StringBuilder html)

{
html.AppendLine(this.Title);
html.AppendLine(this.Author);

}

class MultiPageArticle: Document

{

// This method will be traced.

155

Adding Aspects to Code

public override void RenderHtml(StringBuilder html)

{
base.RenderHtml(html);

foreach (ArticlePage page in this.Pages)

{
page.RenderHtml(html);

}
}

// This method will NOT be traced.
public void RenderHtmlPage(StringBuilder html, int pagelIndex)

{
html.AppendFormat (“{@}, page {1}”, this.Title, pageIndex+l);
html.AppendLine();
html.AppendLine(this.Author);

}

In this example, TraceMethodAttribute will output entry and exit messages for Document.RenderHtml method and Multi-
PageArcticle.RenderHtml method as shown here:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml

Leaving Document.RenderHtml

Leaving MultiPageArcticle.RenderHtml

NOTE

Aspect inheritance works with virtual, abstract and interface methods and their parameters.

We would get the similar result by adding the TraceMethod attribute to the Document class. Indeed, by virtue of attribute

attribute to a class implicitly adds it to all method of this class.

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document

{
// All property getters and setters will be traced.
public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.
public virtual void RenderHtml(StringBuilder html)

{
html.AppendLine(this.Title);
html.AppendLine(this.Author);

¥
class MultiPageArticle: Document

// Property getters and setters will NOT be traced.
public List<ArticlePage> Pages { get; set; }

// This method will be traced.
public override void RenderHtml(StringBuilder html)

{
base.RenderHtml(html);

foreach (ArticlePage page in this.Pages)

{
page.RenderHtml(html);

}

156

Adding Aspects Declaratively Using Attributes

¥

// This method will NOT be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)

html.AppendFormat (“{@}, page {1}”, this.Title, pageIndex+l);
html.AppendLine();
html.AppendLine(this.Author);

}

However, by adding the TraceMethod aspect to all methods of the Document type, we added it to property getters and
setters, influencing the output:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml

Entering Document.get_Title

Leaving Document.get_Title

Entering Document.get_Author

Leaving Document.get_Author

Leaving Document.RenderHtml

Leaving MultiPageArcticle.RenderHtml

Applying aspects to new methods of derived types

In the previous section the TraceMethod attribute used Strict inheritance which means that if the base class is decorated

with the attribute, it will only be applied to methods which are declared in the base class and overridden in the derived
class.

By changing the inheritance mode to Multicast, we specify that the aspect should be also be applied to new methods of
the derived class, i.e. not only methods that are overridden from the base class.

In the following snippet we've changed inheritance from Strict to Multicast:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Multicast)]
class Document
{
// All property getters and setters will be traced.
public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.
public virtual void RenderHtml(StringBuilder html)

{
html.AppendLine(this.Title);
html.AppendLine(this.Author);
¥
}

class MultiPageArticle: Document

{
// Property getters and setters will ALSO be traced.

public List<ArticlePage> Pages { get; set; }

// This method will be traced.
public override void RenderHtml(StringBuilder html)

{
base.RenderHtml(html);
foreach (ArticlePage page in this.Pages)

{
page.RenderHtml(html);

}
}

157

Adding Aspects to Code

// This method will ALSO be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)

html.AppendFormat (“{@}, page {1}”, this.Title, pageIndex+l);

html.AppendLine();
html.AppendLine(this.Author);

}

With Strict inheritance in use, TraceMethodAttribute applied to Document was not applied to the RenderHtmlPage method
and the Pages property. In other words, as the name suggests, Strict inheritance is strictly applying the attribute on base

members and any derived members which are inherited. However, with Multicast inheritance, the aspect is also applied to
the RenderHtmlPage method and the Pages property.

Strict inheritance evaluates multicasting and then inheritance, but Multicast inheritance evaluates inheritance and then
multicasting.

11.1.4. Overriding and Removing Aspect Instances

Having multiple instances of the same aspect on the same element of code is sometimes a desired behavior. With
multicasting custom attributes (MulticastAttribute), it is easy to end up with that situation. Indeed, many multicasting

paths can lead to the same target.

However, most of the time, a different behavior is preferred. We could define a method-level aspect on the type (this aspect
would apply to all methods) and override (or even exclude) the aspect on a specific method.

The multicasting engine has both the ability to apply multiple aspect instances on the same target, and the ability to
replace or remove custom attributes.

Understanding the Multicasting Algorithm

Before going ahead, it is important to understand the multicasting algorithm. The algorithm relies on a notion of order of
processing of aspect instances.

IMPORTANT NOTE

This section covers how PostSharp handles multiple instances of the same aspect type for the sole purpose of computing

to understand how to cope with multiple instances of different aspects.

The following rules apply:

1. Aspect instances defined on a container (for instance a type) have always precedence over instances defined on
an item of that container (for instance a method). Elements of code are processed in the following order:
assembly, module, type, field, property, event, method, parameter.

2. When multiple aspect instances are defined on the same level, they are sorted by increasing of value of the
AttributePriority.

The algorithm builds a list of aspect instances applied (directly and indirectly) on an element of code, sorts these instances,
and processes overrides or removals as described below.

158

Adding Aspects Declaratively Using Attributes

Applying Multiple Instances of the Same Aspect

The property MulticastAttributeUsageAttributeAllowMultiple determines whether multiple instances of the same
aspect are allowed on an element of code. By default, this property is set to true for all aspects.

In the following example, the methods in type MyClass are enhanced by one, two and three instances of the Trace aspect
(see code comments).

using System;

using System.Diagnostics;
using PostSharp.Aspects;

using PostSharp.Extensibility;
using Samples3;

[assembly: Trace(AttributeTargetTypes = "Samples3.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples3.My*",
AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples3
{
[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect

{
public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)
{
Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName +

+ args.Method.Name, this.Category);

public class MyClass
{
// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 2 Trace aspects with Category set to A, B
public void Method2()

{

¥

// This method will have 3 Trace aspects with Category set to A, B, C.
[Trace(Category = "C")]
public void Method3()

{
}

Overriding an Aspect Instance Manually

You can require an aspect instance to override any previous one by setting the aspect property AttributeReplace. This is
equivalent to a deletion followed by an insertion (see below).

In the following examples, the first two methods of type MyClass are enhanced by aspects applied on assembly level, but
these aspects are replaced by a different one on Method3.

using System;

using System.Diagnostics;
using PostSharp.Aspects;

using PostSharp.Extensibility;
using Samples5;

159

Adding Aspects to Code

[assembly: Trace(AttributeTargetTypes = "Samples5.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples5.My*",
AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples5
{
[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect

{
public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)

{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName +

+ args.Method.Name, this.Category);

public class MyClass
{
// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 2 Trace aspect with Category set to A, B.
public void Method2()

{

}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C", AttributeReplace = true)]

public void Method3()

{

}

Overriding an Aspect Instance Automatically

To cause a new aspect instance to automatically override any previous one, the aspect developer must disallow multiple
instances by annotating the aspect class with the custom attribute MulticastAttributeUsageAttribute and setting the
property AllowMultiple to false.

In the following example, the methods in type MyClass are enhanced by a single Trace aspect:

using System;

using System.Diagnostics;
using PostSharp.Aspects;

using PostSharp.Extensibility;
using Samples4;

[assembly: Trace(AttributeTargetTypes = "Samples4.My*", AttributePriority = 1, Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples4.My*",
AttributeTargetMemberAttributes = MulticastAttributes.Public, AttributePriority = 2, Category = "B")]

namespace Samples4

{
[MulticastAttributeUsage(MulticastTargets.Method, AllowMultiple = false)]
[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)

{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

160

Adding Aspects Declaratively Using Attributes

public class MyClass

{
// This method will have 1 Trace aspect with Category set to A.
private void Method1()

{
}

// This method will have 1 Trace aspects with Category set to B.
public void Method2()

{

}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C")]

public void Method3()

{

}

Deleting an Aspect Instance
The MulticastAttributeAttributeExclude property removes any previous instance of the same aspect on a target.

This is useful, for instance, when you need to exclude a target from the matching set of a wildcard expression. For instance:

[assembly: Configurable(AttributeTypes = "BusinessLayer.*")]

namespace BusinessLayer

{
[Configurable(AttributeExclude = true)]
public static class Helpers

{

}
}

11.1.5. Reflecting Aspect Instances at Runtime

Attribute multicasting has been primarily designed as a mechanism to add aspects to a program. Most of the time, the
custom attribute representing an aspect can be removed after the aspect has been applied.

By default, if you add an aspect to a program and look at the resulting program using a disassembler or System.
Reflection, you will not find these corresponding custom attributes.

If you need your aspect (or any other multicast attribute) to be reflected by System.Reflection or any other tool, you have
to set the MulticastAttributeUsageAttributePersistMetaData property to true.

For instance:

[MulticastAttributeUsage(MulticastTargets.Class, PersistMetaData = true)]
public class TagAttribute : MulticastAttribute

{
public string Tag;

}

161

Adding Aspects to Code

NOTE

Multicasting of attributes is not limited only to PostSharp aspects. You can multicast any custom attribute in your
codebase in the same way as shown here. If a custom attribute is multicast with the PersistMetaData property set to

true, when reflected on the compiled code will look as if you had manually added the custom attribute in all of the
locations.

11.1.6. Understanding Attribute Multicasting

This topic contains the following sections.

» Overview of the Multicasting Algorithm
+ Filtering Target Elements of Code

« Filtering Properties

» Overriding Filtering Attributes

Overview of the Multicasting Algorithm

Every multicast attribute class must be assigned a set of legitimate targets using the MulticastAttributeUsageAttribute
custom attribute, which is the equivalent and complement of AttributeUsageAttribute for multicast attributes. Multicast
attributes can be applied to types, methods, fields, properties, events, or/or parameters. For instance, a caching aspect
targets methods. A field validation aspect targets fields.

When a field-level multicast attribute is applied to a type, the attribute is implicitly applied to all fields of that type. When it
is applied on an assembly, it is implicitly applied to all fields of that assembly.

The general rule is: when a multicast attribute is applied on a container, it is implicitly (and recursively) applied to all
elements of that container.

The next table illustrates how this rule translates for different kinds of targets.

Directly applied to Implicitly applied to

Assembly or Module Types, methods, fields, properties, parameters, and events contained in this assembly or module.

Type Methods, fields, properties, parameters, and events contained in this type.
Property or Event Accessors of this property or event.

Method This method and the parameters of this method.

Field This field.

Parameter This parameter.

Filtering Target Elements of Code

Note that the default behavior is maximalistic: we apply the attribute to all contained elements. However, PostSharp
provides a way to restrict the set of elements to which the attribute is multicast: filtering.

Both the attribute developer and the user of the aspect can specify filters.
Developer-Specified Filtering
Just like normal custom attributes should be decorated with the [AttributeUsage] custom attribute, multicast custom

attributes must be decorated by the [MulticastAttributeUsage] attribute (see MulticastAttributeUsageAttribute). It
specifies which are the valid targets of the multicast attributes.

162

Adding Aspects Declaratively Using Attributes

For instance, the following piece of code specifies that the attribute GuiThreadAttribute can be applied on instance
methods. Aspect users experience a build-time error when trying to use this aspect on a constructor or static method.

[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
[AttributeUsage (AttributeTargets.Assembly|AttributeTargets.Class|AttributeTargets.Method, AllowMultiple = true)]
[Serializable]

public class GuiThreadAttribute : MethodInterceptionAspect

{
// Details skipped.

}

Note the presence of the AttributeUsageAttribute attribute in the sample above. It tells the C# or VB compiler that the

attribute can be directly applied to assemblies, classes, constructors, or methods. But this aspect will never be eventually
applied to an assembly or a class. Indeed, the MulticastAttributeUsageAttribute attribute specifies that the sole valid

targets are methods. Furthermore, the TargetMemberAttributes property establishes a filter that includes only instance
methods.

Therefore, if the aspect is applied on a type containing an abstract method, the aspect will not be multicast to this method,
neither to its constructors.

TIP

Additionally to multicast filtering, consider using programmatic validation of aspect usage. Any custom attribute can
implement IvalidableAnnotation to implement build-time validation of targets. Aspects that derive from Aspect already

implement these interfaces: your aspect can override the method CompileTimeValidate(Object).

TIP

As an aspect developer, you should enforce as many restrictions as necessary to ensure that your aspect is only used in
the way you intended, and raise errors in other cases. Using an aspect in an unexpected way may result in runtime errors
that are difficult to debug.

User-Specified Filtering
The attribute user can specify multicasting filters using specific properties of the MulticastAttribute class. To make it
clear that these properties only impact the multicasting process, they have the prefix Attribute.

As an aspect user, it is important to understand that you can only apply aspects to elements of codes that have been
allowed by the developer of the aspect.

For instance, the following element of code adds a tracing aspect to all public methods of a namespace:

[assembly: Trace(AttributeTargetTypes="AdventureWorks.BusinessLayer.*", AttributeTargetMemberAttributes = MulticastAttributes

Filtering Properties

The following table lists the filters available to users and developers of aspects:

MulticastAttribute Property MulticastAttributeUsage- Description
Attribute Property

AttributeTargetElements ValidOn Restricts the kinds of targets (assemblies, classes,
value types, delegates, interfaces, properties,
events, properties, methods, constructors,
parameters) to which the attribute can be
indirectly applied.

163

Adding Aspects to Code

MulticastAttribute Property MulticastAttributeUsage- Description
Attribute Property
AttributeTargetAssemblies Wildcard expression or regular expression
specifying to which assembilies the attribute is
multicast.

AllowExternalAssemblies Determines whether the aspect can be applied to
elements defined in a different assembly than the
current one.

AttributeTargetTypes Wildcard expression or regular expression
filtering by name the type to which the attribute
is applied, or the declaring type of the member
to which the attribute is applied.

AttributeTargetTypeAttributes TargetTypeAttributes Restricts the visibility of the type to which the
aspect is applied, or of the type declaring the
member to which the aspect is applied.

AttributeTargetMembers Wildcard expression or regular expression
filtering by name the member to which the
attribute is applied.

AttributeTargetMemberAttributes TargetMemberAttributes Restricts the attributes (visibility, virtuality,
abstraction, literality, ...) of the member to which
the aspect is applied.

AttributeTargetParameters Wildcard expression or regular expression
specifying to which parameter the attribute is
multicast.

AttributeTargetParameterAttributes TargetParameterAttributes Restricts the attributes (in/out/ref) of the
parameter to which the aspect is applied.

AttributeInheritance Inheritance Specifies whether the aspect is propagated along
the lines of inheritance of the target interface,

CAUTION NOTE

Whenever possible, do not rely on naming conventions to apply aspects (properties AttributeTargetTypes, Attribute-
TargetMembers and AttributeTargetParameters). This may work perfectly today, and break tomorrow if someone
renames an element of code without being aware of the aspect.

Overriding Filtering Attributes

Suppose we have two classes A and B, B being derived from A. Both A and B can be decorated with MulticastAttribute-
UsageAttribute. However, since B is derived from A, filters on B cannot be more permissive than filters on A.

In other words, the MulticastAttributeUsageAttribute custom attribute is inherited. It can be overwritten in derived
classes, but derived class cannot enlarge the set of possible targets. They can only restrict it.

Similarly (and hopefully predictably), the aspect user is subject to the same rule: she can restrict the set of possible targets
supported by the aspect, but cannot enlarge it.

164

Adding Aspects Declaratively Using Attributes

11.1.7. Understanding Aspect Inheritance

This topic contains the following sections.

« Lines of Inheritance
« Strict and Multicast Inheritance

Lines of Inheritance

Aspect inheritance is supported on the following elements.

Aspect Applied On Aspect Propagated To

Interface Any class implementing this interface or any other interface deriving this
interface.

Class Any class derived from this class.

Virtual or Abstract Methods Any method implementing or overriding this method.

Interface Methods Any method implementing that interface semantic.

Parameter or Return Value of an abstract, The corresponding parameter or to the return value of derived methods

virtual or interface method using the method-level rules described above.

Assembly All assemblies referencing (directly or not) this assembly.

NOTE

Aspect inheritance is not supported on events and properties, but it is supported on event and property accessors. The
reason of this limitation is that there is actually nothing like event inheritance or property inheritance in MSIL (events and
properties have nearly no existence for the CLR: these are pure metadata intended for compilers). Obviously, aspect
inheritance is not supported on fields.

Strict and Multicast Inheritance

To understand the difference between strict and multicast inheritance, remember the original role of MulticastAttribute:

to propagate custom attributes along the lines of containment. So, if you apply a method-level attribute to a type, the
attribute will be propagated to all the methods of this type (some methods can be filtered out using specific properties of

The difference between strict and multicasting inheritance is that, with multicasting inheritance (but not with strict
inheritance), even inherited attributes are propagated along the lines of containment.

Consider the following piece of code, where A and B are both method-level aspects.

[A(AttributeInheritance
[B(AttributeInheritance
public class BaseClass
{
// Aspect A, B.
public virtual void Method1();

}

MulticastInheritance.Strict)]
MulticastInheritance.Multicast)]

public class DerivedClass : BaseClass

{
// Aspects A, B.
public override void Method1() {}

// Aspect B.

165

Adding Aspects to Code

public void Method2();
}

If you just look at BaseClass, there is no difference between strict and multicasting inheritance. However, if you look at
DerivedClass, you see the difference: only aspect B is applied to MethodB.

The multicasting mechanism for aspect A is the following:
1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass.Method1 to DerivedClass.Method.

For aspect B, the mechanism is the following:

1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass.Method1 to DerivedClass.Method1.
3. Propagation along the lines of inheritance from BaseClass to DerivedClass.
4

Propagation along the lines of containment from DerivedClass to DerivedClass.Methodland DerivedClass.
Method2.

In other words, the difference between strict and multicasting inheritance is that multicasting inheritance applies
containment propagation rules to inherited aspects; strict inheritance does not.

Avoiding Duplicate Aspects

If you read again the multicasting mechanism for aspect B, you will notice that the aspect B is actually applied twice to
DerivedClass.Methodl: one instance comes from the inheritance propagation from BaseClass.Method1, the other instance
comes from containment propagation from DerivedClass.

To avoid surprises, PostSharp implements a mechanism to avoid duplicate aspect instances. The rule: if many paths lead
from the same custom attribute usage to the same target element, only one instance of this custom attribute is applied to

the target element.

CAUTION NOTE

Attention: you can still have many instances of the same custom attribute on the same target element if they have
different origins (i.e. they originate from different lines of code, typically). You can enforce uniqueness of custom attribute

11.2. Adding Aspects Using XML

PostSharp not only allows aspects to be applied in code, but also through XML. This is accomplished by adding them to
your project’s .psproj file.

Adding aspects through XML gives the advantage of applying aspects without modifying the source code, which could be
an advantage in some legacy projects.

Specifying an attribute in XML

166

Adding Aspects Programmatically using IAspectProvider

namespace MyCustomAttributes

{
// We set up multicast inheritance so the aspect is automatically added to children types.
[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypelLevelAspect, IAspectProvider
// Details skipped.
}
}

Normally AutoDataContractAttribute would be applied to Customer in code as follows:

namespace MyNamespace

[AutoDataContractAttribute]
class Customer

{
public string FirstName {get; set;}
public string LastName { get; set; }

}

Using XML instead, we can remove the custom attribute from source code and instead specify a Multicast element in the
PostSharp project file, a file that has the same name as your project file (csproj or vbproj), but with the .psproj extension:

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">
<Multicastxmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly">
<my:AutoDataContractAttributeAttributeTargetTypes=" MyNamespace.Customer"/>
</Multicast>

</Project>

In this snippet, the xmlns:my attribute associates a prefix to an XML namespace, which must be mapped to the .NET
namespace and assembly where custom attributes classes are defined:

<Multicastxmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly">

The next line then specifies the custom attribute to apply and the target attributes to apply the custom attributes to:

<my :AutoDataContractAttributeAttributeTargetTypes="MyNamespace.Customer"/>

The XML element name must be the name of a class inside the .NET namespace and assembly as defined by the XML
namespace. Attributes of this XML element map to public properties or fields of this class.

Note that any property inherited from MulticastAttribute can be used here in order to apply the aspect to several classes

11.3. Adding Aspects Programmatically using IAspectProvider

You may have situations where you are looking to implement an aspect as part of a larger pattern. Perhaps you want to add
an aspect, implement an interface and dynamically inject some logic into the target code. In those situations you will want
to apply an aspect to the target code and have that aspect then add other aspects to other elements of code.

167

Adding Aspects to Code

The theoretical concept can cause some mental gymnastics, so let's take a look at the implementation.

1. Create an aspect that implements that IAspectProvider interface.

public class ProviderAspect : IAspectProvider

{
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
throw new System.NotImplementedException();
¥
}

2. Cast the target object parameter to the type that will be targeted by this aspect: Assembly, Type, MethodInfo,
ConstructorInfo or LocationInfo.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
Type type = (Type) targetElement;

throw new NotImplementedException();

}

3. Inthe ProvideAspects(Object) method returns an AspectInstance of the aspect type you want, for every target
element of code.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)

{
Type type = (Type)targetElement;
return type.GetMethods().Select(
m => return new AspectInstance(targetElement, new LoggingAspect()));
}

This aspect will now add aspects dynamically at compile time. Use of the IAspectProvider interface and technique is

usually reserved for situations where you are trying to implement a larger design pattern. For example, it would be used
when implementing an aspect that created the NotifyPropertyChangedAttribute pattern across a large number of

locations in your codebase. It is overkill for many of the situations that you will encounter. Use it only for complicated
pattern implementation aspects that you will create.

NOTE

NOTE

PostSharp does not automatically initialize the aspects provided by IAspectProvider, even if the method CompileTime-

Initialize is defined. Any initialization, if necessary, should be done in the ProvideAspects method or in the constructor
of provided aspects.

However, these aspects are initialized at runtime just like normal aspects using the RunTimeInitialize method.

Creating Graphs of Aspects

It is common that aspects provided by IAspectProvider (children aspects) form an object graph. For instance, children
aspects may contain a reference to the parent aspect.

168

Adding Aspects Programmatically using IAspectProvider

An interesting feature of PostSharp is that object graphs instantiated at compile-time are serialized, and can be used at run-
time. In other words, if you store in a child aspect a reference to another aspect, you will be able to use this reference at
runtime.

169

PART 4

Threading Patterns

Adding Aspects Programmatically using IAspectProvider

CHAPTER 12
Writing Thread-Safe Code with Threading
Models

A threading model is a design pattern that gives guarantees that your code executes safely on a multi-threaded computer.
Threading models both define coding rules (for instance: all fields must be private) and add new behaviors to existing code
(for instance: acquiring a lock before method execution). Coding rules are typically enforced at build time or at run time;
violations result in build-time errors or run-time exceptions. Threading models may also require the use of custom
attributes in source code, for instance to indicate that a method requires read access to the object.

TIP

We recommend to assign a threading model to every class whose instances can be shared between different threads.

Threading models raise the level of abstraction at which multi threading is addressed. Compared to working directly with
locks and other low-level threading primitives, using threading models has the following benefits:

» Threading models are named solutions to a recurring problem. Threading models are specific types of design
patterns, and have the same benefits. When team members discuss the multi-threaded behavior of a class, they
just need to know which threading model this class uses. They don't need to know the very details of its
implementation. Since the human short-term memory seems to be limited to 5-9 elements, it is important to think
in terms of larger conceptual blocks whenever we can.

» Much of the code required to implement the threading model can be automatically generated, which decreases

the number of lines of code, and therefore the number of defects. It also reduces development and maintenance
costs.

» Your source code can be automatically verified against the selected threading model, both at build time and at
run time. This makes the discovery of defect much more deterministic. Without verifications, threading defects
usually show up randomly and provoke data structure corruption instead of immediate exceptions. Run-time
verification would be too labor-intensive to implement without compiler support, so would be most likely
omitted.

Available threading models

PostSharp Threading Library provides an implementation for the following threading models:

Threading Model Aspect Type Description

Thread-Unsafe ThreadUnsafeAttribute These objects may never be accessed concurrently by several
Threading threads.

Model on page 196

Thread Affine ThreadAffineAttribute These objects must be accessed from a the thread that
Threading instantiated them.

173

Writing Thread-Safe Code with Threading Models

Threading Model Aspect Type Description

Synchronized SynchronizedAttribute Synchronized objects can be accessed by a single thread at a
Threading time. Other threads will wait until the object is available.
Model on page 192

Reader/Writer ReaderWriterSynchronizedAttribute These objects that can be read concurrently by several
Synchronized threads, but write access requires exclusivity. Public methods
Threading of this object must specify which kind of access they require
Model on page 187 (read or write, typically).

Actor Threading ActorAttribute These objects communicate with their clients using an
Model on page 182 asynchronous communication pattern. All accesses to the

object are queued and then processed in a single thread.
However, queuing is transparent to clients, which just call
standard void or methods.

Freezable FreezableAttribute These objects can be set to a state where their property

Threading values can no longer be changed. Unlike immutable objects,

Model on page 174 the developer dictates the time and place in their code
where changes to the object's state will no longer be
accepted.

Immutable ImmutableAttribute These objects cannot have their state changed after their

Threading constructor has finished executing.

Other topics

Article Description

Opting In and Out From Thread This article shows how to disable the enforcement of the threading model for
Safety on page 199 specific fields or methods.

Compeatibility of Threading This article lists compatibility of threading models when they are applied to
Models on page 201 objects that are in a parent-child relationship.

Enabling and Disabling Runtime This article explains when runtime verification is enabled or disabled and how to
Verification on page 201 customize the default behavior.

12.1. Freezable Threading Model

When you need to prevent changes to an instance of an object most of the time, but not all of the time, the Immutable
pattern (implemented by the ImmutableAttribute aspect) will be too aggressive for you. In these situations you need a

pattern that allows you to define the point in time where immutability begins. To accomplish this you can make use of the
FreezableAttribute aspect.

174

http://www.postsharp.net/links/threading-model-white-paper
http://www.postsharp.net/links/threading-model-white-paper

Freezable Threading Model

This topic contains the following sections.

Making an object freezable using the Ul

To make an object freezable all you need to do is add the FreezableAttribute attribute to the class in question.

NOTE

This example shows freezing a class that only has primitive data types. Information on working with complex objects can
be found the Freezable Object Trees section later in this article.

1. First place the caret on the name of the object that you want to make freezable. The smart tag will appear below
the object name. Expand it and select "Apply Threading Model...".

public class Invoice

{ a-
bli 4 Implement INotifyPropertyChanged
public cu »{ Add architecture constraint.. }
. ol =
public Ad * Addlogging.. [tems { get; set; }
} -4 Apply threading model...

¥ Add another aspect...

175

Writing Thread-Safe Code with Threading Models

2. In the Apply Threading Model wizard select "Apply freezable threading model" and click Next.

7,
)X Select a threading model.

(@ Threading

Summary

Progress Apply actor threading model

Apply the actor threading model. Every actor instance runs in a single
conceptual thread. Invecation of acter methods are transformed inte
messages and queued for sequential processing by the actor.

Completed

Apply freezable threading model

Apply the freezable threading model. Freezable objects can be medified until
their Freeze method is invoked. After that, changes are forbidden and objects
can be safely shared between threads.

Apply immutable threading model
Apply the immutable threading medel. Immutable cannot be modified after
they have been initialized by their constructor.

Apply private thread-aware threading model

Make the class thread-aware without implementing a specific threading
maodel. Private thread-aware objects can be used only within the scope of
their parent thread-aware object, otherwise an exception is thrown,

Apply reader-writer-synchronized threading model

< Previous ‘ Mext > || Cancel |

If you have not added a reference to the threading model assembly the Apply Threading Model wizard will
download it from NuGet and add the reference.

3. Once the wizard has completed the object will now be flagged as freezable and the Customer and Item properties
have had Parent-Child relationships established on them.

using PostSharp.Patterns.Threading;

[Freezable]
public class Invoice
{
public long Id { get; set; }
}

Making an object freezable manually

NOTE
This example shows freezing a class that only has primitive data types. To see how to work with complex objects see the []

section later in this article.

1. Add the PostSharp.Patterns.Threading package to your project using NuGet.

176

Freezable Threading Model

2. Add the FreezableAttribute custom attribute to your class.

using PostSharp.Patterns.Threading;
[Freezable]

public class Invoice

{
public long Id { get; set; }
}

Freezing an object
To freeze an object, use will first have to case the object to the IFreezable interface. After that you are able to call the

Freeze method.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

NOTE

The IFreezable interface will be injected into the Invoice class after compilation. Tools that are not aware of PostSharp
may incorrectly report that the Invoice class does not implement the IFreezable interface.

Instead of using the cast operator, you can also use the CastSourceType, TargetType(SourceType) method. This
method is faster and safer than the cast operator because it is verified and compiled by PostSharp at build time.

NOTE

If you are attempting to freeze either AdvisableCollectionT or AdvisableDictionaryTKey, TValue you will not be able
to use the cast operator or the CastSourceType, TargetType(SourceType) method. Instead, you will have to use the
QueryInterfaceT(Object, Boolean) extension method.

Once you've called the Freeze method on an object instance the code will no longer be able to change the property values
on that instance. If a value change is attempted the code will throw an ObjectReadOnlyException.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

// This will throw an exception.
invoice.Id = 345678;

Determining whether an object is in frozen state
To determine whether an object has been frozen, cast it to IThreadAware and get the readonly value from IsReadOnly via

the ConcurrencyController property.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

// The 'frozen' property will be set to "true’.
bool frozen = ((IThreadAware)invoice).ConcurrencyController.IsReadOnly;

177

Writing Thread-Safe Code with Threading Models

Freezable object trees

The Freezable pattern relies on the Aggregatable pattern. The AggregatableAttribute aspect will be implicitly added to

IMPORTANT NOTE

Children of freezable objects must be either freezable either immutable. Therefore, children classes must be annotated
with the FreezableAttribute or ImmutableAttribute custom attribute. Collection types must be derived from

AdvisableCollectionT or AdvisableDictionaryTKey, TValue.

12.2. Immutable Threading Model

There are times when you want certain objects in your codebase to retain their post creation state without possibility of it
ever changing. These objects are said to be immutable. Immutable objects are useful in multi-threaded applications
because they can be safely accessed by several threads concurrently, without need for locking or other synchronization.
PostSharp offers the ImmutableAttribute aspect that allows you enforce this pattern on your objects.

Changes in an object with the ImmutableAttribute aspect will be forbidden as soon as the object constructor exits. Any
further attempt to modify the object will result in an ObjectReadOnlyException.

NOTE

The Immutable pattern can be too strong for some common object-oriented scenarios, for instance with serializable

Making a class immutable

To make an object immutable all you need to do is add the ImmutableAttribute attribute to the class in question.

NOTE

This example shows freezing a class that only has primitive data types. Information on working with complex objects can
be found the Working With Immutable Object Trees section later in this article.

178

Immutable Threading Model

To add the Immutable pattern using the Ul:

1. First place the caret on the name of the class that you want to make immutable. The smart tag will appear below
the object name. Expand it and select Apply Threading Model.

public class Invoice

{ a-

:rif;i = 4 Implement INotifyPropertyChanged

Pr‘_'lf_'_f_(_: Cu 3 Add architecture constraint... }

Oraferencas P)

public Ad * Addlogging.. [tems { get; set; }
} wl Apply threading model...

»(Add another aspect...

2. In the Apply Threading Model wizard select Apply immutable threading model and click Next.

/7
)X Select a threading model.

© Threading

Summary

Progress Apply actor threading model

Apply the actor threading model, Every actor instance runs in a single
conceptual thread. Invocation of actor methods are transformed into
messages and queued for sequential processing by the actor.

Completed

Apply freezable threading model

Apply the freezable threading model, Freezable objects can be modified until
their Freeze method is invoked, After that, changes are forbidden and objects
can be safely shared between threads.

Apply immutable threading model
Apply the immutable threading medel. Immutable cannot be modified after
they have been initialized by their constructor.

Apply private thread-aware threading model

Make the class thread-aware without implementing a specific threading
model, Private thread-aware objects can be used only within the scope of
their parent thread-aware object, otherwise an exception is thrown,

Apply reader-writer-synchronized threading model

< Previous ‘ Next > || Cancel |

If you have not yet added the PostSharp.Patterns.Threading package to your project, the Apply Threading Model
wizard will download it from NuGet and install it into your project.

179

Writing Thread-Safe Code with Threading Models

3. Once the wizard has completed the class will now be flagged as immutable.

using PostSharp.Patterns.Threading;

[Immutable]
public class Invoice

{

public Invoice(long id)
{
Id = id;
}
public long Id { get; set; }

}

Now, once you've created an instance of the immutable object your code will no longer be able to change the
property values on that instance. If a value change is attempted the code will throw an ObjectReadOnly-

Exception.

var invoice = new Invoice(12345);

// This will throw an exception.
invoice.Id = 345678;

To add the Immutable pattern manually:
1. Add the PostSharp.Patterns.Threading package to your project using NuGet.

2. Add the ImmutableAttribute custom attribute to your class.

Immutable object trees

Because the Immutable pattern is an implementation of the Aggregatable pattern, all of the same behaviors of the
AggregatableAttribute are available. As a result you can create both immutable classes and immutable object trees. For

NOTE

Children of immutable objects must be marked as immutable themselves. Adding the ImmutableAttribute to the child
classes will accomplish this. Additionally, collection types must be derived from AdvisableCollectionT or Advisable-
DictionaryTKey, TValue.

Immutable vs readonly

Many C# developers make use of the readonly keyword in an attempt to make their objects immutable. The readonly
keyword doesn't guarantee immutability though. Using readonly only ensures that no method other than the object's
constructor can alter the variable's value. It doesn't, however, prevent you from altering values on complex objects outside
of the constructor.

In the following code sample the _id variable is a primitive type and can't be altered outside the constructor. This is
enforced at compile time and an error would be displayed where the SetIdentifier method attempts to change the _id
field's value.

public class Invoice

{
public readonly long _id;

public Invoice(long id)
{

SetIdentifier(id);
}

180

Immutable Threading Model

public void SetIdentifier(long id)
{

}
}

_id = id

If you were to mark a complex object as readonly the same rule holds true as it does for primitive types. You are not able
to change the complex object instance outside of the constructor. In the following example, initializing the Customer in the
constructor is valid, but reinitializing it in the Refresh method will cause a compilation error.

public class Invoice

{

public readonly Customer _customer;
public Invoice()

{

_customer = new Customer();

}
public void Refresh()

//will cause a compilation error
_customer = new Customer();

}
}

What you can do when a complex object is marked as readonly is alter the values within that complex object. In the case of
the Customer object you cannot reinitialize the instance but you can change the properties on the already created instance.
What you see in the following Refresh methd is perfectly valid.

public class Invoice

{

public readonly Customer _customer;
public Invoice()

{

_customer = new Customer();

¥
public void Refresh()

//valid but not immutable
_customer.Name = "Jim";
_customer.Phone = "555-123-9876";

}
}

The same type of change to object state can happen with collections. You can not reinitializee a readonly collection, but
you can freely Add, Remove, Clear and do other operations that the collection itself exposes. Additionally if the collection
contains complex types you are able to change values on each instance that the collection contains.

public class Invoice

{

public readonly IList<Item> _items;
public Invoice()

{

_items = new List<Item>();

¥
public void Refresh()

//will cause a compilation error
_items = new List<Item>();

//valid but not immutable
_items.Add(new Item);
_items[@].Price = 3.50;
_items.RemoveAt(0);

181

Writing Thread-Safe Code with Threading Models

}
}

As you can see there is no way to use the readonly keyword to make complex object graphs immutable. Combining the
ImmutableAttribute, ChildAttribute, AdvisableCollectionT and the AdvisableDictionaryTKey, TValue types allows

you to make immutable objects that guarantee no changes to primitive or complex objects after constructor execution has
completed.

Constructor Execution

Objects are not frozen until the last constructor has finished executing. Because of this you can use the constructor to set
up the state of the parent instance through its own constructor as well as chained, or inherited object, constructors. You're
also able to make changes to child object instances through their constructors at this time.

[Immutable]
public class Invoice : Document
{
public Inovice(long id) : base(id)
{
Id = id;

Items = new AdvisableCollection<Item>();
Items.Add(new Item("widget"));
¥

[Child]
public AdvisableCollection<Item> Items { get; set; }
}

[Immutable]
public class Document

{
private long _id;
public Document (long id)
{
_id = id;
}
}

[Immutable]
public class Item

{

public Item (string name)

{

Name = name;

¥
public string Name { get; set; }
}

In this example the constructors finish executing in the order of Document, Item and finally Invoice. It is not until after the
Invoice constructor finishes executing that the object graph is made immutable.

12.3. Actor Threading Model

Given the complexity of trying to coordinate accesses to an object from several threads, sometimes it makes more sense to
avoid multi threading altogether. The Actor model avoids the need for thread safety on class instances by routing method
calls from each instance to a single message queue which is processed, in order, by a single thread.

Since the processing for each instance takes place in a single thread, multi-threading is avoided altogether and the object is
guaranteed to be free of data races. Calls are processed asynchronously in the order in which they were added to the

182

Actor Threading Model

message queue. Because all calls to an actor are asynchronous, it is recommended that the async/await feature of C# 5.0 be
used.

Additionally to provide a race-free programming model, the Actor pattern has the benefit of transparently distributing the
computing load to all available CPUs without additional logic. Note that PostSharp’s implementation does not assign a new
thread to each actor instance but uses a thread pool instead, so it is possible to have a very large number of actors with
relatively low overhead.

This topic contains the following sections.

A single-threaded example

Consider the following example of an AverageCalculator class. The code is not thread because incrementing the count
has four operations (read and write) that must all be performed atomically.

class AverageCalculator

{
float sum;
int count;

public void AddSample(float n)
{

this.count++;
this.sum += n;

}

public float GetAverage()
{

}

return this.sum / this.count;

3

We could use the Synchronized or Reader-Writer Synchronized threading model to make sure that the calling thread will
wait if the object is currently being accessed by another thread. Another solution in this situation is to avoid concurrency
altogether using the Actor pattern and asynchronous methods.

Applying the Actor model using the Ul

To apply the Actor threading model to your class with the Ul:
1. Place the mouse cursor over your class name and select “Apply threading model...” from the drop-down.

class Player

i a -
re
re
in)\/ Add architecture constraint...

" »{ Addlogging..

» Implement INotifyPropertyChanged

pu w Apply threading model...

183

Writing Thread-Safe Code with Threading Models

2. Select "Apply actor threading model” and click Next.

Apply threading _ E

7,
)X Select a threading model.

Select Madel (~) Threading

Summary

Progress Apply actor threading model
Apply the actor threading model. Every actor instance runs in a single
Completed conceptual thread. Invocation of actor methods are transformed into
messages and queued for sequential processing by the actor.

Apply freezable threading model

Apply the freezable threading model, Freezable objects can be modified until
their Freeze method is invoked, After that, changes are forbidden and objects
can be safely shared between threads.

Apply immutable threading model
Apply the immutable threading model, Immutable cannot be modified after
they have been initialized by their constructor,

Apply private thread-aware threading model

Make the class thread-aware without implementing a specific threading
model, Private thread-aware objects can be used only within the scope of their
parent thread-aware object, otherwise an exception is thrown.

Apply reader-writer-synchronized threading model
Apply the reader-writer-synchronized threading model. Concurrent read

| < Previous “ Mext >

3. Verify the actions on the Summary screen and click Next.
e

)%// Summary

Select Model The following actions will be performed:

Relationships

Summary

Progress

Add custom attrib [Actor] to Postsharp.Player.

Add custom attribute [Child] to random.

Completed

= Previous] [MNext >] [Cancel

184

Actor Threading Model

4. Click Finish after the installation completes:

Apply threading model @

7,
)\ The operation has successfully completed

Select Model The project has been successfully medified.
Relationships
Summary

Progress

Completed

Finish

b

Your class will now have the ActorAttribute and all dependencies will have been added to the project.

5. Finally, you need to change all methods that have a return value to asynchronous methods, and modify the code
that calls them.

Applying the Actor manually

To apply the Actor threading model manually:
1. Add the PostSharp.Patterns.Threading NuGet package to your project.
2. Add the ActorAttribute to the class.

3. Finally, you need to change all methods that have a return value to asynchronous methods, and modify the code
that calls them.

In the reworked example below, the AverageCalculator class has had the ActorAttribute added and the GetAverage

methods has been changed into asynchronous an methods. The AddSample method was not changed because it does not
have a return value.

[Actor]
class AverageCalculator

{
float sum;
int count;

public void AddSample(float n)
{

this.count++;

this.sum += n;

¥

public async Task<float> GetAverage()
{

185

Writing Thread-Safe Code with Threading Models

return this.sum / this.count;

¥

You can now use the same AverageCalculator from two concurrent threads.

class Program

{
static void Main(string[] args)
{
MainAsync().GetAwaiter().GetResult();
}
static async Task MainAsync()
{
AverageCalculator averageCalculator = new AverageCalculator();
SampleObserver observer = new SampleObserver(averageCalculator);
DataSources.Sourcel.Subscribe(observer);
DataSources.Source2.Subscribe(observer);
Console.ReadKey();
float average = await averageCalculator.GetAverage();
Console.WriteLine("Average: {@}", average);
}
}
class SampleObserver : IObserver<float>
{
AverageCalculator calculator;
public void OnNext(float value)
{
// Each of the data sources can call us from a different thread and concurrently.
// But we don't have to care since our calculator will enqueue method calls.
this.calculator.AddSample(value);
}
// Details skipped.
}

Behind the scenes, each invocation of AverageCalculator.AddSample is added to the message queue by the Actor-
Attribute, which then processes each call sequentially in the order it was added to the queue. This gives us the guarantee
that an instance of the AverageCalculator class is never being accessed concurrently by two threads, and eliminates the
need to make take multi-threading into account.

Working with complex state

PostSharp generates code that prevents the fields of an actor class to be accessed from an invalid context. For instance,
trying to read an actor field from a background task would result in a ThreadAccessException. However, very often, state is

more complex than fields of simple type like [int] or [string]. State can be composed of several objects and collections.

To prevent state corruption, it is important that PostSharp generates code that enforces the Actor model at runtime even
for child objects of the actor.

186

Reader/Writer Synchronized Threading Model

To add complex state to actor classes:
1. Declare the Parent-Child relationship on the property using the ChildAttribute custom attribute:

[Actor]
class AverageCalculator

{

float sum;
int count;

[Child]
private CounterInfo counterInfo;

// Other details skipped for brevity
}

2. Add the PrivateThreadAwareAttribute attribute to the child class.

[PrivateThreadAware]
public class CounterInfo

{
}

public string Name { get; set; }

Dealing with constraints of the Actor model

Per definition of the Actor model, all methods are executed asynchronously. Methods that have no return value (void
methods) can be executed asynchronously without syntactic changes. However, methods that do have a return value need
to be made asynchronous using the async keyword.

In some situations, the application of the async keyword and the corresponding dispatching of the method may be
unnecessary. For instance, a method that returns immutable information is always thread-safe and does not need to be

12.4. Reader/Writer Synchronized Threading Model

When a class instance is concurrently used by multiple threads, accesses must be synchronized to prevent data races, which
typically result in data inconsistencies and corruption of data structures.

Consider the following example of an Order class which stores an amount and a discount:

class Order

{

int Amount { get; private set; }
int Discount { get; private set; }

public int AmountAfterDiscount

{
}

get { return this.Amount - this.Discount; }

public void Set(int amount, int discount)

{

if (amount < discount)
throw new InvalidOperationException();

187

Writing Thread-Safe Code with Threading Models

this.Amount = amount;
this.Discount = discount;

¥

In this example, the Set method writes to the Amount and Discount members, while the AmountAfterDiscount property
reads these members. In a single-threaded program, the AmountAfterDiscount property is guaranteed to be positive or
zero. However, in a multi-threaded program, the AmountAfterDiscount property could be evaluated in the middle of the
Set operation, and return an inconsistent result.

This topic contains the following sections.

» Problems of the lock keyword on page 188

» Reader-writer locks on page 188

» Making a class reader-writer synchronized on page 189

» Executing long-running write methods on page 191

» Working with object trees on page 192

Problems of the lock keyword

The easiest way to synchronize accesses to a class in C# is to use the lock keyword. However, this practice cannot be
generalized for two reasons:

» The use of exclusive locks often results in high contention and therefore low performance because many threads
gueue to access the same resource;

 Applications relying on exclusive locks are prone to deadlocks because of cyclic waiting dependencies.

Reader-writer locks

Reader-writer locks take advantage of the fact that most applications involve much fewer writes than reads, and that
concurrent reads are always safe. Reader-writer locks ensure that no other thread is accessing the object when it is being
written. Reader-writer locks are normally implemented by the .NET classes ReaderWriterLock or ReaderWriterLockSlim.

The following example shows how ReaderiWriterLockSlim would be used to control reads and writes in the Order class:

class Order

{

private ReaderWriterLockSlim orderLock = new ReaderWriterLockSlim();

public decimal Amount { get; private set; }
public decimal Discount { get; private set; }

public decimal AmountAfterDiscount

{
get
{
orderLock.EnterReadLock();
decimal result = this.Amount - this.Discount;
orderLock.ExitReadLock();
return result;
}
}
public void Set(decimal amount, decimal discount)
{
if (amount < discount)
{
throw new InvalidOperationException();
}

orderLock.EnterWriteLock();
this.Amount = amount;
this.Discount = discount;

188

Reader/Writer Synchronized Threading Model

orderLock.ExitWriteLock();
}

However, working directly with the ReaderWriterLock and ReaderWriterLockSlim classes has disadvantages:
 Itis cumbersome because a lot of code is required.
« Itis unreliable because it is too easy to forget to acquire the right type of lock, and these errors are not detectable

by the compiler or by unit tests.

So, not only the direct use of locks results in more lines of code, but it won't reliably prevent non-deterministic data
structure corruptions.

Making a class reader-writer synchronized

PostSharp Threading Pattern Library has been designed to eliminate non-deterministic data corruptions while reducing the
size of thread synchronization code to the absolute minimum (but not less).

The ReaderWriterSynchronizedAttribute aspect implements the threading model (or threading pattern) based on the
reader-writer lock, with the following principles:

« At any time, the object can be open for reading or closed for reading.

» Methods define their required access level using [ReaderAttribute] and [WriterAttribute] custom attributes
(other access levels exist for advanced scenarios)

« An error will be emitted at build-time or runtime, but deterministically, whenever an object field is being accessed
by a method that does not have the required access level on the object.

There are two ways to add the reader-writer-synchronized pattern to your class:
1. using the user interface

2. manually

To apply the Reader-Writer Synchronized pattern using the user interface:
1. Hover the mouse over the class name. This displays the smart tag dropdown.

2. Click the smart tag dropdown and click Apply threading model:

class Order
toa- -
§u w Implement INotifyPropertyChanged
»{ Add architecture constraint...
3 Add legging... 103
4 Apply threading model...
this.Discount = discount;

¥

189

Writing Thread-Safe Code with Threading Models

3.

Select Apply reader-writer-synchronized threading model and click Next:

r ™y
Apply threading model M

Z
)& Select a threading model.

Select Model messages and queued for sequential processing by the actor, -
Summary Apply freezable threading model
Progress Apply the freezable threading model. Freezable objects can be modified until

their Freeze method is invoked. After that, changes are forbidden and objects —
Completed can be safely shared between threads.

Apply immutable threading model
Apply the immutable threading model. Immutable cannot be modified after
they have been initialized by their constructor.

m

[l Apply private thread-aware threading model

Make the class thread-aware without implementing a specific threading
model. Private thread-aware objects can be used only within the scope of their
parent thread-aware object, otherwise an exception is thrown,

Apply reader-writer-synchronized threading model
Apply the reader-writer-synchronized threading model. Concurrent read
access to the object is allowed, but write access is exclusive. Methods must be

manually annotated as readers or writers. Prohibited access causes build-time
errors of runtime exceptions.

I Apply synchronized threading model
Apply the synchronized threading model. Methods execute one at a time on
tha rallina thraad Thicic amivalant fn acauirina 3 lack arnund aach methad

| Mext > | [Cancel]

Click Next on the summary screen and the click on Finished to complete the process. The ReaderiWriter-
SynchronizedAttribute attribute is now applied to the class.

Once ReaderWriterSynchronizedAttribute is applied to the class, each method or property which accesses
member data must then be marked as a reader or a writer. Position the caret on the name of the method or on
the get or set keyword and choose "Acquire reader lock" or "Acquire writer lock" from the smart tag dropdown.

To apply ReaderWriterSynchronizedAttribute to a class manually:

1.

2
3.
4

Add NuGet Package PostSharp.Patterns.Threading.
Add using PostSharp.Patterns.Threading.
Add the custom attribute [ReaderWriterSynchronizedAttribute] to the class.

Add the custom attribute [ReaderAttribute] or [WriterAttribute] to the public and internal methods. Note that
it is not necessary to put these attributes on property getters and setters or on events.

The following code shows the Order class , synchronized with the reader-writer threading pattern:

[ReaderWriterSynchronized]
class Order

{

decimal Amount { get; private set; }
decimal Discount { get; private set; }

public decimal AmountAfterDiscount

{

get { return this.Amount - this.Discount; }
¥
[Writer]

public void Set(decimal amount, decimal discount)

{

190

Reader/Writer Synchronized Threading Model

if (amount < discount)
throw new InvalidOperationException();

this.Amount = amount;
this.Discount = discount;

¥

ReaderAttribute places a lock on the instance whenever the property or method is invoked. While this lock is held, other

threads can also invoke a property or method of that instance which reads, but calls to properties or methods marked with
WriterAttribute will be blocked until all reads are complete.

Likewise, invoking properties or methods marked with WriterAttribute will lock the instance causing reads to block until
the write has completed and the write lock has been released.

Since ReaderWriterSynchronizedAttribute requires that all properties and methods which access member data be
marked with ReaderAttribute or WriterAttribute, ReaderiWriterSynchronizedAttribute throws an exception when an
accessor does not have one of these attributes. This ensures that unsynchronized reads and writes are caught the instant
they occur.

NOTE

Property getters are intrinsically thread-safe and don't need to be marked with a [ReaderAttribute] custom attribute.

Executing long-running write methods

Since write methods require exclusive access to the object, they should complete as quickly as possible. However, this is not
always possible. Some long-running write methods really do a lot of write operations (or rely on slow external services)
which make them inappropriate for the reader-writer-synchronized model. However, many write methods are actually
composed of a lot of read operations but just a few write operations at the end. In this case, it is possible to use a
combination of the UpgradeableReaderAttribute and WriterAttribute attributes. The UpgradeableReaderAttribute
attribute ensures that no other thread than the current one will be able to acquire a writer lock on the object, so it gives the
guarantee that the object is not going to be modified during the method's execution. A method that holds an upgradeable
reader lock can then invoke a method with the WriterAttribute attributes custom attribute. Note that it is important that
the writer methods leave the object in a consistent state before exiting, because other threads will be allowed to read the
object.

The following example builds on that in the section where the Order class contains a collection of Line objects which make
up the order. In the example below, a new method called Recalculate() has been added to Order which iterates through
each Line in the collection, tallies up the amount from each, and then stores the total in Amount.

Since the Recalculate method performs a series of reads followed by a write operation (to store the total in Amount), it is
marked with the UpgradeableReaderAttribute attribute which ensures that all of the orders that it reads remain locked so
that it calculates and writes out the correct total. In addition to this, the set accessor of the Order’s Amount property as been
marked with WriterAttribute:

[ReaderWriterSynchronized]
class Order

{
// Other details skipped for brevity.

public decimal Amount

{

// The [Reader] attribute optional here is optional because the method is a public getter.
get;

// The [Writer] attribute is required because, although the method is a setter, this setter is private,

// therefore is does not acquire write access by default.
[Writer] private set;

191

Writing Thread-Safe Code with Threading Models

}
[UpgradeableReader]
public void Recalculate()
{
decimal total = 0;
for (int i = @; i < lines.Count; ++i)
total += lines[i].Amount;
}
this.Amount = total;
}

¥

Working with object trees

Because the Reader/Writer Synchronized model is an implementation of the Aggregatable pattern, all of the same

NOTE

Once you have established your parent-child relationships you will need to apply compatible threading models to the

threading model will work for the children of the Read/Writer Synchronized object.

12.5. Synchronized Threading Model

A common way to avoid data races is to enclose all public instance methods of a class with a lock(this) statement. This is
basically what the Synchronized model does

This article describes how to use the Synchronized model and how it differs from the use of lock(this) statement.

This topic contains the following sections.

» Comparing with lock(this) on page 192

+ Applying the Synchronized Model using the Ul on page 193

» Applying Synchronized manually on page 195

» Working with object trees on page 195

Comparing with lock(this)

Traditionally, the C# keyword lock(this) statement has been used to synchronize access of several threads to a single
object. When an object is locked by one thread, any other object that attempts to access that object will have its execution
blocked.

private object myLockingObject = new Object();

public void DoSomething()

{
lock(myLockingObject)
{
//some code that does something in one thread at a time
}
}

192

Synchronized Threading Model

In this example the myLockingObject member variable is used as a locking object. Once a thread runs the lock(my-
LockingObject) line, all other threads that enter the DoSomething method will stop executing, or be blocked, until the
original thread has exited the lock(myLockingObject) code block.

The Synchronized model is similar to using the lock statement around every single public method, but it has the following
differences:

« ltis not technically equivalent to locking the current instance (this). Another object is actually being locked.

+ Locking is automatic for all public and internal instance methods. You cannot forget it.

« If a thread attempts to access a field without having first acquired access to the object (by invoking a public or
internal method), an exception will be thrown.

» The pattern also works with entities composed of several objects organized in a tree.

Applying the Synchronized Model using the Ul

To apply the Synchronized threading model to your class with the Ul:
1. Place the cursor over your class name and select "Apply threading model..." from the drop down

public class OrderService
{ a-
N ¢ Implement INotifyPropertyChanged
pUbllC vo »¢ Add architecture constraint..
{ 4 Apply threading model...

order » Add another aspect...

2. Select "Apply Synchronized threading model" from the Select Model tab and select "Next".

Apply threading model =

7,
)\ Select a threading model.

APpPIY POvALE Ul cau-awar e Ui Eaaing ot

Make the class thread-aware without implementing a specific threading

Summary model, Private thread-aware objects can be used only within the scope of their
E parent thread-aware object, otherwise an exception is thrown.
Progress
Apply reader-writer-synchronized threading model
Apply the reader-writer-synchronized threading model, Concurrent read
access to the object is allowed, but write access is exclusive. Methods must be
manually annotated as readers or writers, Prohibited access causes build-time
errors or runtime exceptions.

Completed

Apply synchronized threading model

Apply the synchronized threading model. Methods execute one at a time on
the calling thread. This is equivalent to acquiring a lock around each method.
Prohibited access causes build-time errors or runtime exceptions.

Apply thread-affine threading model
Apply the thread-affine threading model. Access is allowed only from the
thread that instantiated the object.

m

Apply thread-unsafe threading model
Apply the thread-unsafe threading model. Concurrent access to an instance is
prehibited and causes runtime exceptions.

Mext = | [Cancel

193

Writing Thread-Safe Code with Threading Models

3. Confirm the actions on the Summary tab and select "Next".

|

)%// Summary

Select Model The following actions will be performed:

Add custom attribute [Synchronized] to Postsharp.OrderService,

Progress

Completed

4. Click Finish after the installation completes.
e
77
)X The operation has successfully completed

Select Model The project has been successfully modified.

Summary

Progress

Completed

| < Previous | [Finish]| Cancel |

Your class will now have the SynchronizedAttribute and any previously missing PostSharp related references will
have been added to the project.

194

Synchronized Threading Model

Applying Synchronized manually

To apply the Synchronized threading model manually:
1. Add the PostSharp.Patterns.Threading NuGet package to your project.

2. Add the SynchronizedAttribute to the class.

In the example below the SynchronizedAttribute has been added to the class.

[Synchronized]
public class OrderService
{
public void Process(int sequence)
{
Console.WritelLine("sequence {0}", sequence);
Console.WriteLine("sleeping for 10s");
Thread.Sleep(new TimeSpan(0,0,10));
}

}

To test this we can run the following code.

public void Main(string args[])

{
var orderService = new OrderService();
var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += (sender, args) => orderService.Process(1);
backgroundWorker.RunWorkerAsync();
orderService.Process(2);

}

The code above will attempt to execute the Process method on two different threads; the main thread and a background
worker thread. Because these two threads are trying to access the same instance of the OrderService the first thread to
access it will block the second. As a result, when you run the program you will first see the follwing.

sequence 2

sleeping for 10s

Because the OrderService.Process method has a Thread.Sleep call, the first thread accessing that method will block the

second for 10 seconds. After those 10 seconds have passed the second thread will no longer be blocked and it will be able
to continue its execution.

Working with object trees

Because the Synchronized model is an implementation of the Aggregatable pattern, all of the same behaviors of the

195

Writing Thread-Safe Code with Threading Models

NOTE

Once you have established your parent-child relationships you will need to apply compatible threading models to the

threading model will work for the children of the Synchronized object.

12.6. Thread-Unsafe Threading Model

When you are dealing with multi-threaded code you will run into situations where some objects are not safe for concurrent
use by several threads. Although these objects should theoretically not be accessed concurrently, it is very hard to proof
that it never happens. And when it does happen, thread-unsafe data structures get corrupted, and symptoms may appear
much later. These issues are typically very difficult to debug. So instead of relying on hope, it would be nice if the object
threw an exception whenever it is accessed simultaneously by several threads. This is why we have the thread-unsafe
threading model.

This topic contains the following sections.

» Marking an object as thread-unsafe on page 196

Marking an object as thread-unsafe

To mark an object as thread-unsafe:

1. When you don't want multiple threads to access a single instance of a given class you will want to configure
InstancelevelAspect thread safety. To do this, select "Apply threading model" from the smart tag on the class.

2. Choose the "Apply thread-unsafe threading model" option.

r ~
Apply threading model @

7,
)\ Select a threading model.

APRETY PHVELE U EdU-dWdl & LI EdUing imoaer
Make the class thread-aware without implementing a specific threading
Relationships maodel, Private thread-aware objects can be used only within the scope of their
parent thread-aware object, otherwise an exception is thrown,
Summary
Apply reader-writer-synchronized threading model
Apply the reader-writer-synchronized threading model, Concurrent read
Completed access to the object is allowed, but write access is exclusive. Methods must be
manually annotated as readers or writers, Prohibited access causes build-time
errors o runtime exceptions.

Progress

Apply synchronized threading model

Apply the synchronized threading model. Methods execute one at a time on
the calling thread. This is equivalent to acquiring a lock around each method.
Prohibited access causes build-time errors or runtime exceptions.

Apply thread-affine threading model
Apply the thread-affine threading model, Access is allowed only from the
thread that instantiated the object.

m

Apply thread-unsafe threading model
Apply the thread-unsafe threading model. Concurrent access to an instance is
prehibited and causes runtime exceptions.

Mext = l [Cancel

196

Thread-Unsafe Threading Model

3. You will be prompted with a summary of the changes that will be made based on the configuration you selected
in the wizard.

>%// Summary

Select Model The following actions will be performed:

Relationships

Summary

Progress

Add custom attribute [ThreadUnsafe] to Postsharp.MyDictionary.
Add custom attribute [Child] to dictionary.

Completed

4. PostSharp will download the Threading Pattern Library and add it to your project if that hasn't been done yet.

r bl
praress s

)X Please wait while the operation is in progress.

Select Model Install package PostSharp.Patterns. Threading to project Postsharp,

Relationships T

Summary

Completed

| < Previous || Mext > ‘ | Cancel

197

Writing Thread-Safe Code with Threading Models

5. Once the process has completed successfully you'll be presented with the final page of the wizard.

Apply threading model =

7,
)\ The operation has successfully completed

Select Model The project has been successfully medified.
Relationships
Sumrmary

Progress

Completed

Finish |

6. You'll notice that only one change was made to your codebase. The [ThreadUnsafeAttribute] attribute was
added to the class you were targeting.

[ThreadUnsafe]
class AverageCalculator

{
float sum;
int count;

public void AddSample(float n)

{
this.count++;
this.sum += n;
}
public float GetAverage()
{
return this.sum / this.count;
}

}

Now when your application executes no two threads will be able to access a single instance of the AverageCalculator class
at the same time. If two threads attempt to do this, the second thread will receive a ConcurrentAccessException. Without
the exception, there would be a slight chance that internal sum or count fields would have invalid values because the
increment operations would not be atomic.

198

Thread Affine Threading Model

12.7. Thread Affine Threading Model

One of the simplest ways to consider threading is to limit object instance access to the thread that created the instance.
This is how the Thread Affine threading model works.

This topic contains the following sections.

» Adding the Thread Affine model using the Ul on page 199

» Adding Thread Affine manually on page 199

» Understanding runtime enforcement on page 199

» Working with object trees on page 199

Adding the Thread Affine model using the Ul
Adding Thread Affine manually
Understanding runtime enforcement

Working with object trees

12.8. Opting In and Out From Thread Safety

By default, PostSharp enforces thread safety for all instance fields and all public and internal methods of any class to which
you applied a threading model.

However, there are times when you want to opt-out from this mechanism for a specific field or method. A typical reason is
that access to the field is synchronized manually using a different mechanism.

This section shows how to override the default thread safety implemented by PostSharp.

This topic contains the following sections.

Opting out from thread-safety verification for a method

To disable enforcement of the class-level threading model for a specific method, add the ExplicitlySynchronized-
Attribute attribute to that method.

In the following example, this custom attribute allows us to implement the ToString in a class that respects the Actor
model. Without the custom attribute, this would not have been possible because non-void public methods must have the
async keyword.

[Actor]
class Player

{

private readonly string name;

[ExplicitlySynchronized]
public override string ToString()

{

return this.name;
}
}

199

Writing Thread-Safe Code with Threading Models

When used on a method, the ExplicitlySynchronizedAttribute attribute has several effects:

1. Lock-based aspects such as SynchronizedAttribute or ReaderWriterSynchronizedAttribute will not attempt
to acquire a lock before executing this method.

2. Accesses to fields are not verified during the whole execution of the method (for the current thread).

3. All build-time verifications are disabled for this method.

CAUTION NOTE

By using the ExplicitlySynchronizedAttribute custom attribute, you are significantly increasing the risk that
multithreading defects in user code go undetected by PostSharp. Code using ExplicitlySynchronizedAttribute should
be more carefully covered by reviews and tests.

Opting out from thread-safety for a field

To disable enforcement of the class-level threading model for a specific field, add the ExplicitlySynchronizedAttribute
attribute to the field:

[Actor]
class MyActor

{

[ExplicitlySynchronized]
int counter;

public void FooBar()

// This line would throw an exception without [ExplicitlySynchronized].
Task.Factory.StartNew(() => Interlocked.Increment(ref this.counter));

}
}

When used on a field, the ExplicitlySynchronizedAttribute attribute has several effects:

1. Accesses to the field are never verified

2. All build-time verifications are disabled for this method.

Opting in for thread safety for callback methods

By default, thread safety is ensured when a thread first invokes a public or internal method of an object. The underlying
motivation is that public and internal methods are the primary way how a thread can enter an object. Another way is to
enter an object through a delegate call to a private method. By default, PostSharp does not ensure thread safety for private
methods. If you register a callback method, you need to add the EntryPointAttribute custom attribute on this method.

In the following code snippet, the OnCreated method is invoked from a background thread by the FileSystemWatcher
class. The InputQueuelWatcher is thread-safe thanks to the SynchronizedAttribute aspect.

[Synchronized]
class InputQueueWatcher

{

FileSystemWatcher watcher;

[Child]
AdvisableCollection<string> files = new AdvisableCollection<string>();

public InputQueueWatcher(string path)
{

200

this.
this.
this.
this.
this.

}

watcher
watcher
watcher
watcher
watcher

[EntryPoint]

private void OnCreated(object source, FileSystemEventArgs e)

{

// Without [EntryPoint], the following line would throw ThreadAccessException.

= new FileSystemWatcher();

.Path = path;
.NotifyFilter

Compeatibility of Threading Models

= NotifyFilters.LastWrite | NotifyFilters.FileName | NotifyFilters.DirectoryName;
.Filter = "*.xml";
.Created += new FileSystemEventHandler(OnCreated);

this.files.Add(e.FullPath);

}

public ICollection Files { get { return this.files; } }

12.9. Compatibility of Threading Models

Required introduction

Compeatibility Matrix

Parent

Actor

Freezable

Immutable

Reader-Writer
Synchronized

Synchronized

Thread Affine

Thread Unsafe

Private

12.10. Enabling and Disabling Runtime Verification

Actor

No
No
No

Yes
(Own)

Yes
(Own)

Yes
(Own)

Yes
(Own)

Freezable Immutable Private Reader-Writer

Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes

Yes

Synchronized
No

No

No

Yes (Shared)

Yes (Shared)

No

No

Synchronized

No
No
No
No

Yes (Shared)

No

No

Thread
Affine

No
No
No
No

No

Yes

Yes

Thread
Unsafe

Yes
No
No
No

No

Yes
(Shared)

Yes
(Shared)

When you apply a threading model to a class, PostSharp adds two kinds of behaviors: behaviors that are necessary to
implement the semantic of the threading model (for instance acquiring a lock or dispatching a method call) and behaviors
that validate that the source code is valid against the chosen threading model (for instance that no field is written if the
current method does not have write access). The second set of behaviors are called runtime verifications. By default, runtime

verifications are enabled in the Debug build and disabled in the Release build.

This section explains how to enable or disable runtime verification.

201

Writing Thread-Safe Code with Threading Models

This topic contains the following sections.

Understanding the default configuration

By default, runtime verification is disabled if the Optimize Code compiler flag is enabled. Therefore, runtime verification is
enabled by default in the Debug build and disabled in the Release build.

Enabling or disabling runtime verification for a whole project

Perform the following steps to enable runtime verification by using the Project Settings dialog

Enabling Runtime Verification in Project Properties
1. Open the project's Properties window.

4 [& Po .

4 Jopp ks Build
b Rebuild
b Clean

b = Re

c# Ac

W A Analyze 4

o He € Publish.

< Iny Scope to This
(<1

View 4

-

Mew Solution Explorer View

¢ Or . Show on Code Map

¥ pa Add »
Pe ¥ Manage NuGet Packages..

v v v v v

-
n
#

Pao £} Setas StartUp Project
b ; Pn Debug ¥
P Se M cu Ctri+X

X Remove Del
Tz Rename
Unload Project
Find Code Issues
£E Find Symbols External to Scope
I's[E Find Code Dependent on Module
£ Optimize References..,
Project Hierarchy
Refactor b

View Project Dependencies

> Open Folder in File Explorer

P Run Unit Tests Ctrl+T, R

#¥ Debug Unit Tests Ctrl+T, D
Collapse All

K Properties Alt+Enter

202

Enabling and Disabling Runtime Verification

2. Select the build configuration that you want to enable runtime verification on.

NOTE

By default, projects have two different build configurations: Debug and Release. Each build configuration can,
and by default does, have a different behavior for runtime verification.

Application X X =
Configuration: |Active (Debug) -

Build Active (Debug)
Build Events Debug

Disable Post Sh[{EEEES
Debug . All Configurations

3. Open the PostSharp tab.

Application § i = =
Configuration: | Active (Debug) - Platform: | Active (Any CPU) -

Build

Build Events
Dizable PostShamp forthis configuration: | Default (Mo) -

Debug
Additional search path for plugins and libraries (semicolon-separated list):
Resources
Services
Settings
Reference Paths Additional properties (semicolon-separated list, forinstance: Name 1=Value 1;Name 2=Valus2)
Signing
Security
Publish Suppress wamings (semicolon-separated list):

Code Analysis

PostSharp Treat wamings as emors (semicolon-separated list, " to escalate all wamings):

Cptional Features

Architecture Validation | Default (Enabled) =
Rurtime Verfication Default (Enabled) -

Advanced

CLR Version Default (4.0) Build Host Default (Server) -
Processor Architecture | Default (<B6) - Optimization mode Default (Build Time)

4. In the Optional Features section there is a Runtime Verification dropdown. The dropdown has three options in it;
Default, Disabled, and Enabled.

The Default option will include either (Enabled) or (Disabled) after it. This value will change based on the Optimize
Code compiler flag setting. If the compiler flag is disabled the dropdown option will read Default (Enabled) and if
the Optimize Code flag is enabled the dropdown option will read Default (Disabled).

PostSharp® Treat wamings as emors (semicolon-separated list, "™

Optional Features

Architecture Validation | Default (Enabled) =
Runtime Verfication Default (Enabled) =

Default (Enabled)
Disabled

ﬁ[

Advanced

203

Writing Thread-Safe Code with Threading Models

Enabling and disabling runtime verification for a specific class

You can override the project-level configuration of the runtime verification setting by setting the Runtimeverification-
Enabled property of the threading model custom attribute. This property is defined by the ThreadAwareAttribute class,
from which all threading model attributes derive.

[ThreadAffine(RuntimeVerificationEnabled = true)]

If the property is not manually set it derives its value from the setting on the project properties page. If you want to
override the default value all you need to do is set the value of the RuntimeVerificationEnabled to true or false.

204

Enabling and Disabling Runtime Verification

CHAPTER 13

Dispatching a Method to Background

Long running processes will block the further execution of code while the system waits for them to complete. When you are
building applications it's common to push long running processes to the background so that other processes can continue
without waiting. Two common ways of doing this are with asyncronous processing and the Backgroundworker. Both require

a lot of boiler plate code to push execution to another thread.

PostSharp provides you with the ability to push execution of a method to a background thread without having to worry
about all of the boiler plate code.

To add [Background] attribute:
1. Find the method that you want to push to the background for execution.

public class CustomerRepository

{
public void DoStuff()
{
Console.WriteLine("Things are getting done");
}
}

2. Select "Execute method in the background" from the Smart Tag available under the method name.

public class CustomerRepository

public void DoStuff()
t &

Conscle

} % Add architecture constraint
} %, Addlogging
.. Execute method in the background
%, Execute method in the object thread

3. You'll notice that only one change was made to your codebase. The [Background] attribute was added to the

class you were targeting. Now when this method executes in your application it will occur in another thread and
will allow for the calling code to continue executing.

public class CustomerRepository

{
[Background]
public void DoStuff()
{
Console.WriteLine("Things are getting done");
}
}

Those simple steps are all that is required for you to declare that a method should be executed in a background thread.

205

Dispatching a Method to Background

206

Enabling and Disabling Runtime Verification

CHAPTER 14

Dispatching a Method to the Ul Thread

When you are building desktop or mobile user interfaces, parts of your code may execute on background threads.
However, the user interface itself can be accessed only from the Ul thread. Therefore, it is often necessary to dispatch
execution of code from a background thread to the foreground thread.

Traditionally, thread dispatching has been implemented using the Invoke(Delegate) method in WinForms or the
Dispatcher class in XAML. However, this results in a large amount of boilerplate, making the code unreadable.

The DispatchedAttribute aspect addresses the issue of thread dispatching by forcing a method to execute on the thread
that created the object (typically the foreground thread).

This topic contains the following sections.

» Forcing a method to execute on the foreground thread on page 207

» Executing a method asynchronously on page 208

» Executing async methods in the foreground thread on page 208

Forcing a method to execute on the foreground thread

Once you've added background processing to the button click, you will need a way to have the SaveCompleted method run
on the Ul thread. If you don't do this you will get an InvalidOperationException because setting the 1blStatus.Text
property is a cross threading operation.

private void SaveCompleted()

lblstatus.Text = “Finished Saving”;

¥

1 InvalidOperationException was unhandled by user code x
[Background]

R R . . Cross-thread operation not valid: Control TbiStatus’ accessed from a thread other than
private void btnsave_Click(cbject sender, z

the thread it was created on,

Dosave(); Troubleshooting tips:
saveCompleted(); How to make cross-thread calls to Windows Forms controls |

|»

¥

Get general help for this exception.

Ll

private void Dosave()

i Caarrh far mara Haln Anlina

Here's how you can fix this:

1. Your code has encapsulated the Ul thread interaction in the SaveCompleted method. Open the smart tag on that

method and choose to "execute the method in the object thread". This tells PostSharp to configure this method to
execute in the thread that the class containing the method is executing in.

private void SaveCompleted()
-

.
lblstatus o
¥ 2 Execute method in the background

3 Execute method in the object thread
¢ Add legging...

[Background]
private void

{

207

Dispatching a Method to the Ul Thread

2. After selecting the smart tag option you will be returned to your code and you'll notice that the only change was
the addition of the [DispatchedAttribute] attribute to the SaveCompleted method.

[Dispatched]
private void SaveCompleted()
{
lblStatus.Text = "Finished Saving";
}
NOTE

Note, that [Dispatched] attribute can be applied only to instance methods of Ul controls (WinForms or WPF), or
to any class implementing the IDispatcheroObject interface manually.

Now if you run your code you will no longer receive the InvalidOperationException and instead will see the label on the
Ul update. All of the Save functionality will occur in a separate thread which prevents the user interface from locking up
while that is happening.

Executing a method asynchronously

By default, the DispatchedAttribute forces the target method to execute synchronously on the foreground thread, which
means that the background thread will wait until the method execution has completed. This waiting causes some
performance overhead. Additionally, synchronous execution is not always useful. If the method has no return value and no
side effect of interest for the calling thread, the method could be safely executed asynchronously, which means the calling
thread would not need to wait for the method execution to complete on the foreground thread, so that the calling thread
would continue its execution immediately after having enqueued the call to the foreground thread.

You can enable asynchronous execution of a dispatched method by passing the true value to the parameter of the
DispatchedAttribute(Boolean) constructor, for instance:

[Dispatched(true)]
private void SaveCompleted()

1blStatus.Text = "Finished Saving";

Executing async methods in the foreground thread

When you use the DispatchedAttribute aspect on asynchronous methods (async keyword in C#), the method is
guaranteed to execute on the foreground thread even when it is invoked from a background thread.

208

Enabling and Disabling Runtime Verification

CHAPTER 15
Detecting Deadlocks at Runtime

A common problem that is found in multi-threaded code is that multiple threads enter a situation where they are waiting
for each other to finish. This is a deadlock situation and neither thread will complete executing in this situation. Because the
threads are waiting on each other, neither is capable of providing diagnostic information to aid in debugging the situation.
The DeadlockDetectionPolicy helps provide this information.

This topic contains the following sections.

Adding deadlock detection using the Ul

To apply the deadlock detection to your application with the Ul:
1. Right click on your solution in Solution Explorer, select Add followed by Postsharp Policy...

Posts 1% Build Solution Ctrl+Shift+B
b P Rebuild Solution
bl R Clean Solution
oo A
‘ Run Code Analysis on Solution Alt+F11
A
b o= H Batch Build...
b e ln Cenfiguration Manager...
b Mg Manage NuGet Packages for Solution...
b0 [® Enable NuGet Package Restore
[

‘D pi MNew Selution Explorer View
b e Pe ¥ Showon Code Map

P& EI Calculate Code Metrics
«
boex Py Add L New Project...
booo* S0 L} Set StartUp Projects... Existing Project...
te .
= ™ Add Selution to Source Control... MNew Web Site...
Existing Web Site...
¥ Rename ‘O Newltem... Ctrl+Shift+A
+ - - .
EindlEnake s 0 Existing Item... Shift+Alt+ A
5 MNew Solution Folder
Refactor v 3 PostSharp policy..
Cleanup Code.., Ctrl+ Alt+F
P Run Unit Tests Ctrl+T, R
#F Debug Unit Tests Ctrl+T, D
€ Open Folder in File Explorer

Collapse All
%= Remove Unused References

View Project Dependencies

K& Properties Alt+Enter

209

Detecting Deadlocks at Runtime

210

2.

In the Add Postsharp policy wizard, expand Threading and select Deadlock detection.

, ,
o =

Vs
)X Select a policy

Select policy

Configure projects

Summary

Progress Deadlock detection
Detect deadlocks in your application and throws an exception with detailed
Completed diagnestic information when one is found, instead of letting the application
freeze. For better results, this policy should be added to all projects of the
solution.

< Previous [Next > ”

Enabling and Disabling Runtime Verification

3. Select the projects that you would like to add Deadlock detection to.

NOTE

You will need to add this to every project in your application. Excluding projects could cause your application to
fail.

e IR =)

Vs
)X Some NuGet packages may need to be installed

Select palicy Select the projects to which the policy should be installed.

Configure projects
Install Project

Summa
e Postsharp

Progress

Completed

<Previous || Net> ||

211

Detecting Deadlocks at Runtime

4. Review the configuration that you have selected and click Next.

|

)%// Summary

Select policy The following actions will be performed:

Configure projects

Summary

Progress

Add custom attribute [DeadlockDetectionPolicy].

Completed

[<Previous || Net> || Cancel

5. Close the wizard when the process had completed by clicking Finish.

T

77
)X The operation has successfully completed

Select policy
Configure projects

Summary

Progress

Completed

| < Previous | [Finish]| Cancel |

The result of running this wizard is that a pssin file has been added to your project.

212

Enabling and Disabling Runtime Verification

] Solution 'test' {1 project)
4 Solution Items

4 Postsharp
The pssin file contains an entry that enables deadlock detection across all projects in your solution.

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration”xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:Pos
<Multicast>
<t:DeadlockDetectionPolicy/>
</Multicast>
</Project>

Manually adding deadlock detection to a project

To manually add deadlock detection you will need to add an assembly level attribute to the project. This can be added
anywhere in the project but it is most commonly added to the Assemblylnfo file.

[assembly: DeadlockDetectionPolicy]

NOTE

You will need to add this to every project in your application. Excluding projects could cause your application to fail.

Manually adding deadlock detection to the pssin file

Adding deadlock detection at a solution level can also be done manually. This can be done by adding an entry to the pssin
file in the solution.

To manually add deadlock detection to a solution:

1. Open the solution's pssin file. This can be found under the Solution Items folder in Visual Studio's Solution
Explorer.

B Solution 'test' (L project)
4 Solution Items

a Postsharp

If the pssIn file doesn't exist manually add the file at the solution level. Name the file with the same name as your
solution and the pssin file extension.

2. If you had to create the pssin file and add it to your solution add the following XML to it. If the pssin file already
existed in your project procede to the next step.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration”xmlns:t="clr-namespace:PostSharp.Patterns.Threading;as
</Project>

3. Add a multicast attribute to the Project element that will add DeadlockDetectionPolicy to all the projects in the
solution.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration”xmlns:t="clr-namespace:PostSharp.Patterns.Threading;as
<Multicast>
<t:DeadlockDetectionPolicy/>
</Multicast>
</Project>

Once you save the pssin file you will have added deadlock detection to all projects in your solution.

213

Detecting Deadlocks at Runtime

Deadlock detection

When a deadlock is detected a DeadlockException is thrown. The exception will include a detailed report of all the threads
and locks involved in the deadlock. Here is an example of that.

Postsharp.Patterns.Thread1nngead]ockExcept1on | DeadTock detected. The Fo110w1nE
synchronization elements form a read 9, Name=""}}; #l={{System.0Ol
ject:Lock}}; #2={{Thread 10, Name '"}} #3= {{System Ob]ect Lock}}

--|start of stack trace of thread 10 (Name=""):

out(Object obj, Int32 timeout, B
oolean& lockTaken)
at System.Threading.Monitor.TryEnter (Object obj, Int32 millisecondsTimeout, B
oolean& lockTaken)
at PostSharp.Patterns.Threading.DeadlockDetectionPolicy.MonitorEnhancements. <
>C__DisplayClass3f.<EnterInternal>b__3b(Nothing _, Int32 timeout)
at PostSharp.Patterns.Threading.DeadlockDetectionPolicy.Helper.NoTimeoutAcqui
re[TResult,TContext] (Func'1 enterWaiting, Func’3 waitAndC eckIFF1n1shed Action
1 convertWa1t1ngToAcqu1red Action 1 exitWaiting, Func 2 getResult)
at PostSharp.Patterns. Thread1ng DeadlockDetectionPolicy.MonitorEnhancements.<
>c__DisplayClass3f.<EnterInternal=b__
at PostSharp.Patterns.Threading.DeadlockDetection.DeadlockMonitor.Execute[T](
Func™1 ca]]bact
at PostSharp.Patterns.Threading.DeadlockDetectionPolicy.MonitorEnhancements.E
nterInternal (Object obj, Boolean& TockTaken
at PostSharp.Patterns.Threading.DeadlockDetectionPolicy.MonitorEnhancements.E
nter_Object_Bool (MethodInterceptionArgs args)
at PostSharp.ImplementationDetails_c23235hd. <>z Aspects.<System.Threading.Mo
nitor.Enter>b__(Object obj, Boolean& TockTaken) in :Tine 0
at Postsharp.MonthEndProcessing.ProcessSalaries() in e:\working\postsharp3.iw
riting\test\MonthEndProcessing.cs:Tine 15
at Postsharp.Program. <>c4,D1sp1ayc1assl <Deadlock=b__0(0bject sender, DoWorke
ventArgs args) in e:\working\postsharp3.lwriting\test\Program.cs:line 31
at System.ComponentMode].Backgroundworker .0OnDoWork (DoWorkEventArgs e)
at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument)
at System.Runtime.Remoting.Messaging.StackBuilderSink._PrivateProcessMessage(
IntPtr md, Object[] args, Object server, Object[]& outArgs)
at System Runtime.Remoting.Messaging.StackBuilderSink.AsyncProcessMessage (IMe
ssage msg, IMessageSink replySink)
. oat ?ystem.Runt1me.Remot1ng.Proxies.Agi1eAsyncWorkerItem.ThreadPoo]Ca]1Back(ob
ject o
)at System.Threading.QueueUserWorkItemCallback.wWaitCallback_Context(Object sta
te
at System.Threading.ExecutionContext.RunInternal (ExecutionContext executionCo
ntext, ContextCallback callback, Object state, Boolean preserveSyncCtx
at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, C
ontextCallback callback, Object state, Boolean preserveSyncCtx)
at System.Threadin .QueueUserWorkItemca11bacE.System.Threading.IThreadPoo]Wor
kItem.ExecuteWorkItem
at System.Threading.ThreadPoolWorkQueue.Dispatch()
at System.Threading._ThreadPoolwaitCallback.PerformwaitCallback()

-- end of stack trace of thread 10

--| start of stack trace of thread 9 (Name=""):
ction.DeadlockMonitor.AnalyzeDead

1ockCyc1e(IEnumerab1e 1 cyc]e, Str1ngBu11der messageBuilder, Thread[]& threadsIn
Deadlock, StackTrace[]& stackTraces)

at PostSharp.Patterns. Threading.DeadlockDetection.DeadlockMonitor.ProcessDead
1ock(IEnumerab€e 1 cycle)

at PostSharp.Patterns.Threading.DeadlockDetection.DeadlockMonitor.DetectDead]
ocksInterna](Tﬁread startThread)

at PostSharp.Patterns.Threading.DeadlockDetectionPolicy.Helper.NoTimeoutAcqui
re[TResult,TContext](Func'1 enterWaiting, Func’3 waitAndC eckIfFinished, Action
1 convertWa1t1ngToAcqu1red Action 1l exitWaiting, Func 2 getResult)

at PostSharp.Patterns. Thread1ng Dead]ockDetect1onPo11cy MonitorEnhancements. <
>C__DisplayClass3f.<EnterInternal=b__

at Pos%sharE Patterns.Threading. Dead]ockDetect1on DeadlockMonitor.Execute[T](
Func'l ca

at PostSharp.Patterns.Threading.DeadlockDetectionPolicy.MonitorEnhancements.E
nterInterna](OEject obj, Boolean& lockTaken)

at PostSharp.Patterns.Threading.DeadlockDetectionPolicy.MonitorEnhancements.E
nter_Object_Bool (MethodInterceptionArgs args

at PostSharp.ImplementationDetails_c23235hd. <>z__Aspects <System.Threading.Mo
nitor.Enter=b__(Object obj, Boolean& TockTaken) in :Tine 0

at Postsharp. MonthEndProcessin ProcessBonuses() in e:\working\postsharp3.lwr
iting\test\MonthEndProcessin ?1

at]Postsharp Program. Dead?ock() in e \work1ng\postsharp3 lwriting\test\Progra
m.cs:1line 34

214

PART 5

Custom Patterns

CHAPTER 16

Developing Simple Aspects

Developing Custom Aspects

This chapter describes how to build your own aspect. It includes the following topics:

Section

Description

This topic describes how to create aspects that contain a
single transformation (named simple aspects). It describes all
kinds of simple aspects.

This topic explains the lifetime of aspects, which are instan-
tiated at build time, serialized, then deserialized at runtime
and executed.

This topic discusses different techniques to initialize aspects.

This topic shows how to validate that an aspect has been
applied to a valid target declaration.

This topic describes how to create aspects that are
composed of several primitive transformations, using
advices and pointcuts.

This topic explains how to express aspect dependencies to
prevent issues that would otherwise happen if several
aspects are added to the same declaration.

This topic explains some details about the implementation
of interception aspects.

This topic explains aspect serialization and how to
customize it.

This topic discusses some advanced questions.

This topic provides a few examples of custom aspects.

16.1. Developing Simple Aspects

In PostSharp, developing an aspect is as simple as deriving a primitive aspect class and overriding some special methods
named advice. Aspects encapsulate a transformation of an element of code (such as a method or a property), and advices

are the methods that are executed at runtime.

For instance, the effect of the aspect OnMethodBoundaryAspect is to wrap the target method into a try/catch/finally
construct, and the advices of this aspect are OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs), On-
Exception(MethodExecutionArgs) and OnExit(MethodExecutionArgs)

217

Developing Custom Aspects

By default, advices of primitive aspect types have an empty implementation, so the aspect has no effect until you override
at least one advice.

To develop a simple aspect:
1. Add PostSharp to your project. See Installing PostSharp Tools for Visual Studio on page 36 for details.

2. Create a new class and make it derive from one of the primitive aspect classes (see below).

3. Annotate the class with the custom attribute SerializableAttribute, or PSerializableAttribute if your project

understand why.

4. Override one of the aspect advice methods.

Aspect Classes

The following table gives a list of available primitive aspect classes. Every aspect class is described in greater detailed in the
class reference documentation.

Aspect Type Targets Description

OnMethodBoundaryAspect Methods Methods enhanced with an OnMethodBoundaryAspect are wrapped
by a try/catch/finally construct. This aspect provides the advices
OnEntry(MethodExecutionArgs),
OnSuccess(MethodExecutionArgs),
OnException(MethodExecutionArgs) and
OnExit(MethodExecutionArgs); these advices are invoked directly
from the transformed method, the return value, and the exception (if
applicable). This aspect is useful to implement tracing or transaction
handling, for instance.

OnExceptionAspect Methods Methods enhanced with an OnExceptionAspect are wrapped by a
try/catch construct. This aspect provides the advice
OnException(MethodExecutionArgs); this advice is invoked from
the catch block. This aspect is useful to implement exception
handling policies. Contrarily to OnMethodBoundaryAspect, this aspect
lets you define the type of caught exceptions by overriding the
method GetExceptionType(MethodBase)

MethodInterceptionAspect Methods ~ When a method is enhanced by a MethodInterceptionAspect, all
calls to this method are replaced by calls to
OnInvoke(MethodInterceptionArgs), the only advice of this aspect
type. This aspect is useful when the execution of target method can
be deferred (asynchronous calls), must be dispatched on a different
thread.

218

Aspect Type Targets
LocationInterceptionAspect Fields,
Properties
EventInterceptionAspect Events
CompositionAspect Types

CustomAttributeIntroductionAspect Any

ManagedResourceIntroductionAspect Assemblies

ILocationValidationAspect Fields,
Properties,
Parameters
TIP

Developing Simple Aspects

Description

When a field or a property is enhanced by a
LocationInterceptionAspect, all calls to its accessors are replaced
by calls to advices OnGetValue(LocationInterceptionArgs) and
OnSetValue(LocationInterceptionArgs). Fields are transparently
replaced by properties. This aspect is useful to implement function-
alities that need to get or set the location value, such as the observ-
ability design pattern (INotifyPropertyChanged).

When an event is enhanced by an EventInterceptionAspect, all
calls to its add and remove semantics are replaced by calls to advices
OnAddHandler(EventInterceptionArgs) and
OnRemoveHandler(EventInterceptionArgs). Additionally, when the
event is fired, even of invoking directly the handlers that were added
to the event, the advice OnInvokeHandler (EventInterceptionArgs)
is called instead. This aspect is useful to add functionalities to events,

such as implementing asynchronous events or materialized list of
subscribers.

This aspect introduces an interface into a type by composition. The
interface is introduced statically; the aspect method
GetPublicInterfaces(Type) should return the type of introduced
interfaces. However, the object implementing the interface is created
dynamically at runtime by the implementation of the method
CreateImplementationObject(AdviceArgs).

This aspect introduces a custom attribute on any element of code. A
custom attribute can be represented as a CustomAttributeData or a
ObjectConstruction.

This aspect introduces a managed resource into the current
assembly.

This aspect causes any new value assigned to its target to be
validated. If the aspect determines the value is invalid, an exception
is thrown. The aspects of the PostSharp.Patterns.Contracts
namespace are built on the top of this interface aspect.

The implementation of aspects OnMethodBoundaryAspect and OnExceptionAspect is very efficient; they should be
preferred over other aspects whenever it makes sense.

219

Developing Custom Aspects

Using Aspect Interfaces

The primitive aspect classes listed above only exist for convenience. In reality, PostSharp only understands interfaces. Every
of these aspect classes implements a pair of interfaces. For instance, the class OnMethodBoundaryAspect implements the

interfaces I0nMethodBoundaryAspect and IMethodLevelAspectBuildSemantics.

The aspect classes are more convenient because they derive from MulticastAttribute, which extends SystemAttribute

If you do not need or want the capabilities of MulticastAttribute (for instance because the aspect is not used as a custom
attribute, see IAspectProvider), you can implement the aspect interface manually. An aspect class must implement an
interface derived from IAspect, and may implement an interface derived from IAspectBuildSemantics. Please refer to the
documentation of the aspect class to get information about the corresponding aspect interface.

Additionally to the aspect interface corresponding to an aspect class, you can define the following interfaces on aspect
classes:

Aspect Interface Description

IAspectProvider This interface defines a single method ProvideAspects(Object), returning a collection of
AspectInstance. The method allows an aspect to dynamically provide other aspects to the
weaver.

IInstanceScopedAspect By default, aspects have static scope: there is one instance of the aspect per target class.
Implementing the IInstanceScopedAspect makes the aspect instance-scoped: there will be one

instance of this aspect per instance of the target class.

16.1.1. Injecting Behaviors Before and After Method Execution

There are two ways to inject behaviors into methods. The first is the method decorator: it allows you to add instructions
before and after method execution. The second is method interception: the hook gets invoked instead of the method.
Decorators are faster than interceptors, but interceptors are more powerful. The current article covers decorators. For the

You may want to use method decorators to perform logging, monitor performance, initialize database transactions or any
one of many other infrastructure related tasks. PostSharp provides you with an easy to use framework for all of these tasks
in the form of the OnMethodBoundaryAspect.

Injection points

When you are decorating methods there are different locations that you may wish to inject functionality to. You may want
to perform a task prior to the method executing or just before it finishes execution. There are situations where you may
want to inject functionality only when the method has successfully executed or when it has thrown an exception. All of
these injection points are structured and available to you in the OnMethodBoundaryAspect.

To create a simple aspect that writes some text whenever a method enters, succeeds, or fails:

1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

220

2.

4,

5.

Developing Simple Aspects

To add functionality prior to the execution of the target method, override the method and code the functionality
you desire.

[Serializable]
public class LoggingAspect : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)

{

}
}

Console.WriteLine("The {0} method has been entered.", args.Method.Name);

Inject functionality immediately after the method executes by overriding the OnExit(MethodExecutionArgs)
method.

NOTE

It's important to remember that the OnExit(MethodExecutionArgs) method will execute every time that the
target method completes its execution regardless of if the target method completed successfully or threw an
exception.

public override void OnExit(MethodExecutionArgs args)

{
Console.WriteLine("The {0} method has exited", args.Method.Name);

}

To add functionality that only executes when the target method has completed successfully, you will override the
OnSuccess(MethodExecutionArgs) method in your aspect. The OnSuccess(MethodExecutionArgs) method will
be executed every time that the target method completes successfully. If the target method throws an exception
OnSuccess(MethodExecutionArgs) will not execute.

public override void OnSuccess(MethodExecutionArgs args)

{

Console.WriteLine("The {0} method executed successfully.", args.Method.Name);

}

The final location that you can intercept requires you to override the OnException(MethodExecutionArgs)
method. As the name of the overrode method suggests, this is where you can inject functionality that should
execute when the target method throws and exception.

public override void OnException(MethodExecutionArgs args)

{

Console.WriteLine("An exception was thrown in {@}.", args.Method.Name);

}

The four methods (OnEntry(MethodExecutionArgs), OnExit(MethodExecutionArgs), OnSuccess(MethodExecutionArgs)
and OnException(MethodExecutionArgs)) that you overrode are the locations that you are able to intercept method
execution. Between these four location you are able to implement many different infrastructure patterns with minimal

Accessing the method

As illustrated in the examples above, you can access information about the method being intercepted from the property
Method, which gives you a reflection object MethodBase. This object gives you access to parameters, return type, declaring
type, and other characteristics. In case of generic methods or generic types, Method gives you the proper generic method
instance, so you can use this object to get generic parameters.

221

Developing Custom Aspects

Accessing parameters

It's rare that you will intercept method execution and not interact with the parameters that were passed to the target
method. For example, when you implement method interception for logging you will probably want to log the parameter
values that were passed to the target method.

Each of the interception locations that were outlined earlier has access to that information. If you look at the on-
Entry(MethodExecutionArgs) method in your aspect you will see that it has a MethodExecutionArgs parameter. That
parameter is used for OnExit(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and OnException(Method-
ExecutionArgs) as well. The collection Arguments gives access to parameter values.

Let's modify the OnEntry(MethodExecutionArgs) method and include the parameter values in the log message.

To include argument values to the logged text:
1. Create a foreach loop to gather each of the parameter values in the Arguments property of the args parameter.
2. In the loop concatenate the parameter values into a string.

3. Pass that string of argument values to the logging tool.

public override void OnEntry(MethodExecutionArgs args)

{
var argValues = new StringBuilder();
foreach (var argument in args.Arguments)

{
}

argValues.Append(argument.ToString()).Append(",");

Console.WriteLine("The {0} method was entered with the parameter values: {1}",
args.Method.Name, argValues.ToString());

NOTE

A production implementation of this aspect would need to take re-entrance into account. See the article

It's also possible to modify the parameter values inside your aspect methods. All you need to do is modify the value of the
item in the Arguments collection. Remember that all items in the Arguments collection are object types so you will need to
be careful with how you change values. If the value you are modifying was originally a string, you will want to ensure it stays
a string type. It's especially true that when you change the parameter type in the OnEntry(MethodExecutionArgs) method
you may cause the system to be unable to execute the target method due to a parameter type mismatch.

NOTE

The only parameter types that you can modify are those defined as either out or ref. If you need to modify input

Accessing the target objects

In combination with the parameters you will probably interact with the target code instance that the aspect is attached to.
The Instance property provides you with the instance of the object that the aspect is currently operating against. It is an

object type so you will need to cast it to the correct type to be able to interact with it. If you debug your aspect and that
aspect doesn't make use of Instance, it will be set to null. It's also set to null if the target code is defined as static.

222

Developing Simple Aspects

Accessing the return value

Like target method parameters you also have access to the return value for those target methods. It's possible to both read
the return value as well as modify it. The return value can be found at Returnvalue in all four of the aspect methods

covered earlier.

public override void OnExit(MethodExecutionArgs args)

{
}

args.ReturnvValue = false;

NOTE

If a target method is defined as void, the Returnvalue property will be set to null. Returnvalue is an object type so you
must be careful how you modify the return value with respect to the return value type of the target code.

Changing execution flow

Returning without executing the method

When your aspect is interacting with the target code, there are situations where you will need to alter the execution flow
behavior. For example, you may want to exit the execution of the target code at some point in the OnEntry(Method-

ExecutionArgs) advice. PostSharp offers this ability through the use of FlowBehavior.

public override void OnEntry(MethodExecutionArgs args)

{
if (args.Arguments.Count > © && args.Arguments[@] == null)
{
args.FlowBehavior = FlowBehavior.Return;
}

Console.WriteLine("The {0} method was entered with the parameter values: {1}",
args.Method.Name, argValues.ToString());

}
As you can see, all that is needed to exit the execution of the target code is setting the FlowBehavior property on the
MethodExecutionArgs to Return.

NOTE

Using flow control to exit the target code execution will return back to the code that called the target code. As a result,
you need to be considerate to the target code's return value. In the example above, the target code will always return null.
This may or may not be the behavior that you want. If it isn't, you can set the Returnvalue on the MethodExecutionArgs

and that value will be returned from the target code.

Managing execution flow control when dealing with exceptions there are two primary situations that you need to consider:
re-throwing the exception and throwing a new exception.

Rethrowing an existing exception

To rethrow an existing exception, you will set the FlowBehavior property to RethrowException. Whatever exception that
was caught in the OnException(MethodExecutionArgs) advice will be rethrown to the code that is calling the target code.

public override void OnException(MethodExecutionArgs args)

{
if (args.Exception.GetType() == typeof(DivideByZeroException))

223

Developing Custom Aspects

args.FlowBehavior = FlowBehavior.RethrowException;

Throwing a new exception

To throw a new exception you will have to perform two tasks. First you will need to assign the new exception to the
Exception property. This is the exception that will be thrown as part of the flow behavior. After that you will need to set the

FlowBehavior property to ThrowException.

public override void OnException(MethodExecutionArgs args)

{
if (args.Exception.GetType() == typeof(IndexOutOfRangeException))
{
args.Exception = new CustomArrayIndexException("This was thrown from an aspect”,
args.Exception);
args.FlowBehavior = FlowBehavior.ThrowException;
}
}
NOTE

The remaining FlowBehavior enumeration value is Continue. In OnException(MethodExecutionArgs), this behavior will
not rethrow the caught exception. In OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and On-
Exit(MethodExecutionArgs) the target code execution will continue with no interruption.

NOTE

The default FlowBehavior value for OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and On-
Exit(MethodExecutionArgs) is Continue. For OnException(MethodExecutionArgs) the default value is Rethrow-
Exception.

Sharing state between advices

When you are working with multiple advices on a single aspect, you will encounter the need to share state between these
advices. For example, if you have created an aspect that times the execution of a method, you will need to track the starting
time at OnEntry(MethodExecutionArgs) and share that with OnExit(MethodExecutionArgs) to calculate the duration of

the call.

To do this we use the MethodExecutionTag property on the MethodExecutionArgs parameter in each of the advices.
Because MethodExecutionTag is an object type, you will need to cast the value stored in it while retrieving it and before
using it.

[Serializable]
public class ExecutionDurationAspect : OnMethodBoundaryAspect

{

public override void OnEntry(MethodExecutionArgs args)

{
}

args.MethodExecutionTag = Stopwatch.StartNew();

public override void OnExit(MethodExecutionArgs args)

{

var sw = (Stopwatch)args.MethodExecutionTag;
sw.Stop();

System.Diagnostics.Debug.WriteLine("{@} executed in {1} seconds", args.Method.Name,
sw.ElapsedMilliseconds / 10090);

224

Developing Simple Aspects

NOTE

The value stored in MethodExecutionTag will not be shared between different instances of the aspect. If the aspect is
attached to two different pieces of target code, each attachment will have its own unshared MethodExecutionTag for state
storage.

16.1.2. Handling Exceptions

Adding exception handlers to code requires the addition of try/catch statements which can quickly pollute code.

Exception handling implemented this way is also not reusable, requiring the same logic to be implemented over and over
where ever exceptions must be dealt with. Raw exceptions also present cryptic information and can often expose too much
information to the user.

PostSharp provides a solution to these problems by allowing custom exception handling logic to be encapsulated into a
reusable class, which is then easily applied as an attribute to all methods and properties where exceptions are to be dealt

with.
This topic contains the following sections.

* Intercepting an exception

 Specifying the type of handled exceptions

+ Ignoring exceptions

* Replacing exceptions

+ Displaying the method arguments on exception

Intercepting an exception

PostSharp provides the OnExceptionAspect class which is the base class from which exception handlers are to be derived
from.

The key element of this class is the OnException(MethodExecutionArgs) method: this is the method where the exception
handling logic (i.e. what would normally be in a catch statement) goes. A MethodExecutionArgs parameter is passed into
this method by PostSharp; it contains information about the exception.

To create an OnExceptionAspect class:
1. Derive a class from OnExceptionAspect.
2. Apply the SerializableAttribute to the class.

3. Override OnException(MethodExecutionArgs) and implement your exception handling logic in this class.

The following snippet shows an example of an exception handler which watches for exceptions of any type, and then writes
a message to the console when an exception occurs:

[Serializable]
public class PrintExceptionAttribute : OnExceptionAspect

{

public override void OnException(MethodExecutionArgs args)

{
}

Console.WritelLine(args.Exception.Message);

225

Developing Custom Aspects

Once created, apply the derived class to all methods and/or properties for which the exception handling logic is to be used,
as shown in the following example:

class Customer

{
public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException]
public void StoreName(string path)
{

}

File.WriteAllText(path, string.Format(“{@} {1}”, this.FirstName, this.LastName));

}
Here PrintException will output a message when an exception occurs in trying to write text to a file.

Alternatively the attribute can be applied to the class itself as shown below, in which case the exception handler will handle
exceptions for all methods and properties in the class:

[PrintExceptionAttribute(typeof(I0Exception))]
class Customer

{
.

Specifying the type of handled exceptions

The GetExceptionType(MethodBase) method can be used to return the type of the exception which is to be handled by
this aspect. Otherwise, all exceptions will be caught and handled by this class.

NOTE

The GetExceptionType(MethodBase) method is evaluated at build time.

In the following snippet, we updated the PrintExceptionAttribute aspect and added the possibility to specify from the
custom attribute constructor which type of exception should be traced.

[Serializable]
public class PrintExceptionAttribute : OnExceptionAspect
{
Type type;
public PrintExceptionAttribute() : this(typeof(Exception))
{
¥
public PrintExceptionAttribute (Type type)
: base()
{
this.type = type;
}

// Method invoked at build time.
// Should return the type of exceptions to be handled.
public override Type GetExceptionType(MethodBase method)

{
}

return this.type;

226

Developing Simple Aspects

public override void OnException(MethodExecutionArgs args)

{
Console.WritelLine(args.Exception.Message);
}
}
Example:

class Customer

{
public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException(typeof(IOException)]
public void StoreName(string path)

{
}

File.WriteAllText(path, string.Format(“{e@} {1}”, this.FirstName, this.LastName));

NOTE

If the aspect needs to handle several types of exception, the GetExceptionType should return a common base type, and
the onException implementation should be modified to dynamically handle different types of exception.

Ignoring exceptions

The FlowBehavior member of MethodExecutionArgs in the exception handler's OnException(MethodExecutionArgs)

method, can be set to ignore an exception. Note however that ignoring exceptions is generally dangerous and not
recommended. In practice, it's only safe to ignore exceptions in event handlers (e.g. to display a message in a WPF form)
and in thread entry points.

Exceptions can be ignored by setting the FlowBehavior to Return:

[Serializable]
public class PrintAndIgnoreExceptionAttribute : OnExceptionAspect

{

public override void OnException(MethodExecutionArgs args)

{

Console.WritelLine(args.Exception.Message);
args.FlowBehavior = FlowBehavior.Return;

}

If a method returns a value then the Returnvalue member of args can be set to an object to return. For example, consider
the following GetDataLength method in Customer which returns the number of characters read from a file:

class Customer

{
[PrintException(typeof(IOException))]
public int GetDataLength(string path)
{

return File.ReadAllText(path).Length;
}

}

227

Developing Custom Aspects

We can then modify the OnException(MethodExecutionArgs) method of PrintAndIgnoreExceptionAttribute to return
an integer with a value of -1:

public override void OnException(MethodExecutionArgs args)

{
Console.WritelLine(args.Exception.Message);
args.FlowBehavior = FlowBehavior.Return;
args.ReturnvValue = -1;

}

Replacing exceptions

Many times an exception must be exposed to the user, either by allowing the original exception to be rethrown, or by
throwing a new exception. This can be done by setting FlowBehavior as follows:

FlowBehavior.RethrowException: rethrows the original exception after the exception handler exits. This is the
default behavior for the OnException(MethodExecutionArgs) advise.

FlowBehavior.ThrowException: throws a new exception once the exception handler exits. This is useful when
details of the original exception should be hidden from the user or when a more meaningful exception is to be
shown instead. When throwing a new exception, a new exception object must be assigned to the Exception
member of MethodExecutionArgs. The following snippet shows the creation of a new BusinessException-
Attribute which throws a BusinessException containing a description of the cause:

[Serializable]
public sealed class BusinesssExceptionAttribute : OnExceptionAspect

{

public override void OnException(MethodExecutionArgs args)

{

args.FlowBehavior = FlowBehavior.ThrowException;
args.Exception = new BusinessException("Bad Arguments", new Exception("One or more arguments were null.

}
}

class BusinessException : Exception

{

public BusinessException(string message, Exception innerException) : base(message, innerException)

{
}

Displaying the method arguments on exception

When an exception is thrown, it can be useful to view and display the parameter values that were passed into the method
where the exception occurred. These values can be retrieved by iterating through the Arguments property of the args
parameter of the OnException(MethodExecutionArgs)method. In the following snippet, OnException(MethodExecution-
Args) has been modified to iterate through all exception values, and to concatenate them into a string. If a null value is
encountered, then the code embeds the word null into the string. This string is then displayed as the message of the Null-
ReferenceException which is rethrown:

public override void OnException(MethodExecutionArgs args)

{

wn,
)

string parameterValues =

foreach (object arg in args.Arguments)

{
if (parameterValues.Length > 0)

{

parameterValues += ", ";

228

Developing Simple Aspects

}
if (arg != null)
{
parameterValues += arg.ToString();
}
else
{
parameterValues += "null";
}
}
Console.WriteLine(“Exception {0} in {1}.{2} invoked with arguments {3}”, args.Exception.GetType().Name, args.Method
}
}
NOTE

The Arguments field of args cannot be directly viewed in the debugger. The Arguments field must be referenced by
another object in order to be viewable in the debugger.

16.1.3. Injecting Behaviors into Async Methods

Async methods are methods with the async keyword in C#. Unlike normal methods, execution of async methods can be
paused and resumed. Execution is paused when the method depends on a task that is being executed asynchronously, and
is resumed when the dependent task has completed. An async method provides a convenient way to do potentially long-
running work without blocking the caller's thread.

Async methods return a value of the Task type. At build time, the compiler performs a complex transformation of the code.
The original async logic is moved to a different type called here the state machine type, and the original method body is
replaced by just a few lines of code instantiated this state machine.

By default, all aspects applied on an async method are actually applied to the method instantiating the state machine.
However, there are times when you want to actually add an aspect to the state machine. We will see how this is possible
using the OnMethodBoundaryAspect aspect. For a more general information about using OnMethodBoundaryAspect in non-

There are two options when applying OnMethodBoundaryAspect to an async method. The first option is to apply the aspect
to the method that instantiates and returns the task instance. The second option is to apply the aspect to the actual code
that implements the logic inside the task. When using the second option you can also inject behaviors before and after your
await statements.

This topic contains the following sections.

Applying the aspect to the method instantiating the async task

You can control how the aspect is applied to the async method by setting the boolean ApplyToStateMachine property. Set
this property to false to apply the aspect only to the code instantiating the async task. You can set the property in the
constructor if you don't want to set it explicitly every time the aspect is used.

In the following procedure, we demonstrate how to inject behaviors into the method instantiating the async task. For this
purpose, we create a simplified caching aspect that caches the result of the async method. This aspect can be applied to
any async method returning Task<object>. For example, to the TestCaching method shown below:

229

Developing Custom Aspects

public async Task<object> TestCaching()
{

await Task.Wait(1ee@); // Some long-running operation.
return await Task.FromResult(new {Name = "Test object"});

To inject behaviors into the method instantiating the async task:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Set the ApplyToStateMachine property to false in your constructor.

[Serializable]
public class CacheTaskResultAttribute : OnMethodBoundaryAspect
{

public CacheTaskResultAttribute()

{

ApplyToStateMachine = false;

}
}
NOTE

The default value of the ApplyToStateMachine property is false unless the OnYield(MethodExecutionArgs) or
OnResume (MethodExecutionArgs) advice is implemented. However, PostSharp will emit a warning whenever On-
MethodBoundaryAspect is applied to an async method without setting the ApplyToStateMachine property.

230

Developing Simple Aspects

3. Implement some of the advice methods of the OnMethodBoundaryAspect class, according to your requirements.

For our CacheAttribute aspect, we need to implement two advises: OnEntry(MethodExecutionArgs) and On-
Success(MethodExecutionArgs).

[Serializable]
public class CacheTaskResultAttribute : OnMethodBoundaryAspect
{
public CacheTaskResultAttribute()
{
ApplyToStateMachine = false;
}
public override void OnEntry(MethodExecutionArgs args)
{
object cachedValue = MemoryCache.Default[args.Method.Name];
if (cachedvalue != null)
{
args.Returnvalue = Task.FromResult(cachedValue);
args.FlowBehavior = FlowBehavior.Return;
}
}
public override void OnSuccess(MethodExecutionArgs args)
{
var task = (Task<object>) args.Returnvalue;
args.ReturnValue =
task.ContinueWith(
t =>
{
MemoryCache.Default[args.Method.Name] = t.Result;
return t.Result;
s
}

}

4. Apply your custom attribute to the target methods. Below you can see the [Cache] attribute applied to the Test-
Caching method.

[Cache]
public async Task<object> TestCaching()
{
await Task.Wait(1000); // Some long-running operation.
return await Task.FromResult(new {Name = "Test object"});
}
NOTE

You can also set the ApplyToStateMachine property value when applying the attribute to a method, for instance
using the syntax [MyAspect(ApplyToStateMachine = false)]. This can be useful if it makes sense to apply
this aspect to both the state machine or the instantiation method.

Thanks to the aspect, whenever the TestCaching method is called, the CacheAttribute.OnEntry method executes first. It

checks whether the result value is already stored in the cache. If the value already exists, then a new task is created from this
value and immediately returned back to the caller. Otherwise, the execution continues normally and a new task instance is
created to run our async method.

The CacheAttribute.OnSuccess method is called before the newly created async task is returned back to the caller. The
aspect's method creates a new continuation task and returns it back to the caller instead of the original one. Once the

231

Developing Custom Aspects

original task completes, the continuation added by the aspect stores the resulting value in cache. Afterwards, the original
caller proceeds with processing the task's result.

Applying the aspect to the async task itself

In many cases, we need to inject behaviors into the code of the async task itself. You can accomplish this by setting the on-
MethodBoundaryAspectApplyToStateMachine property to true.

We'll see how to use this feature to create an aspect that measures the execution time of a method. In this section, we will
create a simple profiling aspect and show how to apply it correctly to the async methods.

To test the profiling aspect, we will measure the execution time of the TestProfiling example method, shown below. The
call to Thread.Sleep represents the work performed by the method. This is the time we want to measure. The call to Task.
Delay represents the work performed outside the method, for example the asynchronous call to a web service or a
database server.

public async Task TestProfiling()

{
await Task.Delay(1000);
Thread.Sleep(1000);

To inject behaviors into the async task itself:

1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

[Serializable]
public class ProfilingAttribute : OnMethodBoundaryAspect

{
}

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Implement some of the advice methods of the OnMethodBoundaryAspect class, according to your requirements.

For our profiling aspect, we need to implement two advices: OnEntry(MethodExecutionArgs) and On-
Exit(MethodExecutionArgs).

[Serializable]
public class ProfilingAttribute : OnMethodBoundaryAspect
{
public override void OnEntry(MethodExecutionArgs args)
{
Stopwatch sw = Stopwatch.StartNew();
args.MethodExecutionTag = sw;
}
public override void OnExit(MethodExecutionArgs args)
{
Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Stop();
Console.WriteLine("Method {@} executed for {1}ms.",
args.Method.Name, sw.ElapsedMilliseconds);
}

232

Developing Simple Aspects

3. Apply your custom attribute to the target methods. Set the ApplyToStateMachine property to true when applying
the attribute to async methods. Below you can see the [Profiling] attribute applied to the TestProfiling
method.

[Profiling(ApplyToStateMachine = true)]
public async Task TestProfiling()

{
await Task.Delay(1000);
Thread.Sleep(1000);

}

NOTE

You can set the ApplyToStateMachine property in the constructor if you don't want to set it explicitly every time
the aspect is used.

Whenever the TestProfiling method is called, it creates a new async task instance. At some later point, the task starts
executing and immediately the ProfilingAttribute.OnEntry method is invoked. The method starts the stopwatch and
stores it for the future use. Then the execution of the async task continues.

The ProfilingAttribute.OnExit method is called just before the async task completes. This method stops measuring the
time and outputs the result to the console.

This program produces the following output:

Method TestProfiling executed for 2044ms.

As you can see, the output shows that we're not only measuring the execution time of the user code in the TestProfiling

method, but also the time spent waiting for the external tasks to complete. The next section of this article will show how the
ProfilingAttribute class can be improved to measure only the time spent inside the TestProfiling method.

Adding behaviors around the "await" statement

When applying the aspect to the async task itself, you can also inject behaviors before and after the await statements in
that task. To achieve that, you need to override the OnYield(MethodExecutionArgs) and OnResume(MethodExecution-
Args) methods of the OnMethodBoundaryAspect class.

The OnYield(MethodExecutionArgs) method is invoked after the async task get paused and yields the control flow to the
calling thread, as the result of the await statement.

The OnResume (MethodExecutionArgs) method is invoked when the async task resumes execution at the point after the
await statement.

NOTE

Implementing OnYield(MethodExecutionArgs) or OnResume(MethodExecutionArgs) method also automatically sets the
default value of ApplyToStateMachine property to true and suppresses the warning generated by PostSharp when the
ApplyToStateMachine property is not set.

In the next steps we will add the OnYield and OnResume overrides to our ProfilingAttribute class. This will allow us to

pause the stopwatch when the async method execution is paused, and to resume the stopwatch when the async method
execution is resumed.

233

Developing Custom Aspects

To inject behaviors around the "await" statement:

1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [Serializable-
Attribute] custom attribute. For this example, we will reuse the ProfilingAttribute class from the previous
section.

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Override the onYield(MethodExecutionArgs) method to add functionality at the point where the async task is
paused and yields the control flow to the calling thread.

The following code snippet uses OnYield(MethodExecutionArgs) method to pause the stopwatch when the
execution of the async method is paused.

public override void OnYield(MethodExecutionArgs args)

{
Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Stop();

}

3. Override the OnResume (MethodExecutionArgs) method to add functionality at the point where the async task
resumes its execution after the await statement. This method is invoked when another async task has completed
and the control flow has returned to the original task right after the await statement.

The following code snippet uses OnYield(MethodExecutionArgs) method to resume the stopwatch when the
execution of the async method is resumed.

public override void OnResume(MethodExecutionArgs args)

{
Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Start();

}

4. Apply your custom attribute to the target methods. Below you can see the [Profiling] attribute applied to the
TestProfiling method.

[Profiling]
public async Task TestProfiling()

{
await Task.Delay(1000);
Thread.Sleep(1000);

}

During the code execution, the stopwatch will start upon entering the TestProfiling method. It will stop before the await
statement and resume when the task awaiting is done. Finally, the time measuring is stopped again before exiting the
TestProfiling method and the result is written to the console.

Method ProfilingTest executed for 1007ms.

234

Developing Simple Aspects

16.1.4. Injecting Behaviors into Iterators

Iterator methods are methods that can return several values. In C#, values are produced using the yield return statement.
Iterators return a value of type IEnumerable or IEnumerator. At build time, the compiler performs a complex transfor-
mation of the code. The original iterator logic is moved to a different type implementing the IEnumerator interface, and the
original method body is replaced by just a few lines of code instantiated this class.

By default, all aspects applied on an iterator method are actually applied to the method instantiating the iterator class.
However, there are times when you want to actually add an aspect to the iterator itself. We will see how this is possible
using the OnMethodBoundaryAspect aspect. For a more general information about using OnMethodBoundaryAspect in non-

You have two options when applying OnMethodBoundaryAspect to an iterator method. The first option is to apply the

aspect to the method that only creates and returns the iterator instance. The second option is to apply the aspect to the
actual code that implements the logic inside the iterator. When using the second option you can also inject behaviors
before and after your yield return statements and access the current yield value.

This topic contains the following sections.

Applying the aspect to the method instantiating the iterator

You can control how the aspect is applied to the iterator by setting the boolean ApplyToStateMachine property. Set this
property to false on your aspect to apply the aspect only to the code instantiating the iterator. You can set the property in
the constructor if you don't want to set it explicitly every time the aspect is used.

In the following procedure, we demonstrate how to inject behaviors into the method instantiating the iterator. For this
purpose, we create a simplified caching aspect that stores all the values returned by iterator as a single array in cache. This
aspect can be applied to any iterator returning IEnumerable.

To inject behaviors into the method instantiating the iterator:

1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

235

Developing Custom Aspects

2. Set the ApplyToStateMachine property to false in your constructor.

[Serializable]
public class CacheAttribute : OnMethodBoundaryAspect
{

public CacheResultAttribute()

{

ApplyToStateMachine = false;

}
}
NOTE

The default value of the ApplyToStateMachine property is false unless the Onyield(MethodExecutionArgs) or
OnResume (MethodExecutionArgs) advice is implemented. However, PostSharp will emit a warning whenever On-
MethodBoundaryAspect is applied to an iterator without setting the ApplyToStateMachine property.

3. Override some of the virtual methods of the OnMethodBoundaryAspect class, according to your requirements. For

The following snippet shows the overrides of OnEntry(MethodExecutionArgs) and OnSuccess(MethodExecution-
Args) methods for the CacheAttribute class.

[Serializable]
public class CacheAttribute : OnMethodBoundaryAspect
{
public CacheAttribute()
{
ApplyToStateMachine = false;
}
public override void OnEntry(MethodExecutionArgs args)
{
object cachedValue = MemoryCache.Default[args.Method.Name];
if (cachedvalue != null)
{
args.ReturnValue = cachedValue;
args.FlowBehavior = FlowBehavior.Return;
}
}
public override void OnSuccess(MethodExecutionArgs args)
{
object[] elements = ((IEnumerable) args.ReturnValue).OfType<object>().ToArray();
MemoryCache.Default[args.Method.Name] = elements;
args.ReturnValue = elements;
}

236

Developing Simple Aspects

4. Apply your custom attribute to the target methods. Below you can see the [Cache] attribute applied to the Test-
Caching method.

[Cache]
public IEnumerable TestCaching()
{

yield return 1;
yield return 2;
yield return 3;

NOTE

You can also set the ApplyToStateMachine property value when applying the attribute to a method, for instance
using the syntax [MyAspect(ApplyToStateMachine = false)]. This can be useful if it makes sense to apply
this aspect to both the state machine or the instantiation method.

Thanks to the aspect, whenever the TestCaching method is called, the CacheAttribute.OnEntry method executes first. It
checks whether the result value is already stored in the cache. If the value already exists, then it is immediately returned
back to the caller. Otherwise, the execution continues normally and a new iterator instance is created.

The CacheAttribute.OnSuccess method is called before the newly created iterator instance is returned back to the caller.
The aspect's method enumerates all the iterator values using ToArray method and stores the resulting array in cache. The
array is also returned to the caller instead of the original iterator instance.

Applying the aspect to the iterator itself

In many cases it can be useful to inject behavior into the user code of the iterator implementation itself. You can accomplish
this by setting the ApplyToStateMachine property to true on your OnMethodBoundaryAspect.

For example, you may want to write a log entry each time the enumeration of the iterator begins and ends instead of
logging only the creation of the iterator instance. In this section, we will create a simple logging aspect and show how to
apply it correctly to iterators.

To inject behaviors into the iterator itself:

1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

[Serializable]
public class LogIteratorAttribute : OnMethodBoundaryAspect

{
}

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

237

Developing Custom Aspects

2. Override some of the virtual methods of the OnMethodBoundaryAspect class, according to your requirements. For

The following snippet shows the overrides of OnEntry(MethodExecutionArgs) and OnSuccess(MethodExecution-
Args) methods for the LogIteratorAttribute class.

[Serializable]
public class LogIteratorAttribute : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)

{
}

Console.WriteLine("The enumeration of {@} started."”, args.Method.Name);

public override void OnSuccess(MethodExecutionArgs args)

{
}

Console.WriteLine("The enumeration of {@} finished.", args.Method.Name);
}

3. Apply your custom attribute to the target iterator methods and set the ApplyToStateMachine property to true.
Below you can see the [LogIterator] attribute applied to the TestLogging method.

[LogIterator(ApplyToStateMachine = true)]
public IEnumerable<int> TestLogging()

{
yield return 1;
yield return 2;
yield return 3;

}

NOTE

You can set the ApplyToStateMachine property in the constructor if you don't want to set it explicitly every time
the aspect is used.

Whenever the TestLogging method is called, it creates a new iterator instance. Then the caller starts the enumeration of the
iterator and immediately the LogIteratorAttribute.OnEntry method is invoked. The method writes the first log entry and
the enumeration continues.

The LogIteratorAttribute.OnSuccess method is called after the enumeration of the iterator has completed. The method
writes the second log entry and the control is given back to the caller.

The snippet below shows the enumeration of our sample iterator and the output written to the console.

foreach (int n in TestLogging()) Console.WritelLine(n);

The enumeration of TestlLogging started.
1
2
3
The enumeration of TestlLogging finished.

Adding behaviors around the "yield return" statement

When applying the aspect to the iterator itself, you can also inject behaviors before and after the yield return statements
in that iterator. To achieve that, you need to override the Onyield(MethodExecutionArgs) and OnResume(Method-
ExecutionArgs) methods of the OnMethodBoundaryAspect class.

238

Developing Simple Aspects

The OnYield(MethodExecutionArgs) method is invoked after the iterator yields the control flow, as the result of the yield
return statement. In this method you can also access and modify the current yield value by using the Yieldvalue property.

The OnResume (MethodExecutionArgs) method is invoked when the iterator resumes execution at the point after the yield
return statement.

NOTE

Note, that implementing Onyield(MethodExecutionArgs) or OnResume(MethodExecutionArgs) method also automat-
ically sets the default value of ApplyToStateMachine property to true and quiets the warning generated by PostSharp.

In the next steps we will create a sample aspect that counts the number of the not-null elements returned by the iterator
and writes the result to the console.

To inject behaviors around the "yield return" statement:

1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

[Serializable]

public class NotNullCounterAttribute : OnMethodBoundaryAspect
{

}

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Override some of the virtual methods of the OnMethodBoundaryAspect class, according to your requirements. For

The following snippet shows the overrides of OnEntry(MethodExecutionArgs) and OnExit(MethodExecution-
Args) methods for the NotNullCounterAttribute class.

[Serializable]
public class NotNullCounterAttribute : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)

{
// Initialize and store the couner for use in other method.
args.MethodExecutionTag = 0;

}

public override void OnExit(MethodExecutionArgs args)

{
}

Console.WriteLine("{@} returned {1} not-null values.", args.Method.Name, args.MethodExecutionTag);

239

Developing Custom Aspects

3. Override the OnYield(MethodExecutionArgs) method to add functionality at the point where the iterator yields

the next value. This method is invoked when the execution of the iterator is paused and the caller takes over the
control flow.

The following code snippet shows the OnYield(MethodExecutionArgs) method override for the NotNull-
CounterAttribute class.

public override void OnYield(MethodExecutionArgs args)

{
if (args.Yieldvalue != null)
{
args.MethodExecutionTag = ((int) args.MethodExecutionTag) + 1;
}
}

4. Apply your custom attribute to the target methods. Below you can see the [NotNullCounter] attribute applied to
the TestLogging method.

[NotNullCounter]
public IEnumerable<string> TestLogging()
{

yield return "One";
yield return null;
yield return "Two";

}

Thanks to the aspect, we will initialize the counter when the enumeration of the TestLogging starts, increase the counter
each time a not-null value is returned, and finally write the result when the enumeration completes.

The snippet below shows the enumeration of our sample iterator and the output written to the console.

foreach (string s in TestLogging()) Console.WriteLine(s ?? "<null>");

One

<null>

Two

TestLogging returned 2 not-null values.

16.1.5. Intercepting Methods

It is often useful to be able to intercept the invocation of a method and invoke your own hook in its place. Common use
cases for this capability include dispatching the method execution to a different thread, asynchronously executing the
method at a later time, and retrying the method call when exception is thrown.

PostSharp addresses these needs with the MethodInterceptionAspect aspect class which intercepts the invocation of a

method before the method is executed. It also allows you to invoke the original method and access its arguments and
return value.

240

Developing Simple Aspects

Intercepting a method call
Consider the following CustomerService class which has methods to load and save customer entities and relies on calls to

a database or a web-service.

public class CustomerService
{

public void Save(Customer customer)

// Database or web-service call.
}

Occasionally, the connection to the underlying store may become unreliable and the application user is presented with the
error message. To improve the user experience you may want to retry the failing operation several times before displaying
the error message. In the following steps we'll create a method interception class which can be applied to repository
methods and will retry the invocation whenever an exception is thrown by the original method.

To create an aspect that retries a method call on exception:

1. Create an aspect class and inherit MethodInterceptionAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

public class RetryOnExceptionAttribute : MethodInterceptionAspect
{
}

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Define a property MaxRetries and set its default value to 3 in the constructor.

public int MaxRetries { get; set; }

public RetryOnExceptionAttribute()
{

}

this.MaxRetries = 3;

3. Override the OnInvoke(MethodInterceptionArgs) method.

public override void OnInvoke(MethodInterceptionArgs args)

{
}

base.OnInvoke(args);

241

Developing Custom Aspects

4. Edit the onInvoke method to catch the exception and retry the operation. Use base.OnInvoke() to invoke the
intercepted method.

The complete aspect code is as follows:

[Serializable]
public class RetryOnExceptionAttribute : MethodInterceptionAspect

{
public int MaxRetries { get; set; }

public override void OnInvoke(MethodInterceptionArgs args)

{
int retriesCounter = 0;
while (true)
{
try
{
base.OnInvoke(args);
return;
}
catch (Exception e)
{
retriesCounter++;
if (retriesCounter > this.MaxRetries) throw;
Console.WritelLine(
"Exception during attempt {0} of calling method {1}.{2}: {3}",
retriesCounter, args.Method.DeclaringType, args.Method.Name, e.Message);
¥
}
}
}
NOTE

Calling base.0OnInvoke() is equivalent to calling args.Proceed().

5. Apply the [RetryOnException] custom attributes to all methods where the behavior is needed.

In the following snippet, this aspect is applied to the CustomerService.Save method:

public class CustomerService

{
[RetryOnException(MaxRetries = 5)]
public void Save(Customer customer)
// Database or web-service call.
}
}

Whenever the CustomerService.Save method will be invoked, the RetryOnExceptionAttribute.OnInvoke method will be
called instead. It will invoke the original method and retry if necessary.

Accessing the identity of the intercepted method

As illustrated in the example above, you can access information about the method being intercepted from the property
MethodInterceptionArgsMethod, which gives you a reflection object MethodBase. This object gives you access to
parameters, return type, declaring type, and other characteristics. In case of generic methods or generic types, Method-
InterceptionArgsMethod gives you the proper generic method instance, so you can use this object to get generic
parameters.

242

Developing Simple Aspects

Accessing the arguments and the return value

An implementation of MethodInterceptionAspect can read and modify the arguments of the intercepted method thanks
to the MethodInterceptionArgsArguments property, and the return value thanks to the MethodInterceptionArgsReturn-
Value property.

For example, consider a UserService class with a method that returns user permissions. The method would normally return

null if no permissions have been assigned to this user.

public class UserService

{
public Permissions GetPermissions(string username)
// Database or web-service call.

}

If the given user has no assigned permission, instead of returning null, we would like the method to return the permissions
assigned to the user named DefaultUser.

We can implement these requirements using an aspect derived from MethodInterceptionAspect. The aspect first invokes
the original method, then it checks whether it has returned a null value. If the value is null, the method is invoked again
but with the arguments replaced by the default values.

To create an aspect that uses default arguments when a method returns null:

1. Create an aspect class and inherit MethodInterceptionAspect. Annotate the class with the [Serializable-
Attribute] custom attribute.

[Serializable]

public class RetryIfNullAttribute : MethodInterceptionAspect
{

}

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Add a field defaultArguments to the class and set this field from the constructor.

private object[] defaultArguments;

public RetryIfNullAttribute(params object[] defaultArguments)
{

}

this.defaultArguments = defaultArguments;

3. Override the OnInvoke(MethodInterceptionArgs) method.

public override void OnInvoke(MethodInterceptionArgs args)

{
}

base.OnInvoke(args);

243

Developing Custom Aspects

4. Edit the onInvoke method to implement the aspect logic. Check whether the MethodInterceptionArgsReturn-
Value property is null return value, and set the items of the MethodInterceptionArgsArguments property.
Finally, invoke the intercepted method a second time by calling base.0OnInvoke().

The complete aspect code is as follows:

[Serializable]
public class RetryIfNullAttribute : MethodInterceptionAspect

{
private object[] defaultArguments;

public RetryIfNullAttribute(params object[] defaultArguments)
{

}

this.defaultArguments = defaultArguments;

public override void OnInvoke(MethodInterceptionArgs args)

{
base.OnInvoke(args);
if (args.Returnvalue == null)
{
Console.WriteLine(
"The method {0}.{1} has returned a null value." +
" Retrying with the default arguments...",
args.Method.DeclaringType, args.Method.Name);
for (int i = ©; i < args.Arguments.Count && i < this.defaultArguments.Length; i++)
{
args.Arguments[i] = this.defaultArguments[i];
}
base.OnInvoke(args);
}
}

}

5. Apply this method interception aspect as an attribute to all methods where the implemented logic is needed. In
the following snippet, the aspect is applied to the UserService.GetPermissions method:

public class UserService

{
[RetryIfNull("DefaultUser")]
public Permissions GetPermissions(string username)
{
// database or web-service call
¥
}

Thanks to the aspect, whenever the UserService.GetPermissions method is invoked, the RetryIfNullAttribute.On-
Invoke method will be called instead. The OnInvoke method will then invoke the original GetPermissions method. If it
returns null for the provided username, then the method will be invoked again, but this time with the value DefaultValue
for the username parameter.

Accessing the target objects

In combination with the parameters you will probably interact with the target code instance that the aspect is attached to.
The Instance property provides you with the instance of the object that the aspect is currently operating against. It is an

object type so you will need to cast it to the correct type to be able to interact with it. If you debug your aspect and that
aspect doesn't make use of Instance, it will be set to null. It's also set to null if the target code is defined as static.

244

Developing Simple Aspects

16.1.6. Intercepting Properties and Fields

In .NET, both fields and properties are "things" that can be set and get. You can intercept get and set operations using the
LocationInterceptionAspect. It makes it possible to develop useful aspects, such as validation, filtering, change tracking,
change notification, or property virtualization (where the property is backed by a registry value, for instance).

This topic contains the following sections.

Getting the property or property being accessed

Intercepting Get operations

In this example, we will see how to create an aspect that filters the value read from a field or property.

To create an aspect that filters the value read from a field or property

Create an aspect that inherits from LocationInterceptionAspect and add the custom attribute [Serializable-
Attribute].

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Override the OnGetValue(LocationInterceptionArgs) method.

[Serializable]
public class StringCheckerAttribute : LocationInterceptionAspect
{
public override void OnGetValue(LocationInterceptionArgs args)
{
base.OnGetValue(args);
}

}

Calling base.0OnGetValue actually retrieves the value from the underlying field or property, and populates the
Value property. Add some code to check if the property currently is set to null If the current value is null, we
want to return a predefined value. To do this we can set the Value property. Any time this property is requested,
and it is set to null, the value "foo" will be returned.

public override void OnGetValue(LocationInterceptionArgs args)

{
base.OnGetValue(args);
if (args.value == null)
{
args.Value = "foo";
}
}

245

Developing Custom Aspects

4. Now that you have a complete getter interception aspect written you can attach it to the target code. Simply add
an attribute to either properties or fields to have the interception attached.

public class Customer
{
[StringChecker]
private readonly string _address;

public Customer(string address)

{

}

[StringChecker]

public string Name { get; set; }

public string Address { get { return _address; } }

_address = address;

NOTE

Adding aspects to target code one property or field at a time can be a tedious process. There are a number of

€n mass.

5. Now when you create an instance of a customer and immediately try to access the Name and Address values the
get request will be intercepted and null values will be returned as "foo".

class Program

{
static void Main(string[] args)
{
var customer = new Customer("123 Main Street");
Console.WriteLine("Address: {@}", customer.Address);
Console.WriteLine("Name: {@}", customer.Name);
Console.ReadKey();
¥
}

Property and field interception is a simple and seamless task. Once you have intercepted your target you can act on the
target or you can allow the original code to execute.

Intercepting Set operations

The previous section showed how to intercept a get accessor. Intercepting a set accessor is accomplished in a similar
manner by implementing OnSetValue(LocationInterceptionArgs) in the LocationInterceptionAspect.

246

Developing Simple Aspects

The following snippet shows the addition of OnSetValue(LocationInterceptionArgs) to the StringCheckerAttribute
example:

[Serializable]
public class StringCheckerAttribute : LocationInterceptionAspect

{

public override void OnGetValue(LocationInterceptionArgs args)

{
base.OnGetValue(args);

}

public override void OnSetValue(LocationInterceptionArgs args)

{
base.OnSetValue(args);

}
}

When applied to a property with a set operator, OnSetValue(LocationInterceptionArgs) will intercept the set operation.
In the Customer example shown below, OnSetValue(LocationInterceptionArgs) will be called whenever the Name
property is set:

public class Customer

{

[StringChecker]
public string Name { get; set; }
}

The SetNewvalue(Object) method of LocationInterceptionArgs can be used instead of base.OnSetValue() to pass a
different value in for the property. For example, OnSetValue(LocationInterceptionArgs) could be used to check for a null
string, and then change the string to a non-null value:

[Serializable]
public class StringCheckerAttribute : LocationInterceptionAspect

{

public override void OnSetValue(LocationInterceptionArgs args)

{

if (args.Value == null)

{

args.Value = “Empty String";
}

args.ProceedSetValue();

}

}

Getting and setting the underlying property

PostSharp provides a mechanism to check a property’s underlying value via the LocationInterceptionArgsGetCurrent-
Value method. This can be useful to check the current property value when a setter is called and then take some
appropriate action.

For example, the following snippet shows a modified OnSetValue(LocationInterceptionArgs) method which gets the
current underlying property value and compares the (new) value passed into the setter against the current value. If current
and new value don’'t match then some message is written:

247

Developing Custom Aspects

public override void OnSetValue(LocationInterceptionArgs args)

{

//get the current underlying value
string existingvValue = (string)args.GetCurrentValue();

if (((existingValue==null) && (args.Value != null)) || (!existingValue.Equals(args.Value)))

Console.WritelLine(“Value changed.”);
args.ProceedSetValue();

}
}

NOTE

GetCurrentValue will call the underlying property getter without going through onGetvalue(LocationInterception-
Args). If several aspects are applied to the property (and/or to the property setter), GetCurrentValue will go through the
next aspect in the chain of invocation.

PostSharp also provides a mechanism to set the underlying property in a getter via the SetNewValue(Object) method of
LocationInterceptionArgs. This could be used for example, to ensure that a default value is assigned to the underlying
property if there is currently no value. The following snippet shows a modified OnGetValue(LocationInterceptionArgs)
method which gets the current underlying value, and sets a default value if the current value is null:

public override void OnGetValue(LocationInterceptionArgs args)

{
object o = args.GetCurrentValue();
if (o == null)
{
args.SetNewvalue("value not set");
}
base.OnGetValue(args);
}

Intercepting fields

One benefit to implementing a LocationInterceptionAspect is that it can be applied directly to fields, allowing for reads
and writes to those fields to be intercepted, just like with properties.

Applying a LocationInterceptionAspect implementation to a field is simply a matter of setting it as an attribute on a field,
just as it was done with a property:

public class Customer

{

[StringChecker]
public string name;

}

With the attribute applied to the name field, all attempts to get and set that field will be intercepted by StringChecker in
its OnGetValue(LocationInterceptionArgs) and OnSetValue(LocationInterceptionArgs) methods.

Note that when a LocationInterceptionAspect is added to a field, the field is replaced by a property of the same field and
visibility. The field itself is renamed and made private.

248

Developing Simple Aspects

Getting the property or property being accessed

Information about the property or field being intercepted can be obtained through the LocationInterceptionArgs via its
Location property. The type of this property, LocationInfo, can represent a FieldInfo, a PropertyInfo, or a Parameter-
Info (although LocationInterceptionAspect cannot be added to parameters).

One use for this is to reflect the property name whenever a property is changed. In the following example, we have an
Entity class that implements INotifyPropertyChanged and a public OnPropertyChanged method which allows notifi-

cations to be made whenever a property is changed. The Customer class has been modified to derive from Entity.

class Entity : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

public void OnPropertyChanged(string propertyName)

{
if (PropertyChanged != null)
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
¥
}

class Customer : Entity

{
}

public string Name { get; set; }

With the ability to invoke an OnPropertyChanged event, we can create a LocationInterceptionAspect which invokes this
event when setting a value and pass in the property name from the underlying PropertyInfo object:

[Serializable]
public class NotifyPropertyChangedAttribute : LocationInterceptionAspect
{

public override void OnSetValue(LocationInterceptionArgs args)

{
If (args.Value != args.GetCurrentValue())

{

args.Value = args.Value;

args.ProceedSetValue();
((Entity)args.Instance).OnPropertyChanged(args.Location.Name);
}

}

}

NOTE

This example is a simplistic implementation of the NotifyPropertyChangedAttribute aspect. For a production-ready

This aspect can then be applied to the Customer class:

[NotifyPropertyChangedAttribute]
class Customer : INotifyPropertyChanged
{

}

public string Name { get; set; }

Now when the Name property is changed, NotifyPropertyChangedAttribute will invoke the Entity.OnPropertyChanged
method passing in the property name retrieved from its underlying property.

249

Developing Custom Aspects

16.1.7. Intercepting Events

You interact with events in three primary ways; subscribing, unsubscribing and raising them. Like methods and properties,
you may find yourself needing to intercept these three interactions. How do you execute code everytime that an event is
subscribed to? Or raised? Or unsubscribed? PostSharp provides you with a simple mechanism to accomplish this easily.

This topic contains the following sections.

 Intercepting Add and Remove on page 250

Intercepting Add and Remove

Throughout the life of an event it is possible to have many different event handlers subscribe and unsubscribe. You may
want to log each of these actions.

1. Create an aspect that inherits from EventInterceptionAspect. Add the [PSerializableAttribute] custom
attribute.

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

2. Override the OnAddHandler (EventInterceptionArgs) method and add your logging code to the method body.

3. Add the base.0OnAddHandler call to the body of the OnAddHandler (EventInterceptionArgs) method. If this is

omitted, the original call to add a handler will not be executed. Unless you want to stop the addition of the
handler, you will need to add this line of code.

public class CustomEventing : EventInterceptionAspect

{
public override void OnAddHandler(EventInterceptionArgs args)
{
base.OnAddHandler(args);
Console.WriteLine("A handler was added");
}
}

4. To log the removal of an event handler, override the OnRemoveHandler (EventInterceptionArgs) method.

5. Add the logging you require to the method body.

6. Add the base.0OnRemoveHandler call to the body of the OnRemoveHandler (EventInterceptionArgs) method. Like
you saw when overriding the OnAddHandler (EventInterceptionArgs) method, if you omit this call, the original
call to remove the handler will not occur.

public override void OnRemoveHandler(EventInterceptionArgs args)

{
base.OnRemoveHandler(args);
Console.WriteLine("A handler was removed");

}

Once you have defined the interception points in the aspect you will need to attach the aspect to the target code. The
simplest way to do this is to add the attribute to the event handler definition.

250

Developing Simple Aspects

public class Example

{
public EventHandler<EventArgs> SomeEvent;
public void DoSomething()
{
if (SomeEvent != null)
{
SomeEvent.Invoke(this, EventArgs.Empty);
}
}
}

Intercepting Raise

When you are intercepting events you will also have situations where you will want to intercept the code execution when
the event is raised. Raising an event can occur may places and you will want to centralize this code to save repetition.

1. Override the OnInvokeHandler (EventInterceptionArgs) method on your aspect class and add the logging you
require to the method body.

2. Add a call to base.0OnInvokeHandler to ensure that the original invocation occurs.

public override void OnInvokeHandler(EventInterceptionArgs args)

{

base.OnInvokeHandler(args);
Console.WriteLine("A handler was invoked");

}

By adding the attribute to the target code's event handler earlier in this process you have enabled intercepting of each
raised event.

Accessing the current context

At any time, the Handler property is set to the delegate being added, removed, or invoked. You can read and write this
property. If you write it, the delegate you assign must be compatible with the type of the event. The Event property gets
you the EventInfo of the event being accessed.

Within OnInvokeHandler(EventInterceptionArgs), the property Arguments gives access to the arguments with which the
delegate was invoked.

These concepts will be illustrated in the following example.

Example: Removing offending event subscribers

When events are subscribed to, the component that raises the event has no way to ensure that the subscriber will behave
properly when that event is raised. It's possible that the subscribing code will throw an exception when the event is raised
and when that happens you may want to unsubscribe the handler to ensure that it doesn't continue to throw the exception.
The EventInterceptionAspect is powerful and can help you to accomplish this with ease.

1. Override the OnInvokeHandler (EventInterceptionArgs) method on your aspect.

2. In the method body add a try...catch block.

251

Developing Custom Aspects

In the try block add a call to base.0OnInvokeHandler and in the catch block add a call to Remove-
Handler(Delegate)

public class CustomEventing : EventInterceptionAspect

{
public override void OnInvokeHandler(EventInterceptionArgs args)
{
try
{
base.OnInvokeHandler(args);
catch (Exception e)
{
Console.WriteLine("Handler '{@}' invoked with arguments {1} failed with exception {2}",
args.Handler.Method,
string.Join(", ", args.Arguments.Select(
a => a == null ? "null" : a.ToString())),
e.GetType().Name);
args.RemoveHandler(args.Handler);
throw;
}
}
}

Now any time an exception is thrown when the event is executed, the offending event handler will be unsubscribed from
the event.

16.1.8. Introducing Interfaces

When you create a CompositionAspect you are able to dynamically add interfaces to the target code at compile time and
make use of that interface type at run time.

1.

252

The first thing that you need to do is create an aspect that inherits from CompositionAspect and implements its
members.

[Serializable]
public class GeneralCompose : CompositionAspect

{

public override object CreateImplementationObject(AdviceArgs args)

{
}

throw new System.NotImplementedException();

}

Next, you need some way to tell the aspect what interface and concrete type you want to implement on the target
code. To do that, create a constructor for your aspect that accepts two parameters; one for the interface type and
one for the concrete implementation type. Assign those two constructor parameters to field level variables so we
can make use of them in the aspect.

[Serializable]
public class GeneralCompose : CompositionAspect
{
private readonly Type _interfaceType;
private readonly Type _implementationType;

public GeneralCompose(Type interfaceType, Type implementationType)
{

_interfaceType = interfaceType;
_implementationType = implementationType;

Developing Simple Aspects

3. There are two methods that you need to implement to complete this aspect. The first is an override of the Get-
PublicInterfaces(Type) method. This method has a target type parameter which allows you to filter the

application of the interface if you choose to. For this example, simply return an array that contains the interface
type that was provided via the aspect's constructor.

protected override Type[] GetPublicInterfaces(Type targetType)
{

return new[] { _interfaceType };

}

NOTE

The interfaces that are returned from the GetPublicInterfaces(Type) method will be applied to the target
code during compilation.

4. The second method that you need to override is CreateImplementationObject(AdviceArgs). For this example
you will return an instance of the concrete implementation that was provided in the aspect's constructor. The
CreateImplementationObject(AdviceArgs) method doesn't return the type of the concrete implementation. It
returns an instance of that type instead. To create the instance use the CreateInstance(Type, Activator-
SecurityToken) method.

public override object CreateImplementationObject(AdviceArgs args)

return Activator.CreateInstance(_implementationType);

}

NOTE

The CreateImplementationObject(AdviceArgs) method is invoked at the application's runtime.

5. Now that you have created a complete CompositionAspect, it will need to be applied to the target code. Add the

aspect to the target code as an attribute. Provide the attribute with the interface and concrete types that you wish
to implement.

[GeneralCompose(typeof(IList), typeof(ArraylList))]
public class Fruit

{
}

253

Developing Custom Aspects

6. After compiling your application you will find that the target code now implements the assigned interfaces and
exposes itself as a new instance of the concrete type you declared. The next question that needs addressing is
how you will interact with the target code using that interface type.

To access the dynamically applied interface you must make use of a special PostSharp feature. The CastSource-
Type, TargetType(SourceType) method will allow you to safely cast the target code to the interface type that

you dynamically applied. Once that call has been done, you are able to make use of the instance through the
interface constructs.

[GeneralCompose(typeof(IList), typeof(ArraylList))]
public class Fruit

{
public Fruit()
{
IList list = Post.Cast<Fruit,IList>(this);
list.Add("apple");
list.Add("orange");
list.Add("banana");
}
}

16.1.9. Introducing Custom Attributes

Applying custom attributes to class members in C# is a powerful way to add metadata about those members at compile
time.

PostSharp provides the ability to create a custom attribute class which when applied to another class, can iterate through
those class members and automatically decorate them with custom attributes. This can be useful for example, to automat-
ically apply custom attributes or groups of custom attributes when new class members are added, without having to
remember to do it manually each time.

This topic contains the following sections.

* Introducing new custom attributes
» Copying existing custom attributes

Introducing new custom attributes

In the following example, we'll create an attribute decorator class which applies .NET's DataContractAttribute to a class
and DataMemberAttribute to members of a class at build time.

1. Start by creating a class called AutoDataContractAttribute which derives from TypeLevelAspect. TypelLevel-
Aspect transforms the class into an attribute which can be applied to other classes. Also implement IAspect-
Provider which exposes the ProvideAspects(Object) method for iterating on class members. Provide-
Aspects(Object) will be called for each member in the target class and will contain the code for applying the
attributes:

public sealed class AutoDataContractAttribute : TypelLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)

{

254

Developing Simple Aspects

2. Implement the ProvideAspects(Object) method to cast the targetElement parameter to a Type object. Note
that this method will be called at build time. Since ProvideAspects(0Object) will be called for the class itself and
for each member of the target class, the Type object can be used for inspecting each member and making
decisions about when and how to apply custom attributes. In the following snippet, the implementation returns a
new AspectInstance for the Type containing a new DataContractAttribute and then iterates through each
property of the Type returning a new AspectInstance with the DataMemberAttribute for each. Note that both
the DataContractAttribute and DataMemberAttribute are both wrapped in CustomAttributeIntroduction-
Aspect objects:

public sealed class AutoDataContractAttribute : TypelLevelAspect, IAspectProvider

{
// This method is called at build time and should just provide other aspects.
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)

{
Type targetType = (Type) targetElement;

CustomAttributeIntroductionAspect introduceDataContractAspect =
new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataContractAttribute).GetConstructor(Type.EmptyTypes)));
CustomAttributeIntroductionAspect introduceDataMemberAspect =
new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataMemberAttribute).GetConstructor(Type.EmptyTypes)));

// Add the DataContract attribute to the type.
yield return new AspectInstance(targetType, introduceDataContractAspect);

// Add a DataMember attribute to every relevant property.
foreach (PropertyInfo property in
targetType.GetProperties(BindingFlags.Public | BindingFlags.DeclaredOnly | BindingFlags.Instance))

{
if (property.CanWrite)
yield return new AspectInstance(property, introduceDataMemberAspect);

NOTE

Since the ProvideAspects(Object) method returns an IEnumerable, the yield keyword should be used to return
aspects for PostSharp to apply.

3. Apply the AutobDataContractAttribute class. In the following example we apply it to a Product class where it will
decorate Product with DataContractAttribute and each member with DataMemberAttribute:

[AutoDataContractAttribute]
public class Product

{

public int ID { get; set; }

public string Name { get; set; }

public int RevisionNumber { get; set; }
}

ContractAttribute automatically applied to derived classes.

255

Developing Custom Aspects

Copying existing custom attributes

Another way to introduce attributes to class members is to copy them from another class. This is useful for example, when
distinct classes have members with the same names and are of the same types. In this case, attributes can be defined in one
class and then that class can be used to decorate other similar classes with same attributes.

In the following snippet, Product’s ID and Name properties have both been modified to contain an additional attribute from
the System.ComponentModel.DataAnnotations namespace — Editable, Display, and Required respectively. Below
Product is another class called ProductViewModel containing the same properties to which we want to copy the attributes
to:

class Product

{
[EditableAttribute(false)]
[Required]
public int Id { get; set; }
[Display(Name = "The product's name")]
[Required]
public string Name { get; set; }
public int RevisionNumber { get; set; }
}
class ProductViewModel
{
public int Id { get; set; }
public string Name { get; set; }
public int RevisionNumber { get; set; }
}

To copy the attributes from the properties of Product to the corresponding properties of ProductViewModel, create an
attribute class which can be applied to ProductviewModel to perform this copy process:

1. Create a TypeLevelAspect which implements IAspectProvider. In the snippet below our class is called Copy-
CustomAttributesFrom:

class CopyCustomAttributesFrom : TypelLevelAspect, IAspectProvider
{
}

2. Create a constructor to take in the class type from which the property attributes are to be copied from. This class
type will be used in the next step to enumerate its properties:

class CopyCustomAttributesFrom : TypelLevelAspect, IAspectProvider
{

private Type sourceType;

public CopyCustomAttributesFrom(Type srcType)
{

}

sourceType = srcType;

}

256

Developing Simple Aspects

3. Implement ProvideAspects(Object):

class CopyCustomAttributesFrom : TypelLevelAspect, IAspectProvider

{
// Details skipped.
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
Type targetClassType = (Type)targetElement;
//loop thru each property in target
foreach (PropertyInfo targetPropertyInfo in targetClassType.GetProperties())
{
PropertyInfo sourcePropertyInfo = sourceType.GetProperty(targetPropertyInfo.Name);
//loop thru all custom attributes for the source property and copy to the target property
foreach (CustomAttributeData customAttributeData in sourcePropertyInfo.GetCustomAttributesData())
{
//filter out attributes that aren’t DataAnnotations
if (customAttributeData.AttributeType.Namespace.Equals("System.ComponentModel.DataAnnotations™))
{
CustomAttributeIntroductionAspect customAttributeIntroductionAspect =
new CustomAttributeIntroductionAspect(new ObjectConstruction(customAttributeData));
yield return new AspectInstance(targetPropertyInfo, customAttributeIntroductionAspect);
}
¥
¥
}
}

The ProvideAspects(Object) method iterates through each property of the target class and then gets the
corresponding property from the source class. It then iterates through all custom attributes defined for the source
property, copying each to the corresponding property of the target class. ProvideAspects(Object) also filters
out attributes which aren’t from the System.ComponentModel.DataAnnotations namespace to demonstrate how
you may want to ignore some attributes during the copy process.

4. Decorate the ProductViewModel class with the CopyCustomAttributesFrom attribute, specifying Product as the
source type in the constructor. During compilation, CopyCustomAttributesFrom's ProvideAspects(Object)
method will then perform the copy process from Product to ProductViewModel:

[CopyCustomAttributesFrom(typeof(Product))]
class ProductViewModel

// Details skipped.
}

The following screenshot shows the Product and ProductViewModel classes reflected from an assembly. Here we can see
that the Editable and Display attributes were copied from Product to ProductViewModel using CopyCustomAttributes-
Attribute at build time:

Husing |. .. Husing |. ..
[=l namespace CopyAttributes [Flnamespace CopyAttributes

internal class ProductViewModel

{
[Editable(false}]
public int Id...
[Display(Name = "The product’s name")]
public string Name...
public int RevisionNumber...

internal class Product
{
[Editable(false)]
public int Id...
[Display(Name = "The product's name"}]
public string Name...
public int RevisionNumber ...

257

Developing Custom Aspects

NOTE

It is not possible to delete or replace an existing custom attribute.

16.1.10. Introducing Managed Resources

Embedding resources in .NET allows for data to be packaged together with your code in an assembly. Resources are
normally specified at design time and then embedded by the compiler during build time.

PostSharp’s AssemblylLevelAspect adds additional flexibility by allowing you to programmatically add resources at compile
time. In doing so you can add logic and therefore flexibility in determining which resources get embedded and how. For
example, you could use this feature to encrypt a resource just before embedding it into your assembly.

Introducing resources

In the following example, we'll create an assembly decorator which retrieves the current date and time during compilation,
and then stores that information in the current assembly as a resource. The example will then show that that information

can be retrieved from the assembly at runtime.

1. Start by creating a class called AddBuildInfoAspect which derives from AssemblylLevelAspect. Also implement
IAspectProvider which exposes the ProvideAspects(Object) method. The ProvideAspects(Object) method
will be called once by PostSharp, providing access to assembly information and allowing for a resource to be
programmatically added to the assembly:

public sealed class AddBuildInfoAspect : AssemblylLevelAspect, IAspectProvider

{
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
¥

}

2. Implement the ProvideAspects(Object) method:

public sealed class AddBuildInfoAspect : AssemblylLevelAspect, IAspectProvider

{
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
Assembly assembly = (Assembly)targetElement;
byte[] userNameData = Encoding.ASCII.GetBytes(
assembly.FullName + " was compiled by: " + Environment.UserName);
ManagedResourceIntroductionAspect mria2 = new ManagedResourceIntroductionAspect("BuildUser", userNameData);
yield return new AspectInstance(assembly, mria2);
}
}

In this example the targetElement object passed in is cast to an Assembly object from which the assembly named

is retrieved. The code then gets the current date and time, concatenates it with the assembly name, and then
converts this string to a byte array. The byte array is then stored along with a name for the data in PostSharp’s
ManagedResourceIntroductionAspect object, and returned via an AspectInstance. PostSharp then embeds the

resource into the current assembly.

3. Open your project's Assemblylnfo.cs file and add a line to include the AddBuildInfoAspect class:

[assembly:AddBuildInfoAspect]

With this code in place the assembly will now embed the date and time as a resource into itself during compilation.

258

The following code demonstrates how to retrieve the data at runtime:

class Program

{

static void Main(string[] args)

{

}

Assembly a = Assembly.GetExecutingAssembly();
Stream stream = a.GetManifestResourceStream("BuildUser");

byte[] bytesRead = new byte[stream.Length];
stream.Read(bytesRead, 0, (int)stream.Length);
string value = Encoding.ASCII.GetString(bytesRead);
Console.WriteLine(value);

This will display the following line in the console window:

® file:///F:/dloads/DanaBusiness/SDKBridge/PostSharp/Project2/Resourcelntroduction/Resou rceIntro...Elﬁ‘ﬂ—hJ

Resourcelntroduction, Version=1.8.8.8, Culture=neutral, PublicKeyToken=null was
compiled by: Dana

Understanding Aspect Lifetime and Scope

16.2. Understanding Aspect Lifetime and Scope

An original feature of PostSharp is that aspects are instantiated at compile time. Most other frameworks instantiate aspects
at run time.

Persistence of aspects between compile time and run time is achieved by serializing aspect instances into a binary resource
stored in the transformed assembly. Therefore, you should carefully mark all aspect classes with the Serializable-

Attribute custom attribute, and distinguish between serialized fields (typically initialized at compile-time and used at run-
time) and non-serialized fields (typically used at run-time only or at compile-time only).

NOTE

If your project targets Silverlight, Windows Phone, or the Compact Framework, aspects are initialized at run-time and all
compile-time steps are skipped.

This topic contains the following sections.

» Scope of Aspects
 Steps in the Lifetime of an Aspect Instance
* Examples

259

Developing Custom Aspects

Scope of Aspects

PostSharp offers two kinds of aspect scopes: static (per-class) and per-instance.

Statically Scoped Aspects

With statically-scoped aspects, PostSharp creates one aspect instance for each element of code to which the aspect applies.
The aspect instance is stored in a static field and is shared among all instances of the target class.

In generic types, the aspect instance has not exactly the same scope as static fields. Consider the following piece of code:

public class GenericClass<T>

{
static T f;

[Trace]
public void void SetField(T value) { f = value; }
}

public class Program

{

public static void Main()

{

GenericClass<int>.SetField(1);
GenericClass<long>.SetField(2);
¥
}

In this program, there are two instances of the static field f (one for GenericClass<int>, the second for Generic-
Class<long>) but only a single instance of the aspect Trace.

Instance-Scoped Aspects

Instance-scoped aspect have the same scope (instance or static) as the element of code to which they are applied. If an
instance-scoped aspect is applied to a static member, it will have static scope. However, if it is applied to an instance
member or to a class, it will have the same lifetime as the class instance: an aspect instance will be created whenever the
class is instantiated, and the aspect instance will be garbage-collectable at the same time as the class instance.

Instance-scoped aspects are implemented according to the “prototype pattern”: the aspect instance created at compile time
serves as a prototype, and is cloned at run-time whenever the target class is instantiated.

Instance-scoped aspects must implement the interface IInstanceScopedAspect. Any aspect may be made instance-scoped.
The following code is a typical implementation of the interface IInstanceScopedAspect:

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)

{

return this.MemberwiseClone();

}

object IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

Steps in the Lifetime of an Aspect Instance

The following table summarizes the different steps of

260

Initializing Aspects

Phase Step Description

Compile- Instantiation PostSharp creates a new instance of the aspect for every target to which it applies. If the aspect
Time has been applied using a multicast custom attribute (MulticastAttribute), there will be one
aspect instance for each matching element of code.

When the aspect is given as a custom attribute or a multicast custom attribute, each custom
attribute instance is instantiated using the same mechanism as the Common Language
Runtime (CLR) does: PostSharp calls the appropriate constructor and sets the properties and/or
fields with the appropriate values. For instance, when you use the construction
[Trace(Category="FileManager")], PostSharp calls the default constructor and the Category

property setter.

Validation PostSharp validates the aspect by calling the CompileTimevalidate aspect method. See

Compile-Time PostSharp invokes the CompileTimeInitialize aspect method. This method may, but must

Initialization not, be overridden by concrete aspect classes in order to perform some expensive
computations that do not depend on runtime conditions. The name of the element to which
the custom attribute instance is applied is always passed to this method.

Serialization After the aspect instances have all been created and initialized, PostSharp serializes them into a
binary stream. This stream is stored inside the new assembly as a managed resource.

Run- Deserialization Before the first aspect must be executed, the aspect framework deserializes the binary stream
Time that has been stored in a managed resource during post-compilation.

At this point, there is still one aspect instance per target class.

Per-Class Once all custom attribute instances are deserialized, we call for each of them the
Runtime RuntimeInitialize method. But this time we pass as an argument the real
Initialization system.Reflection object to which it is applied.

Per-Instance This step applies only to instance-scoped aspects when they have been applied to an instance
Runtime member.

Initialization -
tHalizatt When a class is instantiated, the aspect framework creates an aspect instance by invoking the

method CreateInstance(AdviceArgs) of the prototype aspect instance. After the new aspect
instance has been set up, the aspect framework invokes the RuntimeInitializeInstance.

Advice Finally, advices (methods such as OnEntry(MethodExecutionArgs)) are executed.
Execution

Examples

with every element of code it is applied to. Aspect instances are created at compile time, serialized into the assembly as a
managed resource, and deserialized at runtime. If the aspect is instance-scoped, instances are duplicated from the
prototype and initialized.

261

Developing Custom Aspects

Therefore, you can override one of the following three methods to handle aspect initializations:

1. The method CompileTimeInitialize is invoked at compile time, and should initialize only serializable fields of
the aspect, so that the value of these fields will be available at run time. The argument of this method is the
System.Reflection object representing the element of code to which this aspect instance has been applied.
Therefore, this method can already perform expensive computations that depend only on metadata.

2. The method RuntimeInitialize is invoked at run time. Note that the aspect constructor itself is not invoked at
run time. Therefore, overriding RuntimeInitialize is the only way to perform initialization tasks at run time. If
the aspect is instance-scoped, this method is executed on the prototype instance.

3. The methods IInstanceScopedAspectCreateInstance(AdviceArgs) and IInstanceScopedAspectRuntime-
InitializeInstance is invoked only for instance-scoped aspects. They initialize the aspect instance itself, as
RuntimeInitialize was invoked on the prototype.

TIP

Initializing an aspect at compile time is useful when you need to compute a difficult result that depends only on metadata
-- that is, it does not depend on any runtime information. An example is to build the strings that need to be printed by a
tracing aspect. It is rather expensive to build strings that contain the full type name, the method name, and eventually
placeholders for generic parameters and parameters. However, all required pieces of information are available at compile
time. So compile time is the best moment to compute these strings.

16.4. Validating Aspect Usage

Some aspects make sense only on a specific subset of targets. For instance, an aspect may require to be applied on non-
static methods only. Another aspect may not be compatible with methods that have ref or out parameters. If these
constraints are not respected, these aspects will fail at runtime. However, defects detected by the compiler are always
cheaper to fix than ones detected later. So, as the developer of an aspect, you should ensure that the build will fail if your
aspect is being used on an invalid target.

This topic contains the following sections.

Using [MulticastAttributeUsage]

The first level of protection is to configure multicasting properly with [MulticastAttributeUsageAttribute], as described

characteristics that are supported by the multicasting component.

Implementing CompileTimeValidate

The best way to validate aspect usage is to override the CompileTimeValidate(Object) method of your aspect class.

262

Validating Aspect Usage

In this example, we will show how an aspect RequirePermissionAttribute can require to be applied only to methods of
types that implement the ISecurable interface.

1. Inherit from one of the pre-built aspects. In this case OnMethodBoundaryAspect.

public class RequirePermissionAttribute: OnMethodBoundaryAspect

2. Override the CompileTimeValidate(Object) method.
public override bool CompileTimeValidate(MethodBase target)

{

3. Perform a check to see if the target class implements the interface in question.

Type targetType = target.DeclaringType;
if (!typeof(ISecurable).IsAssignableFrom(targetType))

}

4. If the target does not implement the interface you must signal the compilation process that this target should not
have the aspect applied to it. There are two ways to do this. The first option is to throw an InvalidAnnotation-

Exception.

if (!typeof(ISecurable).IsAssignableFrom(targetType))

throw new InvalidAnnotationException("The target type does not implement ISecurable.");

}

5. The second option is to emit an error message to the compilation process.

if (!typeof(ISecurable).IsAssignableFrom(targetType))

Message.Write(SeverityType.Error, "Customol",
"The target type does not implement ISecurable.", target);
return false;

}

NOTE

You may have noticed that CompileTimeValidate(Object) returns a boolean value. If you only return false from this
method the compilation process will silently ignore it. You must either throw the InvalidAnnotationException or emit
an error message to not silently ignore the false return value.

Making use of the CompileTimeValidate(Object) method is a great way to encode custom rules for applying aspects to
target code. While it could be used to duplicate the functionality of the AttributeTargetTypeAttributes or Attribute-
TargetMemberAttributes, its real power is to go beyond those filtering techniques. By using CompileTime-
Validate(Object) you are able to filter aspect application in any manner that you can interrogate your codebase using
reflection.

Using Message Sources

If you plan to raise many messages, you may prefer to define your own MessageSource. A MessageSource is backed by a
managed resource mapping error codes to error messages.

263

Developing Custom Aspects

In order to create your own MessageSource, you should:

1. Create an implementation of the IMessageDispenser. Typically, implement the GetMessage(String) method
using a large switch statement. To each message will correspond a string

2. Create a static instance of the MessageSource class for your message source.

For instance, the following code defines a message source based on a message dispenser:

internal class ArchitectureMessageSource : MessageSource

{
public static readonly ArchitectureMessageSource Instance = new ArchitectureMessageSource();
private ArchitectureMessageSource() : base("PostSharp.Architecture", new Dispenser())
{
¥
private class Dispenser : MessageDispenser
{
public Dispenser() : base("CUS")
{
¥
protected override string GetMessage(int number)
{
switch (number)
{
case 1:
return "Interface {0} cannot be implemented by {1} because of the [InternalImplement] constraint
case 2:
return "{@} {1} cannot be referenced from {2} {3} because of the [ComponentInternal] constraint.
case 3:
return "Cannot use [ComponentInternal] on {0} {1} because the {@} is not internal.";
case 4:
return "Cannot use [Internal] on {@} {1} because the {0} is not public.";
default:
return null;
¥
}
¥
}

3. Then you can use a convenient set of methods on your MessageSource object:

MyMessageSource.Instance.Write(classType, SeverityType.Error, "CUS@@1", new object[] { interfaceType, classType })

NOTE

You can also emit information and warning messages.

TIP

Use ReflectionSearch to perform complex queries over System.Reflection.

Validating Attributes That Are Not Aspects

You can validate any attribute derived from Attribute by implementing the interface IvalidableAnnotation.

264

Developing Composite Aspects

Examples

This chapter documents the second approach, closer to the classic paradigm of aspect-oriented programming introduced
by Aspectl. This approach allows developers to implement more complex design patterns using aspects. We call aspects
developed with this approach “composite aspects”, because they are freely composed of different elements named “advices”
and “pointcuts”.

An advice is anything that adds a behavior or a structural element to an element of code. For instance, introducing a
method into a class, intercepting a property setter, or catching exceptions, are advices.

A pointcut is a function returning a set of elements of code to which advices apply. For instance, a function returning the set
of properties annotated with the custom attribute DataMember is a pointcut.

Classes supporting advices and pointcuts are available in the namespace PostSharp.Aspects.Advices.

A composite aspect generally generally derives from a class that does not define its own advices: AssemblylLevelAspect,
TypeLevelAspect, InstancelLevelAspect, MethodLevelAspect, LocationLevelAspect or EventLevelAspect. As such, these
aspects have no functionality. You can add functionalities by adding advices to the aspect.

Advices are covered in the following sections:

Section Description

Adding Behaviors to Advices with equivalent functionality as OnMethodBoundaryAspect,

MethodInterceptionAspect, LocationInterceptionAspect, and EventInterceptionAspect.

Make the aspect introduce an interface into the target class. The interface is implemented by
the aspect itself.

Make the aspect introduce a new method, property or event into the target class. The new
member is implemented by the aspect itself. Conversely, the aspect can import a member of
the target so that it can invoke it through a delegate.

16.5.1. Adding Behaviors to Existing Members

In order to add new behaviors to (i.e. modify) existing members (methods, fields, properties, or events), two questions must
be addressed:

* What transformation should be performed? The answer lays in the advice. This advice is a method of your advice,
annotated with a custom attribute determining in which situation the method should be invoked. You can freely
choose the name of the method, but its signature must match the one expected by the advice type.

265

Developing Custom Aspects

» Where should it be performed, i.e. on which elements on code? The answer lays in the pointcut, another custom
attribute expected on the method providing the transformation.

This topic contains the following sections.

* How to Add a Behavior to an Existing Member

How to Add a Behavior to an Existing Member

1. Start with an empty aspect class deriving AssemblyLevelAspect, TypeLevelAspect, InstanceLevelAspect,
MethodLevelAspect, LocationlLevelAspect or EventLevelAspect. Mark it as serializable.

2. Choose an advice type in the list below. For instance: OnMethodEntryAdvice.

3. Create a method. The signature of this method should match exactly the signature matched by this advice type.

4. Annotate this method with a custom attribute of the advice type you chose. For instance: [OnMethodEntry-
Advice].

5. Choose a pointcut type in the list below. For instance: SelfPointcut. Annotate the advice method with that
custom attribute. For instance: [SelfPointcut].

Example

The following code shows a simple tracing aspect implemented with an advice and a pointcut. This aspect is exactly
equivalent to a class derived from OnMethodBoundaryAspect where only the method OnEntry(MethodExecutionArgs) has
been overwritten. The example is a method-level aspect and SelfPointcut means that the advice applies to the same

target as the method itself.

using System;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;

namespace Samplesé6

{
[Serializable]
public sealed class TraceAttribute : MethodLevelAspect
{
[OnMethodEntryAdvice, SelfPointcut]
public void OnEntry(MethodExecutionArgs args)
{
Console.WriteLine("Entering {@0}.{1}", args.Method.DeclaringType.Name, args.Method.Name);
}
}
}
Advice Kinds

The following table lists all types of advices that can transform existing members. Note that all these advices are available as
a part of a simple aspect (for instance OnMethodEntryAdvice corresponds to OnMethodBoundaryAspectOnEntry(Method-

ExecutionArgs). For a complete documentation of the advice, see the documentation of the corresponding simple aspect.

266

Developing Composite Aspects

Advice Type Targets Description

OnMethodEntryAdvice Methods These advices are equivalent to the advices of the aspect
OnMethodBoundaryAspect. The target method to be wrapped by a
OnMethodSuccessAdvice .
try/catch/finally construct.

OnMethodExceptionAdvice

OnMethodExitAdvice

OnMethodInvokeAdvice Methods This advice is equivalent to the aspect MethodInterceptionAspect. Calls to
the target methods are replaced to calls to the advice.

OnlLocationGetValueAdvice Fields, These advices are equivalent to the advices of the aspect

Properties LocationInterceptionAspect. Fields are changed into properties, and calls

OnLocationsetvalueAdvice to the accessors are replaced to calls to the proper advice.

LocationValidationAdvice Fields, This advice is equivalent to the validatevalue(T, String,
Properties, LocationKind)LocationInterceptionAspect method of the
Parameters 1| ocationvalidationAspectT aspect interface. It validates values assigned
to their targets and throws an exception in case of error.

OnEventAddHandlerAdvice Events These advices are equivalent to the advices of the aspect
EventInterceptionAspect. Calls to add and remove semantics are replaced

by calls to advices. When the event is fired, the OnEventInvokeHandler is
OnEventInvokeHandlerAdvice invoked for each handler, instead of the handler itself.

OnEventRemoveHandlerAdvice

Pointcuts Kinds

Pointcuts determine where the transformation provided by the advice should be applied.

From a logical point of view, pointcuts are functions that return a set of code elements. A pointcut can only select elements
of code that are inside the target of the aspect itself. For instance, if an aspect has been applied to a class A, the pointcut
can select the class A itself, members of A, but different classes or members of different classes.

Multicast Pointcut

The pointcut type MulticastPointcut allows to express a pointcut in a purely declarative way, using a single custom

properties of this custom attribute.

For instance, the following code applies the OnPropertySet advice to all non-abstract properties of the class to which the
aspect has been applied.

[OnLocationSetValueAdvice,
MulticastPointcut(Targets = MulticastTargets.Property,
Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
public void OnPropertySet(LocationInterceptionArgs args)

// Details skipped.
}

Method Pointcut

The pointcut type MethodPointcut allows to express a pointcut imperatively, using a C# or VB method. The argument of
the custom attribute should contain the name of the method implementing the pointcut.

267

Developing Custom Aspects

The only parameter of this method should be type-compatible with the kind of elements of code to which the aspect
applies. The return value of the pointcut method should be a collection (IEnumerable) of objects that are type-compatible
with the kind of elements of code to which the advice applies.

For instance, the following code applies the OnPropertySet advice to all writable properties that are not annotated with the
IgnorePropertyChanged custom attribute.

private IEnumerable<PropertyInfo> SelectProperties(Type type)

{
const BindingFlags bindingFlags = BindingFlags.Instance |

BindingFlags.DeclaredOnly | BindingFlags.Public;
return from property
in type.GetProperties(bindingFlags)
where property.CanWrite && !property.IsDefined(typeof(IgnorePropertyChanged))
select property;

}

[OnLocationSetValueAdvice, MethodPointcut("SelectProperties"”)]
public void OnPropertySet(LocationInterceptionArgs args)

// Details skipped.
}

As you can see in this example, pointcut methods can use the power of LINQ to query System.Reflection.

Self Pointcut
The pointcut type SelfPointcut simply selects the target of the aspect.

Grouping Advices
The table of above shows advice types grouped in families. Advices of different type but of the same family can be grouped
into a single logical filter, so they are considered as single transformation.

Why Grouping Advices

Consider for instance three advices of the family OnMethodBoundaryAspect: OnMethodEntryAdvice, OnMethodSuccess-
Advice and OnMethodExceptionAdvice. The way how they are ordered is important, as it results in different generation of
try/catch/finally block.

The following table compares advice ordering strategies. In the left column, advices are executed in the order: OnEntry, On-
Exit, OnException. In the right column, advices are grouped together.

268

Developing Composite Aspects

void Method() void Method()
{ {
try OnEntry();
{
OnEntry(); try
{
try // Original method body.
{ }
// Original method body. catch
} {
finally OnException();
{ throw;
OnExit(); }
} finally
} {
catch OnExit();
{ }
OnException(); }
throw;
}
}

The code in the left column may make sense in some situations, but it is not consistent with the code generated by On-
MethodBoundaryAspect. Note that the advices may have been ordered differently: the order OnEntry, OnException, OnExit
would have generated the same code as in the right column. However, you would have had to use custom attributes to

ensure consistency.

Additionally, when advices of the OnMethodBoundaryAspect family are grouped together, it will be possible to share
information among them using MethodExecutionTag.

The reasons to group advices of the family LocationInterceptionAspect and EventInterceptionAspect are similar:

How to Group Advices

To group several advices into a single filter:

1. Choose a master advice. The choice of the master advice is arbitrary. All other advices of the group are called slave
advices.

3. Annotate all slave advices with one advice custom attribute. Set the property Master of the custom attribute to
the name of the master advice method.

4. Do not specify any pointcut on slave advice methods.

The following code shows how two advices of type OnMethodEntryAdvice and OnMethodExitAdvice can be grouped into a
single filter:

[OnMethodEntryAdvice, MulticastPointcut]
public void OnEntry(MethodExecutionArgs args)
{

}

[OnMethodExitAdvice(Master="0OnEntry")]
public void OnExit(MethodExecutionArgs args)
{

}

269

Developing Custom Aspects

16.5.2. Introducing Interfaces, Methods, Properties and Events

Some design patterns require you to add properties, methods or interfaces to your target code. If many components in
your codebase need to represent the same construct, repetitively adding those constructs flies in the face of the DRY (Don't
Repeat Yourself) principle. So how can you add code constructs to your target code without it becoming repetitive?

PostSharp offers a number of ways for you to add different code constructs to your codebase in a controlled and consistent
manner. Let's take a look at those techniques.

This topic contains the following sections.

Introducing interfaces

One of the common situations that you will encounter is the need to implement a specific interface on a large number of
classes. This may be INotifyPropertyChanged, IDisposable, IEquatable or some custom interface that you have created.
If the implementation of the interface is consistent across all of the targets then there is no reason that we shouldn't
centralize its implementation. So how do we go about adding that interface to a class at compile time?

1. Let's add the IIdentifiable interface to the target code.

public interface IIdentifiable
{

}

Guid Id { get; }

2. Create an aspect that inherits from InstancelLevelAspect and add the custom attribute [Serializable-
Attributel].

NOTE

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets Silverlight, Windows
Phone, Windows Store, or runs with partial trust.

3. The key to adding an interface to target code is that you must implement that interface on your aspect. Let's
implement the IIdentifiable interface on our aspect. It's this implementation of the interface that will be added
to the target code, so anything that you include in method or property bodies will be added to the target code as
you have declared it in the aspect.

[Serializable]
public class IdentifiableAspect : InstanceLevelAspect, IIdentifiable

{
}

public Guid Id { get; private set; }

270

Developing Composite Aspects

4. Add the IntroduceInterfaceAttribute attribute to the aspect and include the interface type that you want to
add to the target code.

[IntroduceInterface(typeof(IIdentifiable))]
[Serializable]
public class IdentifiableAspect : InstancelLevelAspect, IIdentifiable

{
}

public Guid Id { get; private set; }

5. Finally you need to declare where this aspect should be applied to the codebase. In this example let's add it, as an
attribute, to a class.

[IdentifiableAspect]
public class Customer

{
public string Name { get; set; }
public string Address { get; set; }
}

6. After compilation you can decompile the target code and see that the interface has been added to it.

@ublic class Customer : IIdentifiable)
1

[System.Diagnostics.DebuggerNonUserCode, System.Runtime.CompilerServices.CompilerGenerated]
internal sealed class <>z_ Aspects...

[System.NonSerialized]

private IdentifiableAspect <>z_ aspect®;

public string Name...

ublic string Address...

public Customer()...

[System.Runtime.CompilerServices.CompilerGenerated]

System.Guid ITdentifiable.get Id()

return ((IIdentifiable)this.<>z_ aspect®).Id;
1
[System. Runtime.Compilerservices. Lomplleraenerated]
protected virtual void InitializeAspects()...

As you can see in the decompiled code, interfaces are implemented explicitly on the target code. It is also possible to
introduce public members to target code. This is covered below.

NOTE

Interfaces and members introduced by PostSharp are not visible at compile time. To access the dynamically applied
interface you must make use of a special PostSharp feature; the CastSourceType, TargetType(SourceType) pseudo-
operator. The CastSourceType, TargetType(SourceType) method will allow you to safely cast the target code to the

interface type that was dynamically applied. Once that call has been done, you are able to make use of the instance
through the interface constructs.

There is no way to access a dynamically-inserted method, property or event, other than through reflection or the dynamic
keyword.

NOTE

When you start adding code constructs to your target code, you need to determine how to initialize them correctly.
Because these code construct are not available for you to work with at compile time you need to figure out how to deal
with them some other way. To see more about initializing code constructs that you introduce via aspects, please see the

271

Developing Custom Aspects

Introducing methods

The introduction of methods to your target code is very similar to introducing interfaces. The biggest difference is that you
will be introducing code at a much more granular level.

1. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute [Serializable-
Attributel].

2. Add to the aspect the method you want to introduce to the target code.

[Serializable]
public class OurCustomAspect : InstancelLevelAspect
{
public void TheMethodYouWantToUse(string aValue)
{
Console.WriteLine("Inside a method that was introduced {0}", aValue);
¥
}
NOTE

The method that you declare must be marked as public. If it is not you will see an error at compile time.

3. Decorate the method with the IntroduceMemberAttribute attribute.

[IntroduceMember]
public void TheMethodYouWantToUse(string aValue)
{

}

Console.WriteLine("Inside a method that was introduced {0}", aValue);

4. Finally, declare where you want this aspect to be applied in the codebase.

[OurCustomAspect]
public class Customer

{
}

public string Name { get; set; }

5. After compilation you can decompile the target code and see that the method has been added.

public class Customer

[DebuggerNonUserCode, CompilerGenerated]

internal sealed class <»z_ Aspects...

[NonSerialized]

private OurCustomAspect <>z aspect@;

public string Name...

public Customer()...

public void TheMethodYouWantToUse(string aValue)]
H

this.<>»z_ aspect®.TheMethodYouWantTolUse(aValue)

|CompilerGenerated]
protected virtusl void InitializeAspects()...

}

Introducing properties

The introduction of properties is almost exactly the same as the introduction of methods. Like introducing a method you
will use the IntroduceMemberAttribute attribute. Let's take a look at the details.

1. Create an aspect that inherits from InstancelLevelAspect and add the custom attribute [Serializable-
Attribute].

272

Developing Composite Aspects

2. Add the property you want to introduce to the aspect.

[Serializable]
public class OurCustomAspect : InstancelLevelAspect
{
public string Name { get; set; }
}
NOTE

The property that you declare must be marked as public. If it is not you will see a compiler error.

3. Decorate the property with the IntroduceMemberAttribute attribute.

[IntroduceMember]
public string Name { get; set; }

4. Add the aspect attribute to the target code where the aspect should be applied.

[OurCustomAspect]
public class Customer

{
}

5. After you have compiled the codebase you can decompile the target code and see that the property has been
added.

public class Customer

{
[DebuggerNonUserCode, CompilerGenerated]
internal sealed class <»z_ Aspects...
[NonSerialized]
private QurCustomAspect <>z aspectl;
public string Name

get

{
}

set

{

}
¥
public Customer(]...
[CompilerGenerated]
protected virtual void InitializeAspects()...

return this.<>z_ aspectl.Name;

this.<>z_ aspectl.Name = value;

As noted for both the introduction of methods and properties, the code being introduced must be declared as public. This
is needed to ensure that PostSharp can function. If you look closely at the decompiled targets you will see that the
introduced members are actually calling the methods/properties that were declared on the aspect. If the method/property
on the aspect is not public, the target code will not be able to call it as it should.

NOTE

It is possible to introduce properties to target code, but it is not possible to introduce fields to your target code. The
reason is that all members are introduced by delegation: the actual implementation of the member always resides in the
aspect.

273

Developing Custom Aspects

Controlling the visibility of introduced members

You may not want the introduced member to have public visibility once it has been introduced to the target code. Post-
Sharp allows you to control the visibility of the introduced member through the use of the visibility property on the

aspect. To declare that a member should be introduced with private visibility, all you have to do is declare it as such.

[IntroduceMember(Visibility = Visibility.Private)]
public string Name { get; set; }

You have the ability to introduce members with a number of different visibilities including public, private, assembly (internal
in C#) and others. You also have the ability to mark an introduction so that it will be declared as virtual if you set the Is-

Virtual property to true.

[IntroduceMember(Visibility = Visibility.Private, IsVirtual = true)]
public string Name { get; set; }

Overriding members or interfaces

One thing you need to be aware of is the situation where you are introducing a member that may already exist in the scope
of the target code. Perhaps the method you are trying to introduce is available on the target code through inheritance. It's
possible that the method is explicity declared on the target code as well. The introduction of a member via an aspect needs
to take these situations into account. PostSharp allows you to take these situations into account through the use of the
OverrideAction property.

The OverrideAction property allows you to declare a rule for how the introduction of a member or interface should
behave if the member or interface is already implemented on the target code. This property allows you to declare rules
such as Fail (any conflict situation will throw a compile time error), Ignore (continue on without trying to introduce the
member/interface), OverrideOrFail or OverrideOrIgnore. It's important to understand how you want to apply your
introduced members/interfaces in situations where that member/interface may already exist.

[IntroduceMember(OverrideAction = MemberOverrideAction.Fail)]
public string Name { get; set; }

16.5.3. Accessing Members of the Target Class

PostSharp makes it possible to import a delegate of a target class method, property or event into the aspect class, so that
the aspect can invoke this member.

These mechanisms allow developers to encapsulate more design patterns using aspects.
This topic contains the following sections.

» Importing Members of the Target Class
* Interactions Between Several Member Introductions and Imports
* Examples

Importing Members of the Target Class

Importing a member into an aspect allows this aspect to invoke the member. An aspect can import methods, properties, or
fields.

274

Developing Composite Aspects

To import a member of the target type into the aspect class:

1. Define a field into the aspect class, of the following type:

Member Field Type
Kind

Method A typed Delegate, typically one of the variants of Action or FuncTResult. The delegate signature
should exactly match the signature of the imported method.

Property PropertyTValue, where the generic argument is the type of the property.

Collection PropertyTValue, TIndex, where the first generic argument is the type of the property value and the

Indexer second is the type of the index parameter. Indexers with more than one parameter are not
supported.

Event EventTDelegate, where the generic argument is the type of the event delegate (for instance
EventHandler).

2. Make this field public. The field cannot be static.

3. Add the custom attribute ImportMemberAttribute to the field. As the constructor argument, pass the name of the
member to be imported.

At runtime, the field is set to a delegate of the imported member. Properties and events are imported as set of delegates
(PropertyTValueGet, PropertyTValueSet; EventTDelegateAdd, EventTDelegateRemove). These delegates can be invoked
by the aspect as any delegate.

The property ImportMemberAttributeIsRequired determines what happens if the member could not be found in the
target class or in its parent. By default, the field will simply have the null value if it could not be bound to a member. If the
property IsRequired is set to true, a compile-time error will be emitted.

Interactions Between Several Member Introductions and Imports

Although member introduction and import may seem simple advices at first sight, things become more complex when the
several advices try to introduce or import the same member. PostSharp handles these situations in a robust and predictable
way. For this purpose, it is primordial to process classes, aspects and advices in a consistent order.

PostSharp enforces the following order:

1. Base classes are processed first, derived classes after. Therefore, when a class is being processed, all parent classes
have already been fully processed.

and executed.
3. Advices of the same aspect are sorted and executed in the following order:
a. Member imports which have the property ImportMemberAttributeOrder set to BeforeIntroductions.
b. Member introductions.
c. Members imports which have the property ImportMemberAttributeOrder set to AfterIntroductions

(this is the default value).

Based on this well-defined order, the advices behave as follow:

275

Developing Custom Aspects

Advice Precondition Behavior

ImportMemberAttribute No member, or Error if ImportMemberAttributeIsRequired is true, ignored otherwise (by
private default).
member
defined in a

parent class.

Non-virtual Member imported.
member
defined.

Virtual member If ImportMemberAttributeOrder is BeforeIntroductions, the overridden

defined. member is imported. This similar to calling a method with the base prefix
in C#. Otherwise (and by default), the member is dynamically resolved
using the virtual table of the target object.

IntroduceMemberAttribute No member, or Member introduced.
private
member
defined in a
parent class.

Non-virtual Ignored if the property IntroduceMemberAttributeOverrideAction is
member Ignore or OverrideOrIgnore, otherwise fail (by default).
defined in a

parent class

Virtual member Introduce a new override method if the property

defined in a IntroduceMemberAttributeOverrideAction is OverrideOrFail or

parent class OverrideOrIgnore, ignore if the property is Ignore, otherwise fail (by
default).

Member Fail by default or if the property

defined in the IntroduceMemberAttributeOverrideAction is Fail.
target class

(virtual or not) Otherwise:

1. Move the previous method body to a new method so that the
previous implementation can be imported by advices
ImportMemberAttribute with the property Order set to
BeforeIntroductions.

2. Override the method with the imported method.

Examples

16.5.4. Adding Aspects Dynamically

Additionally to providing advices, an aspect can provide other aspects dynamically using IAspectProvider. This allows

aspect developers to address situations where it is not possible to add aspects declaratively (using custom attributes) to the
source code; aspects can be provided on the basis of a complex analysis of the target assembly using System.Reflection,

or by reading an XML file, for instance.

276

Coping with Several Aspects on the Same Target

16.6. Coping with Several Aspects on the Same Target

As the team learns aspect-oriented programming and starts adding more aspect to projects, chances raise that several
aspects are added to the same element of code. This could be a major source of troubles if PostSharp did not provide a
robust framework to detect and prevent conflicts between aspects:

» Most aspects need to be ordered. For instance, an authorization aspect must be executed before a caching
aspect.

» Even if some aspects don't care to be ordered, it's good to have them applied in predictable order. Otherwise,
some code that works today may be broken tomorrow -- just because aspects were applied in a different order.

» Some aspects conflict; they cannot be together on the same aspect, or not in a given order. For instance, it does
not make sense to persist an object using two different aspects: one would persist to the database, the other to
the registry.

» Some aspects require other aspects to be applied. For instance, an aspect changing the mouse pointer to an
hourglass requires the method to execute asynchronously, otherwise the pointer shape will never be updated.

PostSharp addresses these issues by making it possible to add dependencies between aspects. The aspect dependency
framework is implemented in the namespace PostSharp.Aspects.Dependencies.

NOTE

The aspect dependency framework is not related to the notion of dependency injection.

Aspect Dependency Custom Attributes

You can express dependencies of an aspect by annotating the aspect class with custom attributes derived from the type
AspectDependencyAttribute. Several derived types are available; every type matches other aspects according to different

criteria.

Attribute Type Description

AspectTypeDependencyAttribute This custom attribute expresses a dependency with a well-known aspect class.

AspectRoleDependencyAttribute This custom attribute expresses a dependency with any aspect classes enrolled in a
given role. Its dual is ProvideAspectRoleAttribute: this custom attribute enrolls an
aspect class into a role. A role is simply a string. Whenever possible, consider using
one of the roles defined in the class StandardRoles.

AspectEffectDependencyAttribute This custom attribute expresses a dependency with any aspect that has a specific
effect on the source code or the control flow. Effects are represented as a string,
whose valid values are listed in the type StandardEffects. Effects are provisioned
by the aspect weaver on the basis of a rough analysis of what the aspect may do;
aspect developers cannot assign new effects to aspects. However, they can waive
effects by using the custom attribute WaiveAspectEffectAttribute. For instance,
an aspect developer can specify that a trace attribute has no effect at all; this aspect
will commute with any other aspect (see below).

277

Developing Custom Aspects

Every of these custom attributes have similar structure and members. The first parameter of their constructor, of type
AspectDependencyAction, determines the kind of dependency relationship added between the current aspect and the
aspects matched by the custom attribute.

PostSharp supports the following kinds of relationships:

Action Description

Order The dependency expresses an order relationship. The second constructor of the custom attribute, of type
AspectDependencyPosition (with values Before or After), must be specified. The custom attributes determine
the position of the current aspect with respect to matched aspects.

Require The dependency expresses a requirement. PostSharp will issue a compile-time error if the requirement is not
satisfied for any target of the current aspect. The second constructor of the custom attribute, of type
AspectDependencyPosition, is optional. If specified, an aspect matching the dependency should be present

before or after the current aspect.

Conflict The dependency expresses a conflict. PostSharp will issue a compile-time error if any aspect matching the
dependency rule is present on any target of the current aspect. The second constructor of the custom attribute,
of type AspectDependencyPosition, is optional. If specified, an error is issued only if a matching aspect is
present before or after the current aspect.

Commute The dependency specifies that the current aspect is commutable with any matching aspect. When aspects are
commutable, PostSharp does not issue any warning if they are not strongly ordered.

Custom attribute types and values of the enumeration AspectDependencyAction are orthogonal; they can be freely
combined.

Examples

Using role-based dependencies

The following code shows how three aspects can be ordered without having explicit knowledge of each other. Each aspect
provides a different role, and defines dependencies with respect to other roles.

[ProvideAspectRole(StandardRoles.Threading)]
[AspectRoleDependency (AspectDependencyAction.Order, AspectDependencyPosition.Before, "UI")]
public sealed class AsyncAttribute : MethodInterceptionAspect

{
// Details skipped

¥

[ProvideAspectRole(StandardRoles.ExceptionHandling)]

[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.After, StandardRoles.Threading)]
[AspectRoleDependency (AspectDependencyAction.Order, AspectDependencyPosition.After, "UI")]

public sealed class ExceptionDialogAttribute : OnExceptionAspect

{
// Details skipped

¥

[ProvideAspectRole("UI")]
public sealed class StatusTextAttribute : OnMethodBoundaryAspect

{
// Details skipped

¥

Using effect-based dependencies

The following code shows how to protect an authorization aspect to be executed after an aspect which may change the
control flow and skipping the execution of the method, such as a caching aspect. Then, it shows how the aspectAsync-
Attribute can opt out from this effect, because the aspect developer knows that does aspect does not skip the execution
of the method, but only defers it.

278

Coping with Several Aspects on the Same Target

[AspectEffectDependency(AspectDependencyAction.Conflict, AspectDependencyPosition.Before,
StandardEffects.ChangeControlFlow)]
public sealed class AuthorizationAttribute : OnMethodBoundaryAspect

{
// Details skipped.

}

[WaiveAspectEffect(StandardEffects.ChangeControlFlow)]
public sealed class AsyncAttribute : MethodInterceptionAspect

{
// Details skipped

}

Deferring Ordering to Aspect Users

By adding dependencies to the aspect class, the aspect developer specifies the order of execution of aspects in a fully static
way. The same order is used for every element of code to which aspects apply. While this behavior is most of time desirable,
there may be situations where we want to defer ordering to users of our aspects.

Aspect users can influence the order of execution of an aspect by setting the aspect property AspectPriority, typically
when using the aspect custom attribute (the same property is available in the configuration object as Aspect-

Setting the AspectPriority results to an aspect in adding an ordering dependency between this aspect and all other

aspects where the same property has been set. Therefore, aspect priorities complement, and do not replace, other ordering
dependencies. The aspect developer may specify vital aspect dependencies (that is, under-specify aspect ordering), and let
it to the aspect user to complete the ordering with priorities.

CAUTION NOTE

Do not confuse the property AspectPriority with AttributePriority. The latter determines an order in which several
custom attributes of the same type are processed by the MulticastAttribute engine. The first determines in which order
the aspects are executed at run time.

Adding Dependencies to Third-Party Aspects

If you are using aspects provided by several third-party vendors who don't know about each other, you may need to solve
conflicts on your own.

You can do that by adding any custom attribute derived from AspectDependencyAttribute at assembly level, and use the
property TargetType to specify to which aspect class the dependency applies.

Here is an example:

[assembly: AspectTypeDependency(AspectDependencyAction.Order, AspectDependencyPosition.Before,
typeof(Vendorl.TraceAspect), TargetType = typeof(Vendor2.ExceptionHandlingAspect)]

16.6.1. Ordering Advices

ordering. Most of what has been said there is also valid to advices. When we talk of the order of execution of aspects, we
actually mean the execution of advices ("aspects" themselves, “stricto sensu”, are never executed).

custom attributes of the namespace PostSharp.Aspects.Dependencies.

279

Developing Custom Aspects

Note that all advices provided by an aspect are ordered in a single block. Suppose that a method is the target of advices
Aspectl.MethodA, Aspectl.MethodB and Aspect2.MethodC. The next table shows valid and invalid orders:

Valid Orders Invalid Orders
Aspectl.MethodA, Aspectl.MethodB, Aspect2.MethodC Aspectl.MethodA, Aspect2.MethodC, Aspectl.MethodB
Aspectl.MethodB, Aspectl.MethodA, Aspect2.MethodC Aspectl.MethodB, Aspect2.MethodC, Aspectl.MethodA

Aspect2.MethodC, Aspectl.MethodA, Aspectl.MethodB

Aspect2.MethodC, Aspectl.MethodB, Aspectl.MethodA

Ordering Advices of the Same Aspect
Advices of the same aspect can be used using any custom attribute derived from AspectDependencyAttribute.

Because advices of the same aspect instance are necessarily ordered in block, it is appropriate to specify dependencies
between aspect classes extensively, and specify ordering of advices only in the scope of the current aspect instance. The
most appropriate dependency custom attribute for this purpose is AdviceDependencyAttribute, which accepts the name
of the advice method as a parameter.

16.7. Understanding Interception Aspects

Aspect types MethodInterceptionAspect, LocationInterceptionAspect and EventInterceptionAspect are all based on

the same principle: the aspect is invoked instead of the enhanced semantic. The aspect gets access to the intercepted
semantic through methods prefixed by Proceed, or by other methods.

Things become more complex when several interception aspects are applied to the same element of code. Consider a
method enhanced by three aspects A, B and C. When aspect A calls the method Proceed, it will actually invoke the method
OnInvoke(MethodInterceptionArgs) of aspect B. Similarly, aspect B will invoke aspect C, and aspect C will eventually
invoke the original method.

Chains of Invocation

Interception aspects form a chain on invocation where every aspect instance is a node in the chain, and the intercepted
member is the last node.

An interception aspect can only invoke the next node in the chain. There is no way an aspect can invoke another node, or
can access directly the intercepted member. This design ensures that aspects behave in a robust and consistent way in all
situations.

Aspect types LocationInterceptionAspect and EventInterceptionAspect have several semantics (Get and Set for
LocationInterceptionAspect; Add, Remove and Invoke for EventInterceptionAspect). All advices of the same aspect

instance (one advice per semantic) logically belong to the same node in the chain of invocation. Therefore, when the
implementation of the advice LocationInterceptionAspectOnSetValue(LocationInterceptionArgs) invokes the method

LocationInterceptionArgsGetCurrentValue, it actually invokes the Get semantic of the next node in the chain. If the
aspect had used PropertyInfoGetValue(Object) to get the value (as was usual in PostSharp 1.0), it would have invoked
the first node in the chain!

280

Understanding Interception Aspects

Aspects as Filters: a Disciplined Approach to Aspect-Oriented Programming

In its early days, aspect-oriented programming (AOP) has been perceived as a dangerous technology. Aspects allowed to
do anything with a program. Although AOP has been designed to improve the readability and maintainability of source
code, it could actually have the opposite effect.

As goes the saying, with a sharp tool, one must pay greater attention.

PostSharp was designed to respect one of the most fundamental principles of software engineering: encapsulation.
Encapsulation means the condition of being enclosed, as in a capsule. In object-oriented programming, the primary capsule
is the class itself. Outside code communicates with the capsule through well-defined ports: public members. Outside code
cannot modify what's inside the capsule. A well-designed capsule should check the validity of messages it receives or it
sends - something called precondition and postcondition checking. The second level of encapsulation is the method: even
inside a class, code should be designed so that the implementation of a method does not need to care about the
implementation of another method.

Of course, it is possible to ignore the rules of encapsulation. But it would most probably result in poorly readable and
maintainable code.

PostSharp actually allows you to break the first capsule: you can add advices to private members of a class. But it stops
there: you cannot break the capsule of a method. Instead, you can enclose a method into a new capsule analog to a filter:
the advice. When a method is enhanced by an advice, outside code seeking access to this method must go through its
advice.

When a method is enhanced by several advices, every advice constitutes a filter that encloses not only the method, but all
advices with lower priority.

Methods have a single semantic: Invoke. Properties, fields and events have many multiple semantics. These members can
be considered as a single capsule, and their semantics as different ports in the capsule.

NOTE

Things can become more complex. Consider a property with a getter and a setter. The property is enhanced by an aspect
of type LocationInterceptionAspect. The property setter is enhanced by a MethodInterceptionAspect with lower

priority. From a logical point of view, the property is considered as a single capsule with two ports. The capsule is enclosed
by two filters, one for each aspect. The aspect LocationInterceptionAspect filters both ports. However, Method-

InterceptionAspect only filters the Set port. If the LocationInterceptionAspect invokes the Get semantic, it will be

directed to the property getter, because there is no filter between the advice and the semantic. However, when the same
aspect invokes the Set semantic, it will be directed to LocationInterceptionAspect as this filters lays in the way.

NOTE

The Invoke semantic of EventInterceptionAspect is executed in invert order. Indeed, the message originates inside the
capsule is emitted outside. For all other semantics, the message always comes from outside and is directed to the capsule.

Aspect Bindings

When an advice is invoked, it receives an interface to the next node in the chain of invocation: an aspect binding. Every
aspect type has its corresponding binding interface, exposed on a property of the advice argument object.

Aspect Type Binding Interface Exposed On
MethodInterceptionAspect IMethodBinding MethodInterceptionArgsBinding
LocationInterceptionAspect ILocationBinding LocationInterceptionArgsBinding
EventInterceptionAspect IEventBinding EventInterceptionArgsBinding

281

Developing Custom Aspects

Binding objects are singletons. They are fully thread-safe and reentrant. They can be invoked in any situation. This contrasts
with advice arguments, which may be shared among different advices and should not be used once the advice gave over
control to the next node in the chain invocation.

NOTE

As objects of type Arguments may be shared among different advices, some of which may modify the arguments, it may
be safe to clone the object before the advice gives over control.

NOTE

For run-time performance reasons, PostSharp does not access binding classes through their interface, but directly invokes
their implementation. Implementation classes of binding interfaces are considered an implementation detail and should
not be referred to from user code.

16.8. Understanding Aspect Serialization

the weaver, are then initialized by the CompileTimeInitialize method, and serialized and stored in the assembly as a
managed resource. Aspects are then deserialized at runtime, before being executed.

Because of the aspect life cycle, aspect classes must be made serializable as described in this section.

This topic contains the following sections.

Default serialization strategy

Typically, aspects can be made serializable by adding a custom attribute to the class, which causes all fields of the class to
be serialized. Fields that do not need to be serialized must be annotated with an opt-out custom attribute. PostSharp
chooses the serialization strategy according these custom attributes. The serialization strategy is implemented in classes
derived from the abstract class AspectSerializer according to the following table.

Target platform Making the class serial- Excluding fields Aspect serializer
izable

.NET Framework with SerializableAttribute NonSerializedAttribute BinaryAspectSerializer, backed by

full trust BinaryFormatter
Any platform PSerializableAttribute PNonSerializedAttribute PortableAspectSerializer, backed by
PortableFormatter

Aspects without serialization

In some situations, serializing and deserializing the aspect may be a suboptimal solution. In case aspect field values are a
pure function of constructor arguments and properties, it may be more efficient to emit code that instantiates these aspects
at runtime instead of serializing-deserializing them. This is the case, typically, if the aspect does not implement the
CompileTimeInitialize method.

In this situation, it is better to use a different serializer: MsilAspectSerializer.

282

Advanced

NOTE

MsilAspectSerializer is actually not a serializer. When you use this implementation instead of a real serializer, the

aspect is not serialized, but the weaver generates MSIL instructions to build the aspect instance at runtime, by calling the
aspect class constructor and by setting its fields and properties.

You can specify which serializer should be used for a specific aspect class by setting the property Aspect-
ConfigurationSerializerType of the configuration of this aspect class or instance.

The following code shows how to choose the serializer type for an OnMethodBoundaryAspect:

[OnMethodBoundaryAspectConfiguration(SerializerType=typeof(MsilAspectSerializer))]
public sealed MyAspect : OnMethodBoundaryAspect

16.9. Advanced

16.9.1. Coping with Custom Object Serializers

Some aspects need to be initialized when a new instance of the class to which they are applied is created. For instance,
instance-scoped aspect must be cloned from the prototype; members imported into the through ImportMemberAttribute

must be bound to aspect fields.
PostSharp enhances every constructor of every enhanced class so that aspects are properly initialized.

However, it is possible to create new instances of classes by bypassing the constructor. This happens, for instance, when
classes are deserialized by the BinaryFormatter or the DataContractSerializer. These formatters use the method

FormatterServices.GetUnitializedObject(Type) to create new instances, but this method bypasses all constructors.

PostSharp implements a workaround for the deserializers BinaryFormatter and DataContractSerializer: it creates or
modifies a method annotated by the custom attribute OnDeserializingAttribute, so that aspects are initialized properly.

However, if you are using a custom deserializer, or for any reason create instances using the method the method
FormatterServices.GetUnitializedObject(Type), you will have to initialize aspects manually.

Initializing Aspects Manually
There are many possible ways to initialize an aspect from user code.

By Defining a Method InitializeAspects

You can define in your classes (typically in one of the root classes of your class hierarchy) a method with the following name
and signature:

protected virtual void InitializeAspects();

When PostSharp discovers this method, it will insert its own initialization logic at the beginning of the InitializeAspects
method. The original logic is not deleted. This method can safely have an empty implementation.

The following constraints apply:

* The method should be virtual unless the class is sealed.

283

Developing Custom Aspects

* The method should be protected or public, unless the class is internal.

For instance, the following class would enable aspects (applied on this class or on derived classes) to be initialized after
deserialization (note that PostSharp automatically generates this code for BinaryFormatter and DataContractSerializer;

you only need to do it manually for a custom serializer).

[DataContract]
public abstract class BaseClass

{

protected virtual void InitializeAspects()

{
}

[OnDeserializing]
private void OnDeserializingInitializeAspects()

{
this.InitializeAspects();
}
}

By Invoking AspectUtilities.InitializeCurrentAspects

Instead of providing an empty method InitializeAspects, it is possible to invoke the method Aspect-
UtilitiesInitializeCurrentAspects. A call to this method will be translated into a call to InitializeAspects. It has to
be invoked from a non-static method of an enhanced class.

If the class from which InitializeCurrentAspects is invoked has not been enhanced by an aspect requiring initialization,
the call to this method is simply ignored.

NOTE

Using this approach may be brittle in some situations: calls to InitializeCurrentAspects will have no effect if aspects
are applied to derived classes, but not to the calling class. In this scenario, it is preferable to define the method
InitializeAspects.

16.9.2. Configuring Aspects

Configuration settings of aspects determine how they should be processed by their weaver. Configuration settings are
always evaluated at build time. Most aspects have one or many of them. For instance, the aspect type OnExceptionAspect

has a configuration setting determining the type of exceptions handled with this aspect.

There are two ways to configure an aspect: declarative and imperative.

Declarative Configuration

You can configure an aspect declaratively by applying the appropriate custom attribute on the aspect class. Aspect configu-
ration attributes are in the namespace PostSharp.Aspects.Configuration. Every aspect type has its corresponding type of
configuration attribute. The name of the custom attribute starts with the name of the aspect and has the suffix

ConfigurationAttribute. For instance, the configuration attribute of the aspect class OnExceptionAspect is OnException-

AspectConfigurationAttribute.

Declarative configuration has always precedence over imperative configuration: if some property of the configuration
custom attribute is set on the aspect class, or on any parent, the corresponding imperative semantic will not be evaluated.

Once a configuration property has been set in a parent class, it cannot be overwritten in a child class.

284

Examples

Note that these restrictions are enforced at the level of properties. If a property of a configuration custom attribute is not
set in a parent class, it can still be overwritten in a child class or by an imperative semantic.

Imperative Configuration

A second way to configure an aspect class is to override its configuration methods or set its configuration property.

NOTE

Imperative configuration is only available when you target the full .NET Framework. It is not available for Silverlight or the
Compact Framework.

Benefits of Imperative Configuration

The advantage of imperative configuration is that it can be arbitrarily complex (since the code of the configuration method
is executed inside the weaver). Specifically, it allows the configuration to be dependent on how the aspect is actually used,
for instance the configuration can depend on the value of a property of the aspect custom attribute.

Implementation Note

Under the hood, aspects implement the method IAspectBuildSemanticsGetAspectConfiguration(Object). This method
should return a configuration object, derived from the class AspectConfiguration. Every aspect class has its own aspect
configuration class. For instance, the configuration attribute of the aspect class OnExceptionAspect is OnExceptionAspect-
Configuration. The aspect type OnExceptionAspect implements IAspectBuildSemanticsGetAspect-
Configuration(Object) by creating an instance of OnExceptionAspectConfiguration, then it invokes the method on-
ExceptionAspectGetExceptionType(MethodBase) and copies the return value of this method to the property on-
ExceptionAspectConfigurationExceptionType. Therefore, there are two ways to configure an aspect: either by overriding

configuration methods and setting configuration properties (these methods and properties are provided by the framework
for convenience only), or by implementing the method IAspectBuildSemanticsGetAspectConfiguration(Object). If your

aspect does not derive from the aspect class OnExceptionAspect, but directly implements the aspect interface I0n-
ExceptionAspect, you can use only the later method.

16.10. Examples

16.10.1. Tracing Method Execution

This code implements an aspect that writes a trace message before and after the execution of the methods to which the
aspect is applied.

Requirements

PostSharp 2.0 Community Edition or higher

Demonstrates

The example demonstrates the use of OnMethodBoundaryAspect, and shows how to use RuntimeInitialize(MethodBase)
to improve runtime performance.

285

Developing Custom Aspects

Example

using System;

using System.Diagnostics;
using System.Reflection;
using PostSharp.Aspects;

namespace Samples

{
[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{
// This field is initialized and serialized at build time, then deserialized at runtime.
private readonly string category;
// These fields are initialized at runtime. They do not need to be serialized.
[NonSerialized] private string enteringMessage;
[NonSerialized] private string exitingMessage;
// Default constructor, invoked at build time.
public TraceAttribute()
{
}
// Constructor specifying the tracing category, invoked at build time.
public TraceAttribute(string category)
{
this.category = category;
}
// Invoked only once at runtime from the static constructor of type declaring the target method.
public override void RuntimeInitialize(MethodBase method)
{
string methodName = method.DeclaringType.FullName + method.Name;
this.enteringMessage = "Entering " + methodName;
this.exitingMessage = "Exiting " + methodName;
}
// Invoked at runtime before that target method is invoked.
public override void OnEntry(MethodExecutionArgs args)
{
Trace.WritelLine(this.enteringMessage, this.category);
}
// Invoked at runtime after the target method is invoked (in a finally block).
public override void OnExit(MethodExecutionArgs args)
{
Trace.WritelLine(this.exitingMessage, this.category);
}
¥
}
Remarks

Note that fields enteringMessage and exitingMessage are initialized from method RuntimeInitialize. This method is

invoked only once, before the aspect instance is used for the first time. It may have been possible to format the trace
message from methods OnEntry and OnExit, but doing so would hurt performance for two reasons:

1. Getting the reflection object (MethodBase) is rather expensive.

2. Concatenating a string creates a new string instance, which causes an overhead to memory allocation and
garbage collection.

The aspect results in instructions that can be inlined by the JIT/NGen compiler, which makes the aspect almost as fast as
hand-written code.

286

Examples

16.10.2. Handling Exceptions

This code is an aspect that handles exceptions by opening a message box. It is useful in WPF applications to handle specific
exceptions, for instance of type I0Exception

Requirements

PostSharp 2.0 Community Edition or higher

Demonstrates

This example demonstrates the aspect type OnExceptionAspect.

Example

using System;

using System.Reflection;
using System.Windows;
using PostSharp.Aspects;

namespace Samples

{
[Serializable]
public sealed class ExceptionDialogAttribute : OnExceptionAspect

{

// We don't need this field at runtime, so we don't serialize it.
[NonSerialized] private readonly Type exceptionType;

public ExceptionDialogAttribute() : this(null)

{
}
public ExceptionDialogAttribute(Type exceptionType)
{
this.exceptionType = exceptionType;
// Set the default value for the dialog box.
this.Message = "{0}";
this.Caption = "Error";
}

public string Message { get; set; }
public string Caption { get; set; }

// Method invoked at build time. Should return the type of exceptions to be handled.
public override Type GetExceptionType(MethodBase method)
{

}

return this.exceptionType;

// Method invoked at run time.
public override void OnException(MethodExecutionArgs args)
{
// Format the exception message.
string message = string.Format(this.Message, args.Exception.Message);

// Finds the parent window of the dialog box.

DependencyObject dependencyObject = args.Instance as DependencyObject;
Window window = null;

if (dependencyObject != null)

{
window = Window.GetWindow(dependencyObject);
¥
if (window != null)
{

287

Developing Custom Aspects

// Display the error dialog with a parent window.
MessageBox.Show(window, message, this.Caption, MessageBoxButton.OK, MessageBoxImage.Error);

}
else

// Display the error dialog without a parent window.

MessageBox.Show(message, this.Caption, MessageBoxButton.OK, MessageBoxImage.Error);
¥

// Do not rethrow the exception.
args.FlowBehavior = FlowBehavior.Return;

16.10.3. Caching the Result of a Method

The following class implements an aspect that caches the return value of methods to which it is applied.

Requirements

PostSharp 2.0 Community Edition or higher

Demonstrates

The example demonstrates the use of OnMethodBoundaryAspect, and shows how to use FlowBehavior to skip the execution
of a method when its value is found in cache. The property MethodExecutionTag is used to store the cache key between the
OnEntry and OnSuccess advices.

Example

using System;

using System.Reflection;
using System.Text;

using System.Web;

using PostSharp.Aspects;

namespace Samples
{
[Serializable]
public sealed class CacheAttribute : OnMethodBoundaryAspect
{
// This field will be set by CompileTimeInitialize and serialized at build time,
// then deserialized at runtime.
private string methodName;

// Method executed at build time.
public override void CompileTimeInitialize(MethodBase method, AspectInfo aspectInfo)

{
}

"o

this.methodName = method.DeclaringType.FullName + + method.Name;

private string GetCacheKey(object instance, Arguments arguments)
{
// If we have no argument, return just the method name so we don't uselessly allocate memory.
if (instance == null && arguments.Count == @)
return this.methodName;

// Add all arguments to the cache key. Note that generic arguments are not part of the cache
// key, so method calls that differ only by generic arguments will have conflicting cache keys.
StringBuilder stringBuilder = new StringBuilder(this.methodName);

stringBuilder.Append('(");

if (instance != null)

{

stringBuilder.Append(instance);

288

Examples

stringBuilder.Append("; ");

¥

for (int i = @; i < arguments.Count; i++)

{
stringBuilder.Append(arguments.GetArgument(i) ?? "null");
stringBuilder.Append(", ");

¥

return stringBuilder.ToString();

}

// This method is executed before the execution of target methods of this aspect.
public override void OnEntry(MethodExecutionArgs args)
{

// Compute the cache key.

string cacheKey = GetCacheKey(args.Instance, args.Arguments);

// Fetch the value from the cache.
object value = HttpRuntime.Cache[cacheKey];

if (value != null)

// The value was found in cache. Don't execute the method. Return immediately.
args.ReturnValue = value;
args.FlowBehavior = FlowBehavior.Return;

}

else

// The value was NOT found in cache. Continue with method execution, but store
// the cache key so that we don't have to compute it in OnSuccess.
args.MethodExecutionTag = cacheKey;

}

// This method is executed upon successful completion of target methods of this aspect.
public override void OnSuccess(MethodExecutionArgs args)

{
string cacheKey = (string) args.MethodExecutionTag;
HttpRuntime.Cache[cacheKey] = args.ReturnValue;
}
}
}
Remarks

Note that the field methodName is initialized from method CompileTimeInitialize(MethodBase, AspectInfo). This

method is invoked at build time, then the value of the field is serialized into the assembly. Thanks to this mechanism, no
reflection is needed at runtime.

16.10.4. Dispatching a Method Execution to the GUI Thread

This code implements an aspect that causes methods to which it is applied to be invoked on the GUI thread. Indeed,
properties and methods of WPF objects can be accessed only from the thread from which the object was created. Other
threads must use the Dispatcher of this object to dispatch the invocation of the method to the GUI thread. The
Asynchronous property of this aspect allows the developer to specify that the method should be invoked asynchronously;
in this case, the current thread will not wait until completion of the intercepted method.

Requirements

PostSharp 2.0 Community Edition or higher

289

Developing Custom Aspects

Demonstrates

This example demonstrates the use of MethodInterceptionAspect to intercept invocations of method. Additionally, it
shows bow to use CompileTimeValidate(MethodBase) to check that the aspect has been applied on a valid method.

Example

using System;

using System.Ling;

using System.Reflection;

using System.Windows.Threading;
using PostSharp.Aspects;

using PostSharp.Extensibility;

namespace Samples

{
[Serializable]
[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
[AttributeUsage(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = true)]
public class GuiThreadAttribute : MethodInterceptionAspect

{
public bool Asynchronous { get; set; }

// Method invoked at build time. It validates that the aspect has been applied to an acceptable method.
public override bool CompileTimeValidate(MethodBase method)
{

// The method must be in a type derived from DispatcherObject.

if (!typeof (DispatcherObject).IsAssignableFrom(method.DeclaringType))

Message.Write(SeverityType.Error, "CUSTOMO2",
"Cannot apply [GuiThread] to method {@} because it is not a member of a type " +
"derived from DispatcherObject.", method);

return false;

}

// If the call is asynchronous, there should not be any return value or ByRef parameter.
if (this.Asynchronous)
{
if (((MethodInfo) method).ReturnType == typeof (void) ||
method.GetParameters().Any(parameter => parameter.ParameterType.IsByRef))
{
Message.Write(SeverityType.Error, "CUSTOMO2",
"Cannot apply [GuiThread(Asynchronous=true)] to method {0} because it is not a member
"of a type derived from DispatcherObject.", method);

+

return false;

}

return true;

}

// Method invoked at run time _instead_ of the intercepted method.
public override void OnInvoke(MethodInterceptionArgs args)

{
// Get the graphic object.
DispatcherObject dispatcherObject = (DispatcherObject) args.Instance;

// Check whether the current thread has access to this object.
if (dispatcherObject.CheckAccess())

// We have access. Proceed with invocation.
args.Proceed();

}

else

// We don't have access. Invoke the method synchronously.
if (this.Asynchronous)

{

dispatcherObject.Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action(args.Proceed));

290

Examples

¥

else

{
}

dispatcherObject.Dispatcher.Invoke(DispatcherPriority.Normal, new Action(args.Proceed));

16.10.5. Backing a Property with a Registry Value

This code is an aspect that binds a field or a property with a registry value. The first time the field or property is read, its
value is retrieved from registry. Whenever the field or property is written, its value is written to registry.

Requirements

PostSharp 2.0 Community Edition or higher

Demonstrates

This example illustrates the use of the aspect type LocationInterceptionAspect in a situation where the location getter
invokes the setter. It shows how the aspect can implement IInstanceScopedAspect to get the same scope (static or
instance) than the location to which it is applied; thanks to this, we can use an aspect field (fetchedFromRegistry) to store
the information whether the value has already been fetched from registry.

Example

using System;
using Microsoft.Win32;
using PostSharp.Aspects;

namespace Samples
{
public sealed class RegistryValueAttribute : LocationInterceptionAspect, IInstanceScopedAspect
{
// True if the the value has already been fetched from registry and stored in the field or property.
// It is not serialize since we don't need it at build time.
[NonSerialized] private bool fetchedFromRegistry;

public RegistryValueAttribute(string keyName, string valueName)

{
this.KeyName = keyName;
this.ValueName = valueName;

}
public string KeyName { get; private set; }
public string ValueName { get; private set; }

public object DefaultValue { get; set; }

// Invoked at runtime whenever someone gets the value of the field or property.
public override void OnGetValue(LocationInterceptionArgs args)

if (!this.fetchedFromRegistry)
// We have not fetched the value from registry. Do it now.
object value = Registry.GetValue(this.KeyName, this.ValueName, this.DefaultValue);
// Store this value in the target field/property.

args.SetNewValue(value);

// Return this value (we don't even need to call the underlying getter).
args.Value = value;

291

Developing Custom Aspects

}

else
// The value is already stored in the field/property, so just call the
// underlying getter.
args.ProceedGetVvalue();

}

}

// Invoked at runtime whenever someone gets the value of the field or property.
public override void OnSetValue(LocationInterceptionArgs args)

{
// Store the new value in registry if it has changed.
if (Equals(args.Value, args.GetCurrentValue()))

Registry.SetValue(this.KeyName, this.ValueName, args.Value);
}

// Call the underlying setter.
base.OnSetVvalue(args);

// Sets that the underlying field/property already stores the field.
this.fetchedFromRegistry = true;
}

#region Implementation of IInstanceScopedAspect

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)

{
return this.MemberwiseClone();
}
void IInstanceScopedAspect.RuntimeInitializeInstance()
{
}
#endregion

16.10.6. Making an Event Asynchronous

This code is an aspect making an event asynchronous. When an event enhanced with this aspect is fired, subscribed
handlers are invoked asynchronously. Whenever a subscribed handler fails with an exception, it is removed from the list of
subscribers of this event.

Requirements

PostSharp 2.0 Professional Edition or higher

Demonstrates

This example illustrates the use of the aspect type EventInterceptionAspect.

Example

using System;

using System.Diagnostics;
using System.Threading.Tasks;
using PostSharp.Aspects;

namespace Samples

{

[Serializable]
public sealed class AsyncEventAttribute : EventInterceptionAspect

292

{
public override void OnInvokeHandler(EventInterceptionArgs args)
{
// Invoke the event handler asynchronously.
Task.Factory.StartNew(() => Invoke(args)).Start();
}
private static void Invoke(EventInterceptionArgs args)
{
try
// Invoke the event handler.
args.ProceedInvokeHandler();
¥
catch (Exception e)
{
// Remove the event handler if it failed.
Trace.TraceError(e.ToString());
args.ProceedRemoveHandler();
¥
}
¥

16.10.7. Dynamically Introducing an Interface

Examples

This aspect implement a very general way to compose types using a custom attribute. The custom attribute has two
parameters: the type of the interface to be introduced, and the type of the class implementing the interface. This class

should have a default constructor.

Requirements

PostSharp 2.0 Community Edition or higher

Demonstrates

This example demonstrates the use of CompositionAspect.

Example

using System;

using System.Collections;
using PostSharp;

using PostSharp.Aspects;

namespace Samples
{
[Serializable]
public sealed class GeneralComposeAttribute : CompositionAspect

{

// We don't need this field at runtime, so we mark it as non-serialized.

[NonSerialized] private readonly Type interfaceType;

private readonly Type implementationType;

public GeneralComposeAttribute(Type interfaceType, Type implementationType)

{

this.interfaceType = interfaceType;
this.implementationType = implementationType;

}

// Invoked at build time. We return the interface we want to implement.

protected override Type[] GetPublicInterfaces(Type targetType)
{

return new[] {this.interfaceType};

293

Developing Custom Aspects

}

// Invoked at run time.
public override object CreateImplementationObject(AdviceArgs args)

{
}

return Activator.CreateInstance(this.implementationType);

}

[GeneralCompose(typeof (IList), typeof (ArrayList))]
internal class TestCompose

{
public TestCompose()
{
// Note the use of the Post.Cast method to get the implemented interface.
IList list = Post.Cast<TestCompose, IList>(this);
list.Add("apple");
list.Add("orange");
list.Add("banana");
}
}

16.10.8. Automatically Adding DataContract and DataMember Attributes

This aspect automatically adds custom attributes DataContract and DataMember to classes so they can be serialized by the
WCF formatter. Properties that must not be serialized must be annotated with the custom attribute NotDataMember -
Attribute.

Requirements

PostSharp 2.0 Professional Edition or higher

Demonstrates

This example demonstrates how CustomAttributeIntroductionAspect can be used together with IAspectProvider.

Example

using System;

using System.Collections.Generic;
using System.Reflection;

using System.Runtime.Serialization;
using PostSharp.Aspects;

using PostSharp.Extensibility;
using PostSharp.Reflection;

namespace Samples
{
// We set up multicast inheritance so the aspect is automatically added to children types.
[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypelLevelAspect, IAspectProvider
{
// This method is called at build time and should just provide other aspects.
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)

{
Type targetType = (Type) targetElement;

CustomAttributeIntroductionAspect introduceDataContractAspect =
new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataContractAttribute).GetConstructor(Type.EmptyTypes)));
CustomAttributeIntroductionAspect introduceDataMemberAspect =
new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataMemberAttribute).GetConstructor(Type.EmptyTypes)));

294

// Add the DataContract attribute to the type.
yield return new AspectInstance(targetType, introduceDataContractAspect);

// Add a DataMember attribute to every relevant property.
foreach (PropertyInfo property in

targetType.GetProperties(BindingFlags.Public | BindingFlags.DeclaredOnly | BindingFlags.Instance))

{
if (property.CanWrite && !property.IsDefined(typeof (NotDataMemberAttribute), false))

yield return new AspectInstance(property, introduceDataMemberAspect);

}

[AttributeUsage(AttributeTargets.Property)]

public sealed class NotDataMemberAttribute : Attribute
{

}

16.10.9. Raising an Event When the Object is Finalized

Examples

This example shows an aspect that raises an event when instances of the target class is finalized (during garbage collection).

Requirements

PostSharp 2.0 Professional Edition or higher

Demonstrates

This example demonstrates how a composite aspect can be used to integrate an aspect with another implementation
pattern, here IDisposable. It demonstrates that the lifetime of an instance-scoped aspect is bound to the lifetime of its

target class.

Example

using System;

using PostSharp;

using PostSharp.Aspects;

using PostSharp.Aspects.Advices;
using PostSharp.Reflection;

namespace Samples

{

// The aspect will introduce and implement this interface.
public interface IObservableLifetime

{
// Event raised when the object is disposed.
event EventHandler Disposed;
// Event raised when the object is finialized.
event EventHandler Finalized;

}

// The annotation IntroduceInterface specifies that the aspect introduces this interface.
[Serializable]
[IntroduceInterface(typeof (IObservableLifetime), OverrideAction = InterfaceOverrideAction.Fail)]
public class ObservableLifetimeAttribute : InstancelLevelAspect, IObservablelLifetime
{
// True if the aspect instance is a 'real' instance, false if it is the prototype instance.
// We do not want to raise the Finalize event on prototype instances.
[NonSerialized] private bool notPrototype;

295

Developing Custom Aspects

// True if the aspect has already been invoked.
[NonSerialized] private bool disposed;

// Initializes the aspect instance.
public override void RuntimeInitializeInstance()

{
}

this.notPrototype = true;

// At runtime, this field is set to a delegate of the method Dispose(bool) before we override it.
[ImportMember("Dispose", IsRequired = true, Order = ImportMemberOrder.BeforeIntroductions)] public Action<bool>
BaseDisposeMethod;

// Overrides the method Dispose(bool) of the target type.

[IntroduceMember(IsVirtual = true, OverrideAction = MemberOverrideAction.OverrideOrFail,
Visibility = Visibility.Family)]

public void Dispose(bool disposing)

{
// Ignore subsequent calls of this method.
if (this.disposed)
return;
this.disposed = true;
// Invoke the Dispose(bool) method of the base type.
this.BaseDisposeMethod(disposing);
// Raise the Disposed event.
if (this.Disposed != null)
this.Disposed(this.Instance, EventArgs.Empty);
// Unlist this object from finalization.
if (disposing)
{
GC.SuppressFinalize(this);
¥
}

// Introduces the event Disposed in the target type.
[IntroduceMember (OverrideAction = MemberOverrideAction.Fail)]
public event EventHandler Disposed;

// Introduces the event Finalized in the target type.
[IntroduceMember (OverrideAction = MemberOverrideAction.Fail)]
public event EventHandler Finalized;

// Finalizer.
~ObservableLifetimeAttribute()

// Ignore the finalizer if we are a prototype instance.
if (!this.notPrototype)
return;

// Call the Dispose method of the target type.
this.BaseDisposeMethod(false);

// Raise the Finalized event.
if (this.Finalized != null)

this.Finalized(this.Instance, EventArgs.Empty);

¥

// A sample object.
[ObservableLifetime]
internal class DomainObject : IDisposable

{

private readonly string tag;

296

Examples

public DomainObject(string tag)

{
this.tag = tag;
}
protected virtual void Dispose(bool disposing)
{
Console.WriteLine("Dispose({0})", disposing);
}
public void Dispose()
{
this.Dispose(true);
}
public override string ToString()
{
return "{" + tag + "}";
}
¥
internal class Program
{
private static void Main(string[] args)
{
DomainObject f1 = new DomainObject("f1");
IObservableLifetime fel = Post.Cast<DomainObject, IObservableLifetime>(f1);
fel.Finalized += OnFinalized;
f1.Dispose();
DomainObject f2 = new DomainObject("f2");
IObservableLifetime fe2 = Post.Cast<DomainObject, IObservableLifetime>(f2);
fe2.Finalized += OnFinalized;
f2 = null;
fe2 = null;
GC.Collect();
GC.WaitForPendingFinalizers();
}
private static void OnFinalized(object sender, EventArgs e)
{
Console.WriteLine("OnFinalized: " + sender);
}
¥

¥

The output of this program is:

Dispose(True)
Dispose(False)
OnFinalized: {f2}

Remarks

This example is made more complex by the fact that it understands the disposable pattern. The aspect requires the target
class to implement the disposable pattern properly, i.e. to define the method protected virtual void Dispose(bool).

PostSharp will fail if the user tries to apply this aspect to a class that implements the pattern incorrectly.

The aspect overrides the Dispose(bool) method by defining a method of the same name and signature, and annotating it
with the custom attribute IntroduceMemberAttribute.

In order to be able to invoke the original implementation of Dispose(bool), the aspect defines the field BaseDispose-
Method, whose type Action<bool> is a delegate compatible with the signature of the method Dispose(bool). The custom
attribute ImportMemberAttribute tells PostSharp to bind this field to the Dispose method.

297

Developing Custom Aspects

Because the aspect class derives from InstancelLevelAspect, which implements IInstanceScopedAspect, aspect instances

have the same lifetime as instances of the target class: both instances are garbage collected at the same time. Thanks to
this, the aspect can reliably raise the Finalized event on the class instance when the aspect instance itself is collected.

298

Writing Simple Tests

CHAPTER 17/

Testing and Debugging Aspects

Aspects should be tested as any piece of code. However, testing techniques for aspects differ from testing techniques for
normal class libraries because of a number of reasons:

» Aspects instantiation is not user-controlled.
» Aspects partially execute at build time.

» Aspects can emit build errors. Logic that emits build errors should be tested too.

These characteristics are no obstacle to proper testing of aspects.
This chapter contains the following sections:
» Writing Simple Tests on page 299 explains how to test the behavior of an aspect.

» Testing that an Aspect has been Applied on page 301 shows how to test that an aspect has been applied to the

17.1. Writing Simple Tests

When designing a test strategy for aspects, it is fundamental to understand that aspects cannot be used in isolation. They
are always used in the context of the code artefact to which it has been applied. Therefore, when writing an aspect, two
kinds of test artifacts must be written:

 Test target code to which the aspect will be applied.

» Test invocation code that invokes the target code and verifies that the combination of the aspect and the target
code exhibits the intended behavior.

Achieving large test coverage

As with other code, you have to test the aspect with input context that varies enough to produce a large code coverage.
In the case of aspects, the input context is composed of the following items:

« Arguments of the aspect itself, i.e. constructor arguments and property values. If the aspect behavior depends of
aspect arguments, high code coverage of the aspect requires varying aspect arguments.

» Target code can be considered as conceptually being a part of the input arguments of the aspect. For instance, if
an aspect contains logic that depends on the method being static or non-static, you should test the aspect against
both static and non-static methods.

299

Testing and Debugging Aspects

» Arguments of the target code can affect the run-time behavior of the aspect. For instance, a buggy aspects may
incorrectly handle null arguments.

Example: testing a caching aspect

parameters.

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Samples

[TestClass]
public class TestCacheAspect

{

private static int invocations;
// Instance method without parameters

[TestMethod]
public void TestInstanceMethodWithoutParameter()

{

int calll = this.InstanceMethodWithoutParameter();
int call2 = this.InstanceMethodWithoutParameter();

Assert.AreEqual(calll, call2);
}

[Cache]
private int InstanceMethodWithoutParameter()

{
}

return invocations++;

// Static method without parameters

[TestMethod]
public void TestStaticMethodWithoutParameter()
{
int calll = StaticMethodWithoutParameter();
int call2 = StaticMethodWithoutParameter();

Assert.AreEqual(calll, call2);
}

[Cache]
private static int StaticMethodWithoutParameter()

{
}

return invocations++;

// Instance method with parameters

[TestMethod]
public void TestInstanceMethodWithParameter()

{
int callla = this.InstanceMethodWithParameter("foo");

int call2a = this.InstanceMethodWithParameter(null);
int callilb = this.InstanceMethodWithParameter("foo");
int call2b = this.InstanceMethodWithParameter(null);

Assert.AreEqual(callla, callilb);
Assert.AreEqual(call2a, call2b);
Assert.AreNotEqual(callla, call2a);

300

Testing that an Aspect has been Applied

[Cache]
private int InstanceMethodWithParameter(string param)

{
}

return invocations++;

17.2. Testing that an Aspect has been Applied

In the previous section, we have seen how to test the aspect behavior itself. Now, let's see how we can test that the aspect
has been applied to the expected set of targets. This can also be called testing the pointcut.

Why to test that the aspect has been property applied?
You may need to test whether an aspect has been applied to specific targets for one of the following reasons:
» The aspect is applied using non-trivial regular expressions with MulticastAttribute.

» The aspect is silently filtered out using CompileTimeValidate.

» The aspect is applied using an IAspectProvider.

Testing that the aspect behavior is exhibited

The most obvious way to test that the aspect has been applied on to an element of code is to execute that code and ensure

Testing that the aspect custom attribute is present

You can check that an aspect has been applied to a target by reflecting the custom attributes present on this element of
code.

However, custom attributes representing aspects are stripped by default. If you want PostSharp to emit custom attributes,

NOTE

Aspects added by IAspectProvider are not represented by custom attributes, so their presence cannot be tested by this
approach.

Parsing the PostSharp symbol file

PostSharp generates a symbol file named bin\Debug\MyAssembly.psssym, where MyAssembly is the name of the assembly.
In theory, you could use this file to determine which elements of code have been modified by aspects in your project.

CAUTION NOTE

The PostSharp symbol file format is undocumented and unsupported. It means that PostSharp support team cannot
answer questions related to this file format.

301

Testing and Debugging Aspects

17.3. Consuming Dependencies from the Aspect

Aspects, as other components, may have dependencies to other application services. Aspects may be bound to the abstract
interface to this service, and may need to resolve the dependency at runtime.

However, two reasons prevent us from the following approaches that are usual with dependency injection containers:
» Aspects are instantiated at build time, and dependency-injection containers only exist at run-time.

» Aspects typically have a static scope. Unless they implement the IInstanceScopedAspect, aspect instances are
stored in static fields, even when applied to instance members.

These characteristics are not an obstacle to using service containers, but different patterns must be followed.

This section presents several ways to consume dependencies from an aspect:

17.3.1. Using a Global Composition Container

Although the aspect cannot be instantiated by the dependency injection container, it is possible to initialize the aspect from
an ambient container at runtime. An ambient container is one that is exposed as a static member and that is global to the

whole application.

Dependency injection containers typically offer methods to initialize objects that have been instantiated externally. For
instance, the Managed Extensibility Framework offers the SatisfylmportsOnce method.

The dependency injection method can be invoked from the Runtimelnitialize method.

NOTE

User code has no control over the time when and the thread on which an aspect is initialized. Therefore, using Thread-
StaticAttribute to make the container local to the current thread is not a reliable approach.

IMPORTANT NOTE

The service container must be initialized before the execution of any class that is enhanced by the aspect. It means that it
is not possible to use the aspect on test classes themselves. To relax this constraint, it is possible to initialize the
dependency lazily, when the first advice is hit.

Example: testable logging aspect with a global MEF service container

The following code snippet shows a logging aspect and how it could be used in production code:

using System;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;

302

using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Extensibility;

namespace DependencyResolution.GlobalServiceContainer

{

public interface ILogger

{
void Log(string message);
¥
public static class AspectServiceInjector
{
private static CompositionContainer container;
public static void Initialize(ComposablePartCatalog catalog)
{
container = new CompositionContainer(catalog);
}
public static void BuildObject(object o)
{
if (container == null)
throw new InvalidOperationException();
container.SatisfyImportsOnce(o);
}
¥
[Serializable]

public class LogAspect : OnMethodBoundaryAspect

{
[Import] private ILogger logger;

public override void RuntimeInitialize(MethodBase method)

{
}

AspectServiceInjector.BuildObject(this);

public override void OnEntry(MethodExecutionArgs args)

{
logger.Log("OnEntry");

Consuming Dependencies from the Aspect

}
}
internal class Program
{
private static void Main(string[] args)
{
AspectServiceInjector.Initialize(new TypeCatalog(typeof (ConsolelLogger)));
// The static constructor of LogAspect is called before the static constructor of the type
// containing target methods. This is why we cannot use the aspect in the Program class.
Foo.LoggedMethod();
}
}
internal class Foo
{
[LogAspect]
public static void LoggedMethod()
{
Console.WriteLine("Hello, world.");
}
¥

[Export(typeof (ILogger))]
internal class ConsolelLogger : ILogger

{

public void Log(string message)

{

303

Testing and Debugging Aspects

Console.WriteLine(message);

}

The following code snippet shows how the logging aspect can be tested:

using System;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.Text;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.GlobalServiceContainer.Test

[TestClass]
public class TestLogAspect
{
static TestLogAspect()
{
AspectServiceInjector.Initialize(new TypeCatalog(typeof (TestLogger)));
}
[TestMethod]
public void TestMethod()
{
TestLogger.Clear();
new TargetClass().TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());
}
private class TargetClass
{
[LogAspect]
public void TargetMethod()
{
}
}

¥

[Export(typeof (ILogger))]
internal class TestLogger : ILogger

{
public static readonly StringBuilder stringBuilder = new StringBuilder();
public void Log(string message)
{
stringBuilder.AppendLine(message);
}
public static string GetLog()
{
return stringBuilder.ToString();
}
public static void Clear()
{
stringBuilder.Clear();
}
¥

304

Consuming Dependencies from the Aspect

17.3.2. Using a Global Service Locator

If all aspect instances are using the same global dependency injection container, it is likely that dependencies of all
instances will resolve to the same service implementation. Therefore, storing dependencies in an instance field may be a
waste of memory, especially for aspects that are applied to a very high number of code elements.

Alternatively, dependencies can be stored in static fields and initialized in the aspect static constructor.

TIP

Use the PostSharpEnvironmentIsPostSharpRunning property to make sure that this part of the static constructor is
executed at runtime only, when PostSharp is not running.

In this case, dependency injection method such as SatisfylmportsOnce cannot be used. Instead, the container must be
used as a service locator. For instance, MEF exposes the method ExportProviderGetExport.

IMPORTANT NOTE

The service locator must be initialized before the execution of any class that is enhanced by the aspect. It means that it is
not possible to use the aspect on the entry-point class (Program or App, typically). To relax this constraint, it is possible to
initialize the dependency on demand, for instance using the Lazy construct.

Example: testable aspect with a global MEF service locator

The following code snippet shows a logging aspect and how it could be used in production code:

using System;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using PostSharp.Aspects;

using PostSharp.Extensibility;

namespace DependencyResolution.GlobalServicelocator

{
public interface ILogger
{
void Log(string message);
}

public static class AspectServicelocator

{

private static CompositionContainer container;

public static void Initialize(ComposablePartCatalog catalog)

{
container = new CompositionContainer(catalog);
}
public static Lazy<T> GetService<T>() where T : class
{
return new Lazy<T>(GetServiceImpl<T>);
}

private static T GetServiceImpl<T>()

{
if (container == null)
throw new InvalidOperationException();

305

Testing and Debugging Aspects

return container.GetExport<T>().Value;

}
}
[Serializable]
public class LogAspect : OnMethodBoundaryAspect
{
private static readonly Lazy<ILogger> logger;
static LogAspect()
if (!PostSharpEnvironment.IsPostSharpRunning)
{
logger = AspectServicelLocator.GetService<ILogger>();
}
}
public override void OnEntry(MethodExecutionArgs args)
{
logger.Value.Log("OnEntry");
}
}
internal class Program
{
private static void Main(string[] args)
{
AspectServicelocator.Initialize(new TypeCatalog(typeof (ConsolelLogger)));
LoggedMethod();
}
[LogAspect]
public static void LoggedMethod()
{
Console.WriteLine("Hello, world.");
}
}

[Export(typeof (ILogger))]
internal class ConsolelLogger : ILogger

{

}

public void Log(string message)

{
}

Console.WriteLine(message);

The following code snippet shows how the logging aspect can be tested:

using System;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.Text;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.GlobalServicelLocator.Test

[TestClass]
public class TestLogAspect

{

306

static TestLogAspect()

{

AspectServicelocator.Initialize(new TypeCatalog(typeof (TestLogger)));
}
[TestMethod]

public void TestMethod()

Consuming Dependencies from the Aspect

{
TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());
}
[LogAspect]
private void TargetMethod()
{
}

}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger

{
public static readonly StringBuilder stringBuilder = new StringBuilder();
public void Log(string message)
{
stringBuilder.AppendLine(message);
}
public static string GetLog()
{
return stringBuilder.ToString();
}
public static void Clear()
{
stringBuilder.Clear();
}
}

17.3.3. Using Dynamic Dependency Resolution

Both previous approaches have a static dependency resolution strategy: it cannot be changed over time. Therefore, these
strategies could be unsuitable in cases where several tests need different configurations of the dependency container.

A possible solution is to resolve dependencies dynamically each time they are needed, and not only at aspect initialization.
Although this solution is ideal for the sake of testing, it may be too inefficient for production. Therefore, the solution would
still need to provide dependency caching for production mode. Caching would neutralize the dynamic characteristics of
dependency resolution.

This solution would be based on the following elements:

1. The service locator can be initialized in two modes: production (the resolution strategy is immutable) and testing
(the resolution strategy can be modified).

2. The service locator returns a delegate (Func<T>, where T is the dependency type), instead of the dependency itself
(T or Lazy<T>).

3. The aspect calls the service locator during aspect initialization and stores the delegate.

4. The aspect calls the delegate at runtime.

Example: testable logging aspect with a global MEF service container with dynamic resolution

The following code snippet shows a logging aspect and how it could be used in production code:

using System;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;

307

Testing and Debugging Aspects

using PostSharp.Aspects;
using PostSharp.Extensibility;

namespace DependencyResolution.Dynamic
{

public interface ILogger

void Log(string message);

}
public static class AspectServicelocator
{
private static CompositionContainer container;
private static bool isCacheable;
public static void Initialize(ComposablePartCatalog catalog, bool isCacheable)
if (AspectServicelLocator.isCacheable && container != null)
throw new InvalidOperationException();
container = new CompositionContainer(catalog);
AspectServicelocator.isCacheable = isCacheable;
}
public static Func<T> GetService<T>() where T : class
{
if (isCacheable)
{
return () => new Lazy<T>(GetServiceImpl<T>).Value;
¥
else
{
return GetServiceImpl<T>;
¥
}
private static T GetServiceImpl<T>()
{
if (container == null)
throw new InvalidOperationException();
return container.GetExport<T>().Value;
}
¥
[Serializable]
public class LogAspect : OnMethodBoundaryAspect
{
private static readonly Func<ILogger> logger;
static LogAspect()
{
if (!PostSharpEnvironment.IsPostSharpRunning)
{
logger = AspectServicelLocator.GetService<ILogger>();
¥
}
public override void OnEntry(MethodExecutionArgs args)
logger().Log("OnEntry");
¥

internal class Program

{

private static void Main(string[] args)
{

AspectServicelocator.Initialize(new TypeCatalog(typeof (ConsolelLogger)), true);

LoggedMethod();

308

Consuming Dependencies from the Aspect

¥

[LogAspect]

public static void LoggedMethod()
{

}

Console.WriteLine("Hello, world.");

[Export(typeof (ILogger))]
internal class ConsolelLogger : ILogger

{
public void Log(string message)
{
Console.WriteLine(message);
}
¥

¥

The following code snippet shows how the logging aspect can be tested:

using System;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.Text;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Dynamic.Test
{
[TestClass]
public class TestLogAspect
{
[TestMethod]
public void TestMethod()
{
// The Servicelocator can be initialized for each test.
AspectServicelLocator.Initialize(new TypeCatalog(typeof (TestLogger)), false);

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

[LogAspect]
private void TargetMethod()
{
}
¥

[Export(typeof (ILogger))]
internal class TestlLogger : IlLogger

{
public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)

{
stringBuilder.AppendLine(message);
}
public static string GetLog()
{
return stringBuilder.ToString();
}
public static void Clear()
{
stringBuilder.Clear();
}

309

Testing and Debugging Aspects

17.3.4. Using Contextual Dependency Resolution

The dependency resolution strategy does not necessarily need to resolve to the same service implementation for all
occurrences of the dependency. It is possible to design a strategy that depends on the context. For instance, the service
locator could accept the aspect type and the target element of code as parameters. Test code could configure the service
locator to resolve dependencies to specific implementations for a given context.

Evaluating context-sensitive rules maybe CPU-intensive, but it needs to be done only during testing. In production mode,
dependency resolution can be delegated to a global service catalog.

Example: testable logging aspect with contextual dependency resolution

The following code snippet shows a logging aspect and how it could be used in production code:

using
using
using
using
using
using
using
using

System;

System.Collections.Generic;
System.ComponentModel.Composition;
System.ComponentModel.Composition.Hosting;
System.ComponentModel.Composition.Primitives;
System.Reflection;

PostSharp.Aspects;

PostSharp.Extensibility;

namespace DependencyResolution.Contextual

{

public interface ILogger

{
}

void Log(string message);

public static class AspectServicelocator

{

310

private static CompositionContainer container;
private static HashSet<object> rules = new HashSet<object>();

public static void Initialize(ComposablePartCatalog catalog)
{

}

container = new CompositionContainer(catalog);

public static Lazy<T> GetService<T>(Type aspectType, MemberInfo targetElement) where T : class
{

}

return new Lazy<T>(() => GetServiceImpl<T>(aspectType, targetElement));

private static T GetServiceImpl<T>(Type aspectType, MemberInfo targetElement) where T : class
{

// The rule implementation is naive but this is for testing purpose only.
foreach (object rule in rules)

{
DependencyRule<T> typedRule = rule as DependencyRule<T>;
if (typedRule == null) continue;
T service = typedRule.Rule(aspectType, targetElement);
if (service != null) return service;

¥

if (container == null)

throw new InvalidOperationException();

// Fallback to the container, which should be the default and production behavior.
return container.GetExport<T>().Value;

Consuming Dependencies from the Aspect

public static IDisposable AddRule<T>(Func<Type, MemberInfo, T> rule)

{
DependencyRule<T> dependencyRule = new DependencyRule<T>(rule);
rules.Add(dependencyRule);
return dependencyRule;
}
private class DependencyRule<T> : IDisposable
{
public DependencyRule(Func<Type, MemberInfo, T> rule)
{
this.Rule = rule;
¥
public Func<Type, MemberInfo, T> Rule { get; private set; }
public void Dispose()
{
rules.Remove(this);
}
}
}
[Serializable]
public class LogAspect : OnMethodBoundaryAspect
{
private Lazy<ILogger> logger;
public override void RuntimeInitialize(MethodBase method)
{
logger = AspectServicelLocator.GetService<ILogger>(this.GetType(), method);
}
public override void OnEntry(MethodExecutionArgs args)
{
logger.Value.Log("OnEntry");
}
}
internal class Program
{
private static void Main(string[] args)
{
AspectServicelocator.Initialize(new TypeCatalog(typeof (ConsolelLogger)));
LoggedMethod();
}
[LogAspect]
public static void LoggedMethod()
{
Console.WriteLine("Hello, world.");
}
}

[Export(typeof (ILogger))]
internal class ConsolelLogger : ILogger

{
public void Log(string message)
{
Console.WriteLine(message);
}
}

}

The following code snippet shows how the logging aspect can be tested:

311

Testing and Debugging Aspects

using System;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Contextual.Test
{

[TestClass]

public class TestLogAspect

[TestMethod]
public void TestMethod()
{
// The Servicelocator can be initialized for each test.
using (
AspectServicelocator.AddRule<ILogger>(
(type, member) =>
type == typeof (LogAspect) && member.Name == "TargetMethod" ? new TestLogger() : null)

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[LogAspect]
public void TargetMethod()
{
}
¥

internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)

{
}

stringBuilder.AppendLine(message);

public static string GetLog()
{

return stringBuilder.ToString();

}

public static void Clear()
{

}

stringBuilder.Clear();

17.3.5. Importing Dependencies from the Target Object

The principal reason why aspects are believed to be difficult to test is that they are statically scoped by default, i.e. aspect
objects are stored in static fields. However, any aspect can be made instance-scoped if it implements the IInstance-

scopes.

Instance-scoped aspects can consume dependencies from the objects to which they are applied. They can also add
dependencies to the target objects.

For instance, an aspect can consume a service ILogger using the following procedure:

312

Consuming Dependencies from the Aspect

To consume a service from an instance-scoped aspect:

1. Add a public property of name Logger and type ILogger to the aspect and add the IntroduceMemberAttribute
custom attribute. This will cause the aspect to add a property to the target class. Use the parameter Member -
OverrideAction.Ignore to ignore the property if it already exists in the target type of if it has been added by
another aspect.

2. Add two custom attributes ImportAttribute and CopyCustomAttributesAttribute to the Logger property. This
will cause the aspect to add the [Import] custom attribute to the Logger property added to the target class.

3. Add a public field of name LoggerProperty and type Property<ILogger> to the aspect class and add the
ImportMemberAttribute custom attribute to this field, with "Logger" as parameter. This will allow the aspect to
read the Logger property even if it has been defined from outside the aspect.

4. The aspect can now consume the dependency by calling this.LoggerProperty.Get().

The procedure is illustrated in the next example.

Example: testable logging aspect that consumes the dependency from the target object

The following code snippet shows a logging aspect and how it could be used in production code:

using System;

using System.Collections.Generic;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.ComponentModel.Design;

using System.Reflection;

using PostSharp.Aspects;

using PostSharp.Aspects.Advices;

using PostSharp.Extensibility;

using PostSharp.Reflection;

namespace DependencyResolution.InstanceScoped

{

public interface ILogger

{
}

void Log(string message);

[Serializable]
public class LogAspect : OnMethodBoundaryAspect, IInstanceScopedAspect
{
[IntroduceMember(Visibility = Visibility.Family, OverrideAction = MemberOverrideAction.Ignore)]
[CopyCustomAttributes(typeof (ImportAttribute))]
[Import(typeof(ILogger))]
public ILogger Logger { get; set; }

[ImportMember("Logger", IsRequired = true)]
public Property<ILogger> LoggerProperty;

public override void OnEntry(MethodExecutionArgs args)

{
this.LoggerProperty.Get().Log("OnEntry");
}
object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{
return this.MemberwiseClone();
}
void IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

313

Testing and Debugging Aspects

}

[Export(typeof (MyServiceImpl))]
internal class MyServiceImpl

{

}

[LogAspect]

public void LoggedMethod()
{

}

Console.WriteLine("Hello, world.");

internal class Program

{

private static void Main(string[] args)

{

AssemblyCatalog catalog = new AssemblyCatalog(typeof (Program).Assembly);
CompositionContainer container = new CompositionContainer(catalog);
MyServiceImpl service = container.GetExport<MyServiceImpl>().Value;
service.LoggedMethod();

[Export(typeof (ILogger))]
internal class ConsolelLogger : ILogger

{

}

public void Log(string message)

{

Console.WriteLine(message);

The following code snippet shows how the logging aspect can be tested:

using System;

using System.ComponentModel.Composition;

using System.ComponentModel.Composition.Hosting;
using System.Text;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.InstanceScoped.Test

{

314

[TestClass]
public class TestLogAspect

{

}

[TestMethod]
public void TestMethod()

{

}

TypeCatalog catalog = new TypeCatalog(typeof (TestLogger), typeof (TestImpl));
CompositionContainer container = new CompositionContainer(catalog);

TestImpl service = container.GetExport<TestImpl>().Value;

TestLogger.Clear();

service.TargetMethod();

Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

[Export(typeof (TestImpl))]
private class TestImpl

{

[LogAspect]

public void TargetMethod()
{

¥

[Export(typeof (ILogger))]
internal class TestlLogger : IlLogger

Testing Build-Time Logic

{
public static readonly StringBuilder stringBuilder = new StringBuilder();
public void Log(string message)
{
stringBuilder.AppendLine(message);
}
public static string GetLog()
{
return stringBuilder.ToString();
}
public static void Clear()
{
stringBuilder.Clear();
}
}

17.4. Testing Build-Time Logic

Testing build-time logic of aspects has specific challenges:

» Aspects can emit errors and warnings, which cannot be tested using a run-time testing framework. We need a
mechanism to test error messages themselves.

* When a project contains a large number of test cases (which are all compiled at the same time), it is difficult to

Therefore, we built a test framework specifically for the purpose of testing aspects.

This topic contains the following sections.

Creating an aspect unit test project

To create an aspect unit test project:
1. Create a console project and add all required references to it.

2. Add PostSharp to this project

3. Edit the project file using a text editor. The project file must import PostSharp.BuildTests.targets before Microsoft.
CSharp.targets (download'®). File PostSharp.targets also needs to be included (which is the case if the PostSharp

NuGet package is added to the project).

4. Implement each test case as a standalone file having its own Program class and Main method. To avoid naming
conflicts, every file should have a distinct namespace.

315

http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets
http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets

Testing and Debugging Aspects

A test is considered successful in the following situations:
* the test compiles using the C# or VB compiler, and
 the test compiles using PostSharp without any unexpected message (see below), and
 the output exe is valid according PEVERIFY, and

+ the output exe executes successfully and returns the exit code 0,

This default behavior can be altered by test directives, as described below.

Executing a single test

Execute the following line from the command prompt:

msbuild /t:TestOne /p:Source=MyFile.cs

Executing all tests from a directory

Execute the following line from the command prompt:

msbuild /t:Test /p:SourceDir=MyDirectory

Executing all tests in the project directory

Execute the following line from the command prompt:

msbuild /t:Test

Test that messages are emitted

If the test is expected to emit a message (error, warning, information), insert the text @ExpectedMessage (PS@001) in the test
file as a comment line.

If this directive is present, the test will be valid if and only if all expected messages, and no other, have been emitted.
Allow unsafe code

To enable unsafe code and disable verification by PEVERIFY, insert the text @Unsafe in the test file as a comment line.

Creating a reference assembly

In case that a test requires a dependency assembly (typically, for tests that require two assembilies, for instance testing
aspect inheritance that cross assembly boundaries), you can create a second file named MyTest.Dependency.cs, if the first
file is named MyTest.cs. This will create an assembly MyTest.Dependency.dll, and main test will have a reference to this
assembly.

17.5. Attaching a Debugger at Build Time

It may seem unusual to debug compile-time logic, but like any process, it is perfectly legal and even simple to debug the
build process!

Basically, what you will do is to attach a debugger to the PostSharp process. If you use the standard MSBuild targets for
PostSharp, define the constant PostSharpAttachDebugger=True.

316

Attaching a Debugger at Build Time

The trick is easier to explain when you have compile-time logic (your aspect, for instance) and the transformed assembly in
different Visual Studio projects.

Suppose you have your aspects logic MyAspects.csproj and unit tests (i.e. the code to be transformed) in MyAspects.
Test.csproj. The easiest way to debug MyAspects.csproj is to:

1.

2
3.
4

Open MyAspects.csproj and MyAspects.Test.csproj in two different instances of Visual Studio.
Open the Visual Studio Command Prompt and go to the directory containing MyAspects.Test.csproj.
Build MyAspects.csproj using Visual Studio as usually .

From the command prompt, type:

msbuild MyAspects.Test.csproj /T:Rebuild /P:PostSharpAttachDebugger=True

The build process will hit a break point. When it happens, attach the instance of MyAspects.csproj Visual Studio.
Set up break points in your code and continue the program execution.

317

Testing and Debugging Aspects

318

Restricting Interface Implementation

CHAPTER 18

Validating Architecture

Besides aspect-oriented programming, you can use PostSharp to validate your source code against architecture and design
rules named constraints. Constraints are piece of codes that validate the code against specific rules at build time.

PostSharp provides ready-made constraints for the following scenarios:

18.1. Restricting Interface Implementation

Under some circumstances you may want to restrict users of an APl to implement an interface. You may want to allow them
to consume the interface but not to implement it in their own classes, so that, later, you can add new members to this
interface without breaking the user's code. If retaining the interface as a public artifact is required, the programming
language does not give you any option to enforce the desired restriction. Enter the InternalImplementAttribute from

PostSharp.

This topic contains the following sections.

Adding the constraint to the interface

To restrict implementation of publicly declared interfaces you simply need to add [InternalImplementAttribute] to that
interface.

1. Place the caret over the interface that you want to add the attribute select the "Add architectural constraint..."

namespace Sharpcrafters.Samples.Restricted

{
public interface ICustomerRepository
{ a-
TEnumerable<C »¢ Addarchitecture constraint..
¥
b

319

Validating Architecture

2. Select "Prevent interface implementation in a different assembly" and select Next.

)X Select an architecture constraint.

Select Constraint @Architemure

Summary

Progress Pi interface impl ion in a different assembly
ReferentialConstraint that, when applied on an interface, prevents it to be
implemented in a different assembly. This constraint should be used when
the author of an interface does not expect users to implement the interface
and wants to reserve the possibility to add new methods to the interface.

Completed

Prohibit use outside of given types
Prohibit the use of this element of code outside of specified types.

Prohibit use outside of the current class family

Similar to the 'protected’ keyword, Use this constraint when an element of
code must be public for technical reasons, but should not be used outside of
the current and children classes.

Prohibit use outside of the current namespace
Prohibit the use of this element of cede outside of its namespace or children
namespaces.

Prohibit use outside of the current project
Similar to the 'internal’ keyword. Use this constraint when an element of

| < Previous | ‘ Mext > || Cancel

3. Verify that you will be adding the InternalImplementAttribute attribute to the correct piece of code.

)%// Summary

Select Constraint The following actions will be performed:

S .
Add custom attribute [Internallmplement] to

Progress Sharperafters Restricted.|C R

Completed

< Previous | ‘ Mext = | |

320

Restricting Interface Implementation

4. Once the download, installation and configuration of PostSharp has finished you can close the wizard and look at
the changes that were made to your codebase.

/7
)X The operation has successfully completed

Select Constraint The project has been successfully modified.

Summary

Progress

Completed

< Previous Cancel

5. You'll notice that the only thing that has changed in the code is the addition of the [InternalImplement-
Attribute] attribute.

[InternalImplement]
public interface ICustomerRepository

{
}

Once that is done, implementing the interface that was decorated with the InternalImplementAttribute from another
assembly will create a compile time warning.

Description.
1 1 Interface SharpCrafters.Samples.Restricted. ICustomerRepository cannat be implemented by POSTSHARP
SharpCrafters.Crm. UL CustomerRepository because of the [Internallmplement] constraint.

IEnumerable<Customer> FetchAll();

File Ling Column Project
SharpCrafters. Crm. UL

NOTE

To perform this architectural validation the project that is trying to implement the interface will need to be processed by
PostSharp.

Emitting an error instead of a warning

If a warning isn't strong enough for your environment you can change the output to a compile time error by setting the
InternalImplementAttribute to have a Severity type of Error.

[InternalImplement(Severity = SeverityType.Error)]
public interface ICustomerRepository

321

Validating Architecture

{
}

IEnumerable<Customer> FetchAll();

Now any reference to the decorated interface from another assembly will generate an error and fail the compilation of your
project.

Error List
v
Description ¥ File Line Column Project
g 2 The processing of module "SharpCrafters. Crm.ULdI" was not successful. POSTSHARP SharpCrafters. Crm.UI
9 1 Interface SharpCrafters. Samples.Restricted. ICustomerR.epository cannat be implemented by POSTSHARP SharpCrafters. Crm. UL

SharpCrafters.Crm. UL CustomerRepository because of the [Internallmplement] constraint.

Ignoring warnings

If you are trying to implement a constrained interface in a separate assembly and you want to override the warning being
generated there is a solution available for you. The IgnoreWarningAttribute attribute can be applied to stop warnings

from being generated.

NOTE

The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the warnings to be errors, those
errors will still be generated even if the IgnoreWarningAttribute attribute is present.

To suppress warnings all that you need to do is add the IgnoreWarningAttribute attribute to the offending piece of code.
In this example we would suppress the warning being generated by adding the attribute to the class that is implementing
the constrained interface. Once we have done that, the warning generated for that specific implementation would be
suppressed. All other locations that are implementing this interface will continue to generate their warnings.

NOTE

You may wonder where the identifier ARO101 comes from. IgnoreWarningAttribute actually works with any PostSharp
warning and not just this one. Any build error, whether from MSBuild, C# or PostSharp, has an identifier. To see error
identifiers in Visual Studio, open the View menu and click on the Output item, select "Show output from: Build". You will
see warnings including their identifiers.

[IgnoreWarning("ARO101")]
public class PreferredCustomerRepository : ICustomerRepository

¢ public IEnumerable<Customer> FetchAll()
{
return null;
}
}

18.2. Controlling Component Visibility Beyond Private and
Internal

When you are working on applications it's common to run across situations where you want to restrict access to a
component you have written. Usually you control this access using the private and/or internal keywords when defining the

322

Controlling Component Visibility Beyond Private and Internal

component. A class marked as internal can be accessed by any other class in the same assembly, but that may not be the
level of restriction needed within the codebase. Access to a private class is restricted to those components that are inside
the same class or struct that contains the private class, which prevents any other classes from accessing it. In one situation
we are restricting access to the component to only the class or struct that contains it. In the other situation we are allowing
access to the component from any other component that is in the same assembly. What if needed something in between?

PostSharp offers the ability to define component access rules that exist between the scope of the internal and private
keywords. This gives us the opportunity to restrict access to a component only from other components in the same
namespace. We can also restrict access to a select few other components.

As an example let's look at a data access related class. As a precaution against developer's circumventing our data access
structure we want to limit access to this repository class.

This topic contains the following sections.

Restricting access to specific namespaces

Our first step is to limit access to this class only to other classes within the validation namespace.

1. Put the caret on the internal class that should have restricted access. Select "Add architectural constraint..." from
the smart tag options.

internal TEnumerable<Invoice> FetchAllForCustomer(Guid id)

{ a-
//dOStU'F'F)\/ Add architecture constraint...
return null; »(Add logging..

323

Validating Architecture

324

2. Select "Prohibit use outside of given types" from the list of options.

)X Select an architecture constraint.

Select Constraint @ Architecture

Summary

Progress Prohibit use outside of given types
Prohibit the use of this element of cede outside of specified types.

Completed

Prohibit use outside of the current class family

Similar to the 'protected’ keyword, Use this constraint when an element of
code must be public for technical reasons, but should not be used outside of
the current and children classes.

Prohibit use outside of the current namespace
Prohibit the use of this element of cede outside of its namespace or children
namespaces.

| < Previous | ‘ Mext > || Cancel |

3. Verify that you will be adding the ComponentInternalAttribute attribute to the correct piece of code.

)%// Summary

Select Constraint The following actions will be performed:

S .
Add custom attribute [Compenentinternal] to

Progress PostSharp.Architecture.Rep ies.Invoic itory.FetchAllIForC

p

Completed

< Previous | ‘ Mext = | | Cancel

Controlling Component Visibility Beyond Private and Internal

4. Once the download, installation and configuration of PostSharp has finished you can close the wizard and look at
the changes that were made to your codebase.

/7
)X The operation has successfully completed

Select Constraint The project has been successfully modified.

Summary

Progress

Completed

< Previous Cancel

5. You'll notice that the only thing that has changed in the code is the addition of the [ComponentInternal-
Attribute] attribute.

namespace Sharpcrafters.Crm.Console.Repositories

{
public class InvoiceRepository
{
[ComponentInternal]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
//dostuff
return null;
}
}
¥

6. The [ComponentInternalAttribute] attribute is templated to accept a string for the namespace that should be

able to access this method. There are two options that you could use. The first is to pass the attribute an array of
typeof(...) values that represents the types that can access this method. The second option is to pass in an

array of strings that contain the namespaces of the code that should be able to access this method. For our
example, replace the typeof (TODO) with a string for the validation namespace.

325

Validating Architecture

7. If you try to access this component from a namespace that hasn't been granted access you will see a compile time
warning in the Output window.

namespace Sharpcrafters.Crm.Console.Services

{

public class InvoiceServices

{

public IEnumerable<InvoiceForList> FetchAllInvoicesForCustomer(Guid id)

{

var invoiceRepository = new InvoiceRepository();

var allInvoices = invoiceRepository.FetchAllForCustomer(id);
return
allInvoices.Where(x => Ix.PaidInFull).Select(
X => new InvoiceForlList
{
PurchaseDate = x.PurchaseDate,
ShipDate = x.ShipDate,
TotalAmount = x.Total

s

}

b

Descripton * File Line Column | Project

1. 1 Method SharpCrafters. Crm. Console. InvoiceRepository.FetchAllForCustomer cannot be POSTSHARP SharpCrafters.Crm.Console
referenced from method
SharpCrafters.Crm. Console. Services. Sharpcrafters.Crm. Console. Services, CustomerServices. Fetc
hAllInvoicesForCustomer because of the [Companentinternal] constraint.

NOTE

If you are trying to access the component from a namespace that is in a different project you will need Post-
Sharp to process that project for the validation to occur.

Restricting access to specific types

Under some circumstances namespace level restrictions may not be tight enough for your needs. In that situation you have
the ability to apply this constraint at a type level.

1. To restrict access at a component type level you need to explicitly define which component types will have access.
This is done by passing types into the constructor of the ComponentInternalAttribute attribute's constructor.

The construct accepts an array of Type which allows you to define many different component types that should be
granted access.

public class InvoiceRepository

{
[ComponentInternal(typeof(Sharpcrafters.Crm.Console.Services.InvoiceServices))]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
//dostuff
return null;
}
}

326

Controlling Component Visibility Beyond Private and Internal

2. Now if you try to access this component from a type that hasn't been granted access you will see a compile time
warning in the Output window.

public class CustomerServices

{
public IEnumerable<Customer> FetchAll()
{
var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());
}
}

Error List

h 1 Warning
Descripton * File Line Column | Project
1. 1 Method SharpCrafters. Crm. Console. InvoiceRepository.FetchAllForCustomer cannot be POSTSHARP SharpCrafters.Crm.Console

referenced from method
SharpCrafters.Crm. Console. Services. Sharpcrafters.Crm. Console. Services, CustomerServices. Fetc
hAllInvoicesForCustomer because of the [Companentinternal] constraint.

Controlling component visibility outside of the containing assembly

Because of framework limitations or automated testing requirements you sometimes need to declare components as public
so that you can perform the desired tasks or testing. For some of those components you probably don't want external
applications accessing them. For instance, WPF controls need a default constructor for use in the designer, but sometimes
you want another constructor to be used at runtime, so you want to prevent the default constructor to be used from code.

PostSharp offers you the ability to decorate a publically declared component in such a way that it is not accessible by
applications that reference its assembly. All you need to do is apply the InternalAttribute attribute.

1. Let's mark the Customer class so that it can only be accessed from the assembly it resides in.

namespace Sharpcrafters.Crm.Core

{
public class Customer
{
public int Id { get; set; }
public string Name { get; set; }
¥
}

2. Place the caret on the publically declared component that you want to restrict external access to and expand the
smart tag. Select "Add architectural constraint".

public class Customer
{ a-
public in »¢ Implement INotifyPropertyChanged
public st ¢ Add architecture constraint...
} » Add logging...
» Apply threading model...

327

Validating Architecture

3. When prompted to select a constraint, choose to "Prohibit use outside of the project”.

)X Select an architecture constraint.

Select Constraint @Architemure

Summary
Progress Prohibit use outside of the current class family
Similar to the 'protected’ keyword, Use this constraint when an element of
Completed code must be public for technical reasons, but should not be used outside of
the current and children classes.

Prohibit use outside of the current project

Similar to the 'internal’ key 1, Use this ¢ int when an el it of
code must be public for technical reasons, but should not be used outside of
the current project.

| < Previous | ‘ Mext > || Cancel |

4. The summary page gives you the opportunity to review the selections that you have made. If you notice that the
configuration is not what you wanted you can click the Previous button and adjust your selections. If the configu-
ration meets your needs click Next. In this demo you will see that the [InternalAttribute] attribute is being

added to the Customer class.

)%// Summary

T TS e The following actions will be performed:

Add custom attribute [Internal] to Sharpcrafters.Crm.Core,Customer,

Progress

Completed

328

Controlling Component Visibility Beyond Private and Internal

5. Once the download, installation and configuration of PostSharp has finished you can close the wizard and look at
the changes that were made to your codebase.

/7
)X The operation has successfully completed

Select Constraint The project has been successfully modified.

Summary

Progress

Completed

< Previous Cancel

6. You'll notice that the only thing that has changed in the code is the addition of the [InternalAttribute]
attribute.

namespace Sharpcrafters.Crm.Core

{
[Internal]
public class Customer
{
public int Id { get; set; }
public string Name { get; set; }
}
}

7. When you attempt to make use of that public component in a different assembly a compile time warning will
appear in the Output window.

namespace Sharpcrafters.Crm.Console.Repositories

{
public class CustomerRepository:ICustomerRepository
{
public IEnumerable<Customer> FetchAll()
{
return new List<Customer>{new Customer{Id=1,Name="Joe Johnson"}};
}
}
¥
NOTE

The assembly that is attempting to use the public component will need to reference PostSharp for this validation
to occur.

329

Validating Architecture

Emitting errors instead of warnings

By default any situation that breaks the access rules defined by the application of the ComponentInternalAttribute or
InternalAttribute attribute will generate a compile time warning. It's possible to escalate this warning to the error level.

1. Changing the output warning to an error requires you to set the Severity level.

[ComponentInternal(typeof (InvoiceServices), Severity = SeverityType.Error)]
public IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff

return null;

}

2. Now when you try to access the component when access hasn't been granted the Output window will display an
error message.

Error List
T
Description ¥ File Ling Column Project
0 2 The processing of module “SharpCrafters. Crm. Console.dll™ was not successful. POSTSHARP SharpCrafters.Crm. Console
€3 1 Method SharpCrafters.Crm. Consale. InvoiceRepository, FetchAllForCustomer cannot be POSTSHARP SharpCrafters.Crm. Console

referenced from method
SharpCrafters, Crm. Console. Services. Sharpcrafters. Crm. Console. Services, CustomerServices. Fetc
hallInveicesForCustomer because of the [ComponentInternal] constraint.

Ignoring warnings

There may be specific situations where you want to supress the warning message that is being generated at compile time.
In those cases you can apply the IgnoreWarningAttribute attribute to the locations where you want to allow access to the

component.

NOTE

The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the warnings to be errors, those
errors will still be generated even if the IgnoreWarningAttribute attribute is present.

If you wanted to allow access to the constrained component in a specific method you could add the IgnoreWarning-
Attribute attribute to that method.

public class CustomerServices

{
[IgnoreWarning("AR0102")]
public IEnumerable<Customer> FetchAll()
{
var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());
}
}
NOTE

AR@102 is the identifier of the warning emitted by ComponentInternalAttribute. To ignore warnings emitted by
Internal, use the identifier AR9104.

You may wonder where these identifiers come from. IgnoreWarningAttribute actually works with any PostSharp warning
and not just this one. Any build error, whether from MSBuild, C# or PostSharp, has an identifier. To see error identifiers in
Visual Studio, open the View menu and click on the Output item, select "Show output from: Build". You will see warnings
including their identifiers.

330

Developing Custom Architectural Constraints

If you wanted to allow access in an entire class you could add the IgnoreWarningAttribute attribute at the class level. Any
access to the constrained component within the class would have its warning suppressed.

[IgnoreWarning("AR0102")]
public class CustomerServices

{
public IEnumerable<Customer> FetchAll()
{
var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());
}
}

18.3. Developing Custom Architectural Constraints

When you are creating your applications it is common to adopt custom design patterns that must be respected across all
modules. Custom design patterns have the same benefits as standard ones, but they are specific to your application. For
instance, the team could decide that every class derived from BusinessRule must have a nested class named Factory,

derived from BusinessRulesFactory, with a public default constructor.

Even performing line-by-line code reviews can miss violations of the pattern. Is there a better way to ensure that this
doesn't happen? PostSharp offers the ability create custom architectural constraints. The constraints that you write are able
to verify anything that you can query using reflection.

There are two kinds of constraints: scalar constraints and referential constraints.

This topic contains the following sections.

Creating a scalar constraint

Scalar constraints typically validate an element of code, while referential constraints validate how an element of code is
being used.

Let's start with a scalar constraint and create a constraint that verifies the first condition our BusinessRule design pattern:
that any class derived from BusinessRule must have a nested class named Factory. We can model this condition as a
scalar constraint that applies to any class derived from BusinessRule. Therefore, we will create a type-level scalar
constraint, apply it to the BusinessRule class, and use attribute inheritance to have the constraint automatically applied to
all derived classes.

1. Create a class that inherits from the ScalarConstraint class in PostSharp.
using System;
public class BusinessRulePatternValidation : ScalarConstraint

{
}

331

Validating Architecture

2. Designate what code construct type this validation aspect should work for by adding the MulticastAttribute-
UsageAttribute attribute. In this case we want the validation to occur on types only, and we want to enable
inheritance.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint

{
}

3. Override the ValidateCode(Object) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint

{
public override void ValidateCode(object target)
{
}

}

4. Create a rule that checks that there's a nested type called Factory. You'll note that the target parameter for the
ValidateCode(Object) method is an object type. Depending on which target type you declare in the
MulticastAttributeUsageAttribute attribute, the value passed through this parameter will change. For
MulticastTargets.Type the type passed is Type. To make use of the target for validation you must cast to that
type first.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint

{
public override void ValidateCode(object target)
{
var targetType = (Type) target;
if (targetType.GetNestedType("Factory") == null)
// Error
}
¥
}
NOTE

Valid types for the target parameter of the validateCode(Object) method include Assembly, Type, Method-
Info, ConstructorInfo, PropertyInfo, EventInfo, FieldInfo, and ParameterInfo.

332

Developing Custom Architectural Constraints

5. Write a warning that the rule being broken to the Output window in Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint

{
public override void ValidateCode(object target)
{
var targetType = (Type)target;
if (targetType.GetNestedType("Factory") == null)
{
Message.Write(
targetType, SeverityType.Warning,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);
}
}
}

6. Attach the rule to the code that needs to be protected. For this example we want to add this rule to the
BusinessRule class.

[BusinessRulePatternValidation]
public class BusinessRule

{
}

// No Factory class here.

NOTE

This example shows applying the constraint to only one class. If you want to apply a constraint to large portions

T

Description

1 1 The type does not have a nexted type named ‘Factory’.

333

Validating Architecture

8. In some circumstances you may determine that a warning isn't aggressive enough. We can alter the rule that you
have created so that it outputs a compile time error instead. All that you need to do is change the SeverityType
in the Message.Write to Error.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint

{
public override void ValidateCode(object target)
{
var targetType = (Type)target;
if (targetType.GetNestedType("Factory") == null)
{
Message.Write(
targetType, SeverityType.Error,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);
}
}
}

Error List

Y - @260 |

Description
€31 The type does not have a nested type named Factory',
€32 The processing of module "PostSharp.Architecture.dll” was not successful.

Using this technique it is possible to create rules or restrictions based on a number of different criteria and implement
validation for several design patterns.

When you are working on projects you need to ensure that they adhere to the ideals and principles that our project teams
hold dear. As with any process in software development, manual verification is guaranteed to fail at some point in time. As
you do in other areas of the development process, you should look to automate the verification and enforcement of our
ideals. The ability to create custom architectural constraints provides both the flexibility and verification that you need to
achieve this goal.

Creating a referential constraint

Now let's create a referential constraint that verifies the second condition our BusinessRule design pattern: that the
BusinessRule class can only be used in the Controllers namespace. You can model this condition as a referential

constraint and apply the constraint to any class in your codebase. If you apply this constraint to the entirety of your
codebase you will ensure that the BusinessRule design pattern is only referenced in the Controllers namespace.

1. Create a class that inherits from the ReferentialConstraint class in PostSharp.

public class BusinessRuleUseValidation : ReferentialConstraint

{
}

2. Declare that this aspect should work only on types by adding the MulticastAttributeUsageAttribute attribute
to the class.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRuleUseValidation : ReferentialConstraint

{
}

334

Developing Custom Architectural Constraints

3. Override the ValidateCode(Object, Assembly) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
BusinessRuleUseValidation : ReferentialConstraint

{
public override void ValidateCode(object target, Assembly assembly)
{
¥

}

4. Create the rule that checks for the use of the BusinessRule type in the target code.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint

{
public override void ValidateCode(object target, Assembly assembly)
{
var targetType = (Type) target;
var usages = ReflectionSearch
.GetMethodsUsingDeclaration(typeof (BusinessRule));
if (usages !=null)
{
// Warning
¥
}
}
NOTE

The rule here makes use of the ReflectionSearch helper class that is provided by the PostSharp framework.

This class, along with others, is an extension to the built in reflection functionality of .NET and can be used
outside of aspects as well.

5. Write a warning message to be included in the Output window of Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{
public override void ValidateCode(object target, Assembly assembly)
{
var targetType = (Type) target;
var usages = ReflectionSearch
.GetMethodsUsingDeclaration(typeof (BusinessRule));

if (usages !=null)
{
Message.Write(

targetType, SeverityType.Warning,
"2002",
"The {0} type contains a reference to 'BusinessRule'" +
"which should only be referenced from Controllers.",
targetType.Name);

335

Validating Architecture

6. Attach the referential constraint that you created to any code that needs to be checked. In this example, add an
attribute to the AccountRepository class.

namespace PostSharp.Architecture.Repositories

{
[BusinessRuleUseValidation]
public class AccountRepository
{
public void AddAccount(string name)
{
var businessRule = new BusinessRule();
businessRule.DoStuff();
¥
}
}
NOTE

This example shows applying the constraint to only one class. If you want to apply this constraint to a larger

T

Description

1 1 The AccountRepository type contains a reference to 'BusinessRule’ which can only be referenced from Controllers.

NOTE

If using a warning isn't aggressive enough you can change the SeverityType to Error. Now when the rule is
broken an error will appear in the Output window of Visual Studio and the build will not be successful.

CAUTION NOTE

PostSharp constraints operate at the lowest level. For instance, checking relationships of a type with the rest of the code
does not implicitly check the relationships of the methods of this type. Also, checking relationships of namespaces is not

possible.

Custom attribute multicasting can be used to apply a constraint to a large number of types, for instance all types of a
namespace. But this would result in one constraint instance for every type, method and field on this namespace. Altough
this has no impact on run time, it could severely affect build time. For this reason, the current version of PostSharp
Constraints is not suitable to check isolation (layering) of namespaces at large scale.

Referential constraints provide you with the ability to declare architectural design patterns right in your code. By
documenting these patterns right in the codebase you are able to provide easy access for the development team as well as
continual verification that your desired design patterns are being adhered to.

Validating the constraint itself

Now that you have created scalar and referential constraints you can be assured that certain architectural rules are being
consistently implemented in your codebase. There is one thing that is missing though.

With what you have done thus far, it is possible to attach your architectural constraints to any code element in your
projects. This may not be appropriate. For example, the scalar constraint that you created to perform the BusinessRule-

Patternvalidation may be a valid constraint only on classes that exist in the Models namespace.

336

Developing Custom Architectural Constraints

Let's look at how we can ensure that this constraint is only enforced on classes that exist in the Models namespace.
1. Open the BusinessRulePatternValidation class that you created earlier.
2. Override the validateConstraint(Object) method.

3. Write the validation logic to ensure that this constraint is only applied to classes in the Models namespace.

NOTE

When the vValidateConstraint(Object) method returns true, it tells PostSharp that the constraint should be
applied to that target code element. When the vValidateConstraint(Object) method returns false PostSharp
will not apply the constraint to the target code element.

Now, when the BusinessRulePatternValidation attribute is applied to a class that is not in the Models namespace of your
project, there will be no warning or error added to the Visual Studio Output window.

When the attribute is applied to a class in the Models namespace and that class doesn't pass the constraint's rules you will
continue to see the warning or error indicating this architectural failure.
Ignoring warnings

There will be situations where a constraint is generating a warning that is of no concern. In these exceptional circumstances
it is best if you remove the warning from the Visual Studio Output window.

To ignore these unnecessary warnings, find the target code that is responsible for generating the warning. Add the Ignore-
WarningAttribute attribute to the target code entering the MessageId of the warning that you want to suppress.

The MessageId can be found in your constraint where you issue the Message.Write command. The Reason value performs
no function during the suppression of the warning. It exists so that you can provide clear communication as to why the
warning is being ignored.

NOTE

The IgnoreWarningAttribute attribute will only suppress the issuance of Message.Write statements that are assigned a
SeverityType of Warning. If the SeverityType is set to Error the IgnoreWarningAttribute attribute will have no
suppression effect on that statement.

337

	Table of Contents
	Introduction
	PostSharp Overview
	What Is PostSharp
	How Does PostSharp Work
	PostSharp Components
	Key Technologies

	Getting Started with PostSharp
	Getting Started: Selecting and Creating Aspects
	Getting Started: Installing and Deploying PostSharp
	Getting Started: Using Aspects

	What's New in PostSharp
	What's New in PostSharp 4.1
	What's New in PostSharp 4.0
	What's New in PostSharp 3.1
	What's New in PostSharp 3.0
	What's New in PostSharp 2.1
	What's New in PostSharp 2.0
	What's New in PostSharp 1.5

	Deployment and Configuration
	Deployment
	Requirements and Compatibility
	Installing PostSharp Tools for Visual Studio
	Installing PostSharp Into a Project
	Deploying License Keys
	License Audit
	Using PostSharp License Server
	Installing and Servicing PostSharp License Server

	Using PostSharp on a Build Server
	Restoring Packages at Build Time
	Using PostSharp with Visual Studio Online

	Upgrading from a Previous Version of PostSharp
	Uninstalling PostSharp
	Deploying PostSharp to End-User Devices

	Configuration
	Configuring Projects in Visual Studio
	Configuring Projects Using MSBuild
	Working with PostSharp Configuration Files
	Configuration File Schema Reference
	Well-Known PostSharp Properties
	Including CLR Objects in Configuration
	Using Expressions in Configuration Files

	Accessing Configuration from Source Code
	Working with Errors, Warnings, and Messages
	Ignoring and Escalating Warnings
	Emitting Errors, Warnings, and Messages

	Standard Patterns
	INotifyPropertyChanged
	Walkthrough: Automatically Implementing INotifyPropertyChanged
	Walkthrough: Working with Properties that Depend on Other Objects
	Customizing the NotifyPropertyChanged Aspect
	Understanding the NotifyPropertyChanged Aspect

	Parent/Child Relationships
	Walkthrough: Annotating an Object Model for Parent-Child Relationships
	Walkthrough: Enumerating Child Objects
	Walkthrough: Automatically Disposing Children Objects
	Working With Collections

	Undo/Redo
	Making Your Model Recordable
	Adding Undo/Redo to the User Interface
	Customizing Undo/Redo Operation Names
	Assigning Recorders Manually
	Adding Callbacks on Undo and Redo
	Understanding the Recordable Aspect

	Contracts
	Walkthrough: Adding Contracts to Code
	Creating Custom Contracts
	Localizing Contract Errors

	Logging
	Walkthrough: Adding Detailed Tracing to a Code Base
	Walkthrough: Customizing Logging
	Walkthrough: Tracing Parameter Values Upon Exception
	Walkthrough: Changing the Logging Back-End

	Adding Aspects to Code
	Adding Aspects Declaratively Using Attributes
	Adding Aspects to a Single Declaration
	Adding Aspects to Multiple Declarations
	Adding Aspects to Derived Classes and Methods
	Overriding and Removing Aspect Instances
	Reflecting Aspect Instances at Runtime
	Understanding Attribute Multicasting
	Understanding Aspect Inheritance

	Adding Aspects Using XML
	Adding Aspects Programmatically using IAspectProvider

	Threading Patterns
	Writing Thread-Safe Code with Threading Models
	Freezable Threading Model
	Immutable Threading Model
	Actor Threading Model
	Reader/Writer Synchronized Threading Model
	Synchronized Threading Model
	Thread-Unsafe Threading Model
	Thread Affine Threading Model
	Opting In and Out From Thread Safety
	Compatibility of Threading Models
	Enabling and Disabling Runtime Verification

	Dispatching a Method to Background
	Dispatching a Method to the UI Thread
	Detecting Deadlocks at Runtime

	Custom Patterns
	Developing Custom Aspects
	Developing Simple Aspects
	Injecting Behaviors Before and After Method Execution
	Handling Exceptions
	Injecting Behaviors into Async Methods
	Injecting Behaviors into Iterators
	Intercepting Methods
	Intercepting Properties and Fields
	Intercepting Events
	Introducing Interfaces
	Introducing Custom Attributes
	Introducing Managed Resources

	Understanding Aspect Lifetime and Scope
	Initializing Aspects
	Validating Aspect Usage
	Developing Composite Aspects
	Adding Behaviors to Existing Members
	Introducing Interfaces, Methods, Properties and Events
	Accessing Members of the Target Class
	Adding Aspects Dynamically

	Coping with Several Aspects on the Same Target
	Ordering Advices

	Understanding Interception Aspects
	Understanding Aspect Serialization
	Advanced
	Coping with Custom Object Serializers
	Configuring Aspects

	Examples
	Tracing Method Execution
	Handling Exceptions
	Caching the Result of a Method
	Dispatching a Method Execution to the GUI Thread
	Backing a Property with a Registry Value
	Making an Event Asynchronous
	Dynamically Introducing an Interface
	Automatically Adding DataContract and DataMember Attributes
	Raising an Event When the Object is Finalized

	Testing and Debugging Aspects
	Writing Simple Tests
	Testing that an Aspect has been Applied
	Consuming Dependencies from the Aspect
	Using a Global Composition Container
	Using a Global Service Locator
	Using Dynamic Dependency Resolution
	Using Contextual Dependency Resolution
	Importing Dependencies from the Target Object

	Testing Build-Time Logic
	Attaching a Debugger at Build Time

	Validating Architecture
	Restricting Interface Implementation
	Controlling Component Visibility Beyond Private and Internal
	Developing Custom Architectural Constraints

